
295FUJITSU Sci. Tech. J., Vol. 48, No. 3, pp. 295–301 (July 2012)

Operating System for the K computer

 Jun Moroo Masahiko Yamada Takeharu Kato

For the K computer to achieve the world’s highest performance, Fujitsu has worked
on the following three performance improvements in the development of the
operating system (OS). First, to bring out the maximum hardware performance
of our original CPU and interconnect, we provided a mechanism of controlling
hardware extensions directly from applications. As the second improvement,
we have introduced the synchronization scheduling function that minimizes the
synchronization wait time of parallel programs resulting from system interruptions
by coordinating job runtime and system runtime between multiple nodes. Third,
multiple page size support that allows use of more than one page size has been
achieved for improved memory access performance and memory utilization
efficiency. This paper also describes the performance improvement functions,
usability and robustness of the OS developed.

1. Introduction
Supercomputers are used in large-scale

simulation computations in a variety of science
and technology fields. For weather forecasts, for
example, the prediction area can be divided at the
municipality level or even further at the station
level to calculate values such as the temperature,
wind direction, and wind speed for each sub-
area, which enables highly accurate predictions
to be made. Aerodynamic simulations on aircraft
allow people to estimate how an aircraft will
move without having to build a model or actual
aircraft. In the development of new drugs,
substances that are candidates for a medicine
can be extracted out of a vast number of types
and combinations to narrow them down to those
with a curative effect.

Carrying out such large-scale simulations
involves enormous amounts of memory and
compute nodes and a huge number of files.
Accordingly, an operating system (OS) capable
of bringing out the maximum hardware

performance of the supercomputer is essential.
This paper gives a description of the OS of

the K computernote)i that is capable of conducting
large-scale simulations.

2. Software configuration of the
K computer
Generally, supercomputers perform high-

speed computations by:
1) Dividing huge computations
2) Operating many computers (compute nodes)

concurrently in a coordinated manner
3) Transferring computation results at high

speeds between compute nodes by using
a set of standard communication libraries
called Message Passing Interface (MPI)
The OS processes application startup and IO

note)i “K computer” is the English name
that RIKEN has been using for the
supercomputer of this project since July
2010. “K” comes from the Japanese word
“Kei,” which means ten peta or 10 to the
16th power.

296 FUJITSU Sci. Tech. J., Vol. 48, No. 3 (July 2012)

J. Moroo et al.: Operating System for the K computer

processing requests and takes charge of system
processing including time of day control. For
the OS of the K computer, we have maximized
the hardware and software performance by
improving the OS kernel and libraries. We
worked on developing the OS of the K computer
with a target of achieving 10 PFLOPS, a
performance level ten times higher than the
system at the time of its initial development.

The basic software of the K computer
is composed of the OS and basic middleware
(operations management software, language
system) (Figure 1). The OS implements the
architecture-dependent portion of the Linux

kernel and has additional drivers for using the
hardware of the K computer so that it can be
used from the middleware in the upper level.

We have worked on developing the OS to
install on the K computer, aiming for targets
including improved usability, improved
performance and improved robustness as shown
in Table 1. The following sections present the
respective targets.

3. Improved usability (effective
utilization of user assets)
Some of the existing supercomputers use

special OSes, on which software that has been

Figure 1
Software configuration of the K computer.

CPU (SPARC64 VIIIfx) Tofu
interconnect

Sector cache Barriers IO devices

OS

Device drivers

File systemNetwork

Memory management

Process management
Interrupt time
management

Language system

MPI libraries

Debuggers tuning toolsCompilers

Language libraries

Commands, libraries

Operations management software

Job management

System control/management

Architecture-dependent portion Sector cache Barriers Tofu

Hardware

OS

Middleware

IO

Table 1
Features of the K computer OS.

Feature Realization method

Improved usability Effective utilization of user assets
Linux
POSIX API

Improved
performance

Direct control of hardware extensions

SIMD instruction support
Hardware barrier
Sector cache
Extension of device drivers for
hardware control registers

Improved scalability Synchronization scheduling with rsadc

Improved memory performance and efficiency Large page support

Improved robustness
Security
RAS enhancement

User access protection
Fallback for failure

297FUJITSU Sci. Tech. J., Vol. 48, No. 3 (July 2012)

J. Moroo et al.: Operating System for the K computer

developed by the user cannot be used. For the
OS of the K computer, we have adopted Linux to
allow continued use of the user’s assets.

