
324 FUJITSU Sci. Tech. J., Vol. 48, No. 3, pp. 324–330 (July 2012)

MPI Library and Low-Level Communication
on the K computer

 Naoyuki Shida Shinji Sumimoto Atsuya Uno

The key to raising application performance in a massively parallel system like the K
computer is to increase the speed of communication between compute nodes. In
the K computer, this inter-node communication is governed by the Message Passing
Interface (MPI) communication library and low-level communication. This paper
describes the implementation and performance of the MPI communication library,
which exploits the new Tofu-interconnect architecture introduced in the K computer
to enhance the performance of petascale applications, and low-level communication
mechanism, which performs fine-grained control of the Tofu interconnect.

1. Introduction
The Message Passing Interface (MPI)

communication library is a well-established
standard for message passing in a parallel-
processing system, but it would be no
exaggeration to say that the quality of this
communication library can have a significant
effect on system performance.

This holds true for the K computernote)i—to
achieve a world-class level of performance in
an 80 000-node, large-scale parallel-processing
system, a variety of creative measures must be
taken in using this library. In particular, it is
essential that the communication time between
nodes be minimized to raise performance. Thus,
in addition to the MPI communication library
as normally used, it is important that a low-
level-communication mechanism for controlling
the Tofu interconnect also be provided when
implementing the MPI communication library.

note)i “K computer” is the English name
that RIKEN has been using for the
supercomputer of this project since July
2010. “K” comes from the Japanese word
“Kei,” which means ten peta or 10 to the
16th power.

This paper describes the MPI communication
library and low-level-communication mechanism
for the K computer.

2. Development targets and
issues for implementing MPI
communication library
Development targets and issues for

implementing an MPI communication library
are summarized below. These targets are not
restricted to the K computer—they can also
be applied to the design of supercomputers of
the exaFLOPS class, which is 100 times the
performance of the K computer.
1) MPI with high basic performance

Basic communication on a supercomputer
includes point-to-point communication, collective
communication, and MPI-IO, the performance
of which can have a major impact on system
performance. In particular, point-to-point
communication performance, which contributes
to collective communication performance and
MPI-IO performance, requires an optimal
communication system that can tap into the
high performance of the hardware-based Tofu

325FUJITSU Sci. Tech. J., Vol. 48, No. 3 (July 2012)

N. Shida et al.: MPI Library and Low-Level Communication on the K computer

interconnect from the viewpoints of latency and
bandwidth.
2) Optimal communication for a large-scale

environment
System performance is generally

proportional to the amount of memory used
in communication, which means that there
is a tradeoff between minimizing the amount
of memory used in a system and achieving
high performance. Additionally, memory
usage increases in proportion to the number of
processes with which a particular process must
communicate, which means that running out
of available memory is a high possibility in an
80 000-node-class system. How to go about
minimizing memory usage given the above
constraints is therefore an important issue.
In short, there is a need for a communication
system that can somehow minimize the amount
of memory used.
3) User-friendly environment

The Tofu interconnect used in the K
computer has a 6D mesh/torus topology.1)

Understanding its physical connections to
develop programs is not an easy task for
the general user. Studies must therefore be
performed on how to go about bypassing faulty
nodes in the operation of a large-scale system on
a level of 80 000 nodes.

3. Overview of implementing MPI
communication library
The policy that we adopted to implement

an MPI communication library that can resolve
the issues described in the previous section is
to provide a low-level communication library
tailored as much as possible to a standard
application programming interface (API) based
on an open-source MPI communication library
and to achieve as far as possible the functions
specific to the K computer through this low-level
communication library. This would have the
effect of minimizing changes to the standard MPI
communication library.

The open-source MPI that we adopted for
this purpose is Open MPI. We chose Open MPI
first and foremost because it has a proven track
record for the SPARC processors used in the K
computer. Additionally, it supports InfiniBand,
the main interconnect specification for PC
clusters and thus simplifies the development
process.