Similarly to general OSes, the OS of the K
computer is equipped with process management,
memory management, IO management (device
driver), file system and network functions.
Linux is used in more than 91% of the TOP500
ranked supercomputers and we have adopted
it in view of making user applications portable.
Users can use POSIX API, a UNIX application
programming interface (API), on the K computer.

In addition, the OS of the K computer has
API (library, command) extensions for using
extended hardware, which allows easy use of
hardware functions through the compiler and
MPI library functions.

These contrivances enable the OS of
the K computer to port general open source
software (application programs, tools, etc.) by
recompilation without having to change the
source program.

4. Improved performance
4.1 Direct control of hardware extensions

SPARC64 VIIIfx is a SPARC64 VII-based
CPU equipped with expanded registers, extended
SIMD instructions, hardware barriers between
cores and sector cache for speedup. For the OS of
the K computer, we have prepared a mechanism
with additional device drivers that allow these
hardware extensions to be controlled directly
from applications. The drivers map registers
that control barrier synchronization and sector
cache into the memory space of applications, by
which high-speed control is achieved without
involving system call overhead.

The sector cache is intended to be used to
divide the cache in the CPU into two virtual
regions to facilitate caching of the data that are
repeatedly used by applications.

Specifically, the complier generates memory
access instructions to cache less frequently
used data in sector 0 and more frequently used

data in sector 1. This prevents frequently used
data from being expelled from the cache, and
thus improves the execution performance of
applications. The amount of frequently used
data may vary depending on the functions in
applications. Accordingly, the ratio of the sector
cache used from user applications has been
made changeable during program execution to
allow the utilization efficiency of the cache to be
optimized.

The performance improvement effect of
cache control cannot be sufficiently achieved
if overhead is generated due to the issuance
of a system call when a device driver is called
along with sector cache operation. For that
reason, device drivers for the K computer have
been designed and implemented to allow user
applications to directly control the registers that
control the sector cache. This has successfully
reduced the sector cache control time from a few
microseconds to a few nanoseconds.

4.2 Improved memory access
performance
The OS of the K computer is equipped

with large page support as a function to provide
both high memory access performance and high
memory utilization efficiency.

Generally, the virtual memory management
unit provided for Linux for 64-bit SPARC
manages the memory used by programs in
8 Kbyte page units.

A cache (TLB: translation lookaside
buffer) is provided for speeding up the address
translation performed by the hardware but the
number of entries is limited. With a page size
of 8 Kbytes, use of memory of a few Mbytes or
larger causes the process to exceed the capacity
of the TLB and overhead resulting from OS
address translation is generated.

If the page size to be managed with one
entry is increased, high-speed access to memory
of a few Gbytes or larger can be achieved by
means of a TLB. However, managing the entire

298 FUJITSU Sci. Tech. J., Vol. 48, No. 3 (July 2012)

J. Moroo et al.: Operating System for the K computer

data area with one-sized large pages may reduce
the memory utilization efficiency because of the
unused memory area in a large page. To address
this problem, the OS of the K computer allows
the page size to be selected from the options of
4 Mbytes, 32 Mbytes and 256 Mbytes.

For example, to run an application that
uses a stack larger than the area for static data
including global variables, a large page can be
allocated to the stack and a small page to the
data area. In this way, both improved memory
utilization efficiency and improved performance
thanks to the reduction of TLB misses can be
achieved (Figure 2).

4.3 Improved scalability
We have developed a synchronization

scheduler and statistics sampling mechanism
for the purpose of improving the performance of
parallel jobs across multiple nodes (scalability
improvement).

4.3.1 Synchronization scheduler
A single computation job that runs on the K

computer system is a parallel program deployed
on multiple nodes and, every time a certain
computation process is completed, mutual
synchronization and communication take place
between nodes connected via interconnects.

For system operation, the OS and operations
software daemons (programs that run in the
background for system management) need to
run, and they run asynchronously regardless of

the job.
This daemon operation causes interruptions

(system noise) of a parallel program. In
computation with tens of thousands of nodes,
interruptions may increase in proportion to
the number of nodes, leading to a significant
performance degradation. There are two ways to
solve this problem:
1) Dedicate a specific core of a node composed

of multiple CPU cores to the OS to run the
daemon for eliminating interruptions in the
job on each node (spatial division)

2) Reduce interruptions in synchronization/
communication of a parallel program to a
certain level independently of the number of
nodes by synchronized running of daemons
between compute nodes (synchronization
scheduler method) (temporal division)
With the method described in 1), when one

of the eight cores of the CPU of the K computer
is allocated to the system and seven cores to the
job, the execution efficiency is limited to 87.5%
(seven-eighths). Accordingly, we have developed
the synchronization scheduler method described
in 2) for the K computer.

With the synchronization scheduler of the
K computer, the OS uses the barrier function
of the Tofu interconnect to achieve inter-node
synchronization. The synchronization scheduler
enhances the process scheduler function of
Linux to perform synchronization at intervals
of 100 ms, for example, and run the daemons in
1 ms out of the 100 ms. The parallel program can

Figure 2
Effect of multiple page size support in process that uses 32 Mbytes of static data.

• Example of process that uses 32 Mbytes of static data

Page with 256 Mbytes of static data

32 Mbytes used

Stack area
(256 Mbytes)

Static data area
(256 Mbytes)

Page with 32 Mbytes of static data

224 Mbytes of unused
area generated

No unused area generated
Memory utilization efficiency increased

32 Mbytes used

Stack area
(256 Mbytes)

Static data area
(32 Mbytes)

299FUJITSU Sci. Tech. J., Vol. 48, No. 3 (July 2012)

J. Moroo et al.: Operating System for the K computer

run 99% of the time in synchronization between
all nodes without interruptions, which allows for
a performance improvement in proportion to the
number of nodes (Figure 3).

4.3.2 Statistics sampling function
The K computer reduces interruptions

themselves by using the synchronization
scheduler to lower the effect of daemons to
jobs and optimizing daemon processes. As an
example, this section describes the improvement
of the statistics sampling function.

When a user application runs on a compute
node, daemon processes that run periodically
in the system can cause interruptions (system
noise) to the user application and result in
variation in execution performance of the user
application (the execution performance may vary
depending on the execution timing of the user
application).

For this reason, reducing system noise on a
compute node requires the daemon processes that

run periodically in the system to be minimized.
To monitor to ensure normal operation of

the system and analyze performance bottlenecks,
the OS samples statistics including CPU and
memory usage. Generally, for OS statistics,
the sadc command is run via cron, a function
intended for periodically executing system
processes, to read kernel data and write to the
statistics file. This method does not cause major
system noise with small systems but with the
K computer, which is an enormous system, this
statistics sampling process may result in system
noise.

For the K computer, remote sadc function
(rsadc), which collects compute node performance
statistics in IO nodes, has been developed
(Figure 4). We have aimed to reduce costs
and improve reliability with the K computer
by aggregating IO devices onto IO nodes in
each rack. We have reduced the number of
interruptions by offloading to these IO nodes
the IO processes of performance statistics of the

... ...

: Job execution section
: System process
 execution section

: Synchronization
 wait section

: Synchronization start : Synchronization end

Ideal computation job

Time

Actual computation job

Node 1 Node 2 Node 1 Node 2 Node NNode N

Time

Figure 3
Operation of synchronization scheduler.

300 FUJITSU Sci. Tech. J., Vol. 48, No. 3 (July 2012)

J. Moroo et al.: Operating System for the K computer

many compute nodes.
The ksadc daemon of compute nodes

maintains the performance statistics of the
individual nodes in the memory and carries out
IO processes by means of rsadc on IO nodes. The
command rsadc uses the remote direct memory
access (RDMA) function of the Tofu interconnect
to transfer the performance statistics of the
individual compute nodes to IO node memory
without daemon processes on compute nodes,
which can be stored on disks.