An MPI communication library for the K
computer based on the above policy resolves the
issues described above in the following ways.
1) MPI with high basic performance

First, to improve point-to-point
communication performance, we provide a
communication API centered about remote direct
memory access (RDMA) communication that can
make full use of the hardware characteristics of
the Tofu interconnect at the level of a low-level
communication library, and we use this API to
implement an MPI communication library.

Second, to raise the performance of collective
communication, we use the multiple network
interfaces of the Tofu interconnect architecture
on the basis of point-to-point communication
centered about RDMA communication and adopt
a collective-communication algorithm applicable
to a 6D mesh/torus topology.
2) Optimal communication for a large-scale

environment
We adopted two measures to achieve

both high communication performance and
low memory usage to the extent possible. The
first measure was to minimize the amount of
memory needed for a communication buffer by
using communication centered about RDMA,
and the second was to minimize memory
usage by limiting to a fixed value the number
of fellow processes with which a process can
simultaneously communicate.
3) User-friendly environment

For the K computer, the 6D mesh/torus
topology is presented as a virtual 3D torus
to make it easier for users to handle the 6D
topology. This is accomplished by combining the

326 FUJITSU Sci. Tech. J., Vol. 48, No. 3 (July 2012)

N. Shida et al.: MPI Library and Low-Level Communication on the K computer

six axes of the 6D topology in such a way as to
form a 3D confi guration. As a result, it is easier
to transplant applications previously developed
for existing 3D-torus systems and there are
more confi gurable 3D-torus shapes from which
to choose. This 3D confi guration results in a
number of helpful features. For example, the
system can be used as a 3D-torus system even if it
is partitioned into multiple jobs, and applications
can be executed without having to worry about
faulty nodes in the system by appropriately
setting the communication paths.

4. Implementation of Open MPI
on the K computer
The structure of the MPI developed for

implementation on the K computer is shown
in Figure 1. Some changes have been made
to the basic structure of Open MPI to support
low-latency communication and collective
communication based on RDMA. The following
requirements were established for this
implementation of Open MPI on the K computer.

1) Prompt upgrading to new versions
The MPI open-source library is constantly

being updated to accommodate new functions,
bug fi xes, etc. In fact, there is a high possibility
that the new functions to be added in MPI
Version 3.0, which is now under study at the
MPI Forum, will bring about major changes in
the library. For this reason, much importance is
being placed on an implementation whereby new
versions of Open MPI can be accommodated by
applying patches without having to modify the
Open MPI structure if at all possible.
2) Focus on low-latency communication

Current implementations of Open MPI
feature three communication-library layers
(COLLs)—point-to-point messaging layer
(PML), BTL management layer (BML), and byte
transfer layer (BTL)—for achieving point-to-
point communication. This means that at least
three function calls must be made to perform
such communication, which increases latency.
To achieve the basic communication performance
required of an MPI communication library for the

Figure 1
Structure of MPI on the K computer.

Common structures and processes
used by tofu BTL, tofu LLP, tuned COLL,
and tbi COLL

Point-to-point communication
Collective

communication

Layer
extension

Special path for
short-message,
low-latency
communication

 (Send, Rsend,
Bsend)

Tofu interconnectTofu interconnect

MPI Interface Layer
Tuned COLL,
Tofu Barrier Interface (TBI)

r2 BML

ob1 PML

tofu BTL

Tofu libraryTofu library

tofu
LLP

(Low-
latency
path)

tofu COMMONtofu COMMON

Layer
extension

Tofu-dedicated point-
to-point-communication
processing

Protocol improvement for long

messages (Rendezvous, Stride)

Implements new algorithm

reflecting Tofu characteristics

and enables direct calls to

Tofu library (Bcast, Allgather,

Allgatherv, Allreduce, Alltoall)

Uses Tofu inter-node

barrier/reduction functions

 (Barrier, Bcast, Reduce,

Allreduce)

Figure 1

Structure of MPI on K computer.

327FUJITSU Sci. Tech. J., Vol. 48, No. 3 (July 2012)

N. Shida et al.: MPI Library and Low-Level Communication on the K computer

K computer, a low latency path (LLP) has been
added as a dedicated shortcut for point-to-point
communication.
3) Collective communication based on RDMA

Part of the collective-communication
algorithm uses a newly developed collective-
communication framework instead of the
standard Open MPI framework to enable
• Support of the Tofu hardware (Barrier,

Bcast, Reduce, Allreduce)
• Support of RDMA-based collective

communication
• Designation and control of multiple network

interfaces.
In short, we have developed a collective-

communication algorithm that enables multiple
network interfaces to be used particularly for
the frequently used communication operations of
Bcast, Allgather, Allreduce, and Alltoall and that
minimizes packet collisions on the network.

The amount of memory needed for
communication purposes has been reduced by
establishing two modes for MPI communication:
high-speed and memory-saving. Communication
begins in memory-saving mode, which keeps the
size of the communication buffer small. However,
if the number of times that communication is
performed with another specific process exceeds
a certain threshold, the mode is switched to
high-speed, which uses a larger communication
buffer. There is also a mechanism to prevent
memory consumption from increasing by limiting
the number of times that switching to high-speed
mode can be performed.

5. Implementation of low-level
communication on the K
computer
The low-level-communication mechanism

for the K computer taps the maximum
performance of the Tofu-interconnect hardware
through the use of a low-level communication
library for the Tofu interconnect (Tofu library).
This mechanism provides two types of functions.

1) Low-level communication
These are RDMA-based communication

functions for tapping the full hardware
performance of the Tofu interconnect.
2) Rank mapping

This function presents a 3D torus after
avoiding faulty nodes on the basis of information
received from the job interface.

6. Evaluation of basic
communication performance
To assess the basic communication

performance of the K computer, we first evaluated
point-to-point communication performance
for nearest-neighbor communication at both
the Tofu library level and MPI library level.
We then evaluated collective-communication
performance by both hardware and software
using the Allreduce and Barrier communication
operations.

6.1 Point-to-point communication
performance at Tofu library level
One-way communication latency in nearest-

neighbor communication at the Tofu library
level was 0.92 μs for an 8-byte message, and the
maximum bandwidth was 4.76 GB/s for a 16-MB
message. Given that hardware latency is 0.91 μs,
it can be seen that communication processing
latency at the Tofu library level was quite low at
0.01 μs.

Communication bandwidth performance for
1–4 Tofu network interfaces (TNIs) is shown in
Figure 2. These results show that performance
can be improved in a scalable manner up to
14.26 GB/s at 3TNI. The performance limitation
at 4TNI of 15.03 GB/s is attributed to a bottleneck
at the interface on the CPU side.

6.2 Point-to-point communication
performance at MPI library level
The one-way latency at the MPI library

level is shown in Figure 3, and communication
bandwidth performance is shown in Figure 4.

328 FUJITSU Sci. Tech. J., Vol. 48, No. 3 (July 2012)

N. Shida et al.: MPI Library and Low-Level Communication on the K computer

From the former figure, communication
latency at the MPI library level was 1.27 μs
for an 8-byte message in the case of nearest-
neighbor communication, and from the latter
figure, maximum communication bandwidth
was 4.7 GB/s for a 16-MB message. It can be
seen from these results that the hardware
performance of the Tofu interconnect is being
tapped to the maximum.

6.3 Collective communication
performance at MPI library level
The collective communication performance

for a hardware implementation using Tofu
barrier interfaces (TBIs) at the MPI library level
is shown in Figure 5. Specifically, this figure
shows the results for the Allreduce and Barrier
operations for up to 9216 nodes and compares
these results with those of a comparable software
implementation. Examining the results of
the hardware implementation, it can be seen
that there is practically no deterioration in

Figure 2
Communication bandwidth performance for 1–4 TNIs at Tofu library level.

Figure 3
One-way latency at MPI library level.

Figure 4
Bandwidth performance at MPI library level.