For the K computer, we have developed a
function for a system composed of many racks
so that it can collect log files required for billing
and system management from IO nodes of
the many racks into one control node without
accessing compute nodes. This has enabled the
administrator to gain an understanding of the
conditions of the entire system without causing
interruptions in parallel jobs.

5. Improved robustness
The K computer, which is composed of a

large number of hardware components, is a
system required by various users to perform
lengthy computations and it needs to be highly
robust. In relation to hardware failures, for
example, it is important to have reliability,
availability and serviceability (RAS) functions,
which allow continued operation even if one
component fails and early detection of the point
of failure for replacement. In addition, the

system must be secure so that it is possible to
share files within user groups or prevent other
groups from viewing the files.

The K computer has been given high
robustness by making use of hardware
redundancy, RAS functions provided for
Linux including multipath driver and security
function and adding to Linux the RAS functions
that have been enhanced in Fujitsu’s existing
supercomputers and servers.

The following subsections describe examples
of the enhanced RAS functions and security
functions.

5.1 RAS enhancement
The OS of the K computer has inherited

the existing server technologies of Fujitsu to
enhance the functions of intermittent memory
error recovery and identification and notification
of hardware failure points.

To address memory errors caused by alpha
rays and such like, the OS of the K computer
cooperates with the memory patrol function of
the hardware to perform data correction, thereby
making the system highly reliable.

The hardware performs memory read
(patrol) at intervals specified by the OS. By using
the error correcting code (ECC) mechanism,
the OS writes data to the memory when any
single-bit error is detected in the memory data,
by which error correction including ECC is
performed. Performing this error correction

Figure 4
Schematic diagram of rsadc.

sadc used rsadc used

sadc daemon

nfs client

Tofu

nfs server

TCP/IP

Tofu

IO

Compute node IO node Compute node IO node

TCP/IP

Tofu

rsadc

IO

ksadc daemon

Tofu

RDMA

301FUJITSU Sci. Tech. J., Vol. 48, No. 3 (July 2012)

J. Moroo et al.: Operating System for the K computer

periodically prevents correctable single-bit errors
from developing into uncorrectable double-bit
errors, which improves reliability.

Once any failed page is detected, the OS
marks it to prevent it being allocated memory
when any subsequent memory allocation request
is issued, thereby retiring the page.

When any memory error is detected, the OS
specifi es the slot containing that memory and
notifi es the administrator of it so as to reduce
the time from stopping the node to replacing
the component. The RAS functions have been
enhanced to allow precise identifi cation of
possible points of failure based on error events
detected in relation to CPU and IO devices (PCI
channel, Gbit Ethernet adapter, Fibre Channel
adapter, etc.) in addition to memory.

5.2 Security functions
The K computer system is used

simultaneously by many users and it is essential
that it has security functions. However, security
functions do not make sense if they affect the
computing performance.

The security functions of the K computer
have been achieved by combining the user
management and fi le system functions normally

used in UNIX-based OSes.
The OS supports the following security

functions in relation to authentication by general
user management.
• Password encryption
• Change of fi le and directory access rights
• Change of owners of fi les and directories
• Change of group ownership of fi les and

directories
For fi les and directories, security

management is provided based on the controlled
access protection profi le (CAPP), which
controls access by “read,” “write” and “execute”
permissions for user, group and other.

6. Conclusion
This paper has described the features of the

OS of the K computer. The development of an
OS for a globally unparalleled large-scale system
was a challenging task, and we needed to achieve
both ultimate performance and usability. We
intend to continuously work on developing the
OS to provide the foundation for more easily
conducting large-scale simulations on the K
computer and help advance various fi elds in
science and industry.

Jun Moroo
Fujitsu Ltd.
Mr. Moroo is currently engaged
in software development for next-
generation HPC.

Masahiko Yamada
Fujitsu Ltd.
Mr. Yamada is currently engaged
in software development for next-
generation HPC.

Takeharu Kato
Fujitsu Ltd.
Mr. Kato is currently engaged in
software development for next-
generation HPC.