1TNI

16

1.E＋00 1.E＋01 1.E＋02

Message length per TNI (byte/TNI)

1.E＋03 1.E＋04 1.E＋05 1.E＋06 1.E＋07

15.03 GB/s

14.26 GB/s

9.51 GB/s

4.76 GB/s

14

12

10

8

6

4

2

0

2TNI 3TNI 4TNI

T
hr

ou
gh

pu
t (

G
B

/s
)

Figure 2

Bandwidth performance for 1 – 4 TNIs at Tofu library level.

5 MPI

Ping-pong One-way Latency

Message size (byte)

P
in

g-
po

ng
 la

te
nc

y
(µ

s) Tofu
4

3

2

1

0
0 100 200 300 400 500

Figure 3

One-way latency at MPI library level.

Ping-pong Bandwidth Performance

0

1

2

3

4

5

1.E＋00 1.E＋02 1.E＋04 1.E＋06 1.E＋08

Message size (byte)P
in

g-
po

ng
 b

an
dw

id
th

 p
er

fo
rm

an
ce

 (
G

B
/s

)

MPI

Tofu

Figure 4

Bandwidth performance at MPI library level.

329FUJITSU Sci. Tech. J., Vol. 48, No. 3 (July 2012)

N. Shida et al.: MPI Library and Low-Level Communication on the K computer

performance for either operation even at 9216
nodes, indicating that performance was stable.

The bandwidth performance of the Allreduce
operation at the MPI library level is shown in
Figure 6. Specifically, the figure shows the
results for a collective-communication algorithm

(Trinaryx3) that uses multiple network
interfaces to tap the full performance of the Tofu
interconnect and that prevents the overlapping
of communication paths. The Trinaryx3
Allreduce communication algorithm developed
for the K computer uses three network interfaces

Figure 5
Hardware collective-communication performance at MPI library level.

Figure 6
Allreduce bandwidth performance at MPI library level.

Barrier/Allreduce

0

10

20

30

40

50

60

70

80

90

100

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10 000

No. of nodes (48×6×Z)

A
llr

ed
uc

e/
B

ar
rie

r
pr

oc
es

si
ng

 ti
m

e
(µ

s)
Barrier (hardware) Allreduce (hardware)

Barrier (software) Allreduce (software)

Figure 5

Hardware collective-communication performance at MPI library level.

Allreduce Bandwidth (up to 9216 1-GB nodes)

0

1

2

3

4

5

6

7

8

32 1 K 32 K 1 M 32 M 1 G

Message size per rank (byte)

Trinaryx3

Ring

Recursive Doubling

Maximum bandwidth of 7.1 GB/s

for 3-path simultaneous communication

⇒About 5 times those of existing

 implementationsB
an

dw
id

th
 (

G
B

/s
)

Figure 6

Allreduce bandwidth performance at MPI library level.

330 FUJITSU Sci. Tech. J., Vol. 48, No. 3 (July 2012)

N. Shida et al.: MPI Library and Low-Level Communication on the K computer

and achieves a communication performance of
7.1 GB/s, which is about 5 times those of two
existing collective-communication algorithms
(Ring and Recursive Doubling), which are also
shown for comparison.

7. Conclusion
This paper described the implementation

and performance of the MPI and low-level-
communication mechanism introduced in the
K computer. Three development targets were
established for this implementation: MPI with
high basic performance, optimal communication

for a large-scale environment, and user-friendly
environment. To meet these targets, a variety
of creative measures were taken, and the result
was high communication performance and ease
of use. Nevertheless, there is still much room
for improvement on an ultra-large-scale machine
like the K computer. In future research, We
look to raise performance even further and to
contribute to the Open MPI community.

References
1) Y. Ajima et al.: A 6D Mesh/Torus Interconnect for

Exascale Computers. IEEE Computer, Vol. 42,
No. 11, pp. 36–40 (2009).

Naoyuki Shida
Fujitsu Ltd.
Mr. Shida is engaged in the
development of the MPI communication
library.

Atsuya Uno
RIKEN
Dr. Uno is engaged in coordinating
development of system software.

Shinji Sumimoto
Fujitsu Ltd.
Mr. Sumimoto is engaged in overall
technology development for HPC
system software involving high-
performance communication such as
the MPI communication library and
cluster fi le system.

