
362 FUJITSU Sci. Tech. J., Vol. 47, No. 3, pp. 362–368 (July 2011)

Kernel-based Virtual Machine Technology

 Yasunori Goto

The kernel-based virtual machine (KVM) has been attracting attention in recent
years for application to open source server virtualization. Since its introduction in
October 2006, the simplicity of this idea has aroused the interest of Linux kernel
developers, who have helped to rapidly extend KVM functionality. KVM is now
formally supported by Red Hat Enterprise Linux and has been supported by Fujitsu
since version 6 of Red Hat Enterprise Linux. This paper begins by explaining
the mechanism of KVM and then describes its components. Next it introduces
hardware and software support for KVM virtualization and briefly describes some
enhancements planned by Fujitsu to enable KVM to be used in mission-critical work.

1. Introduction
Virtualization technology for servers in the

x86 family of CPUs has been attracting attention
in recent years for various reasons. Server
virtualization itself is a technology that has
been around for some time, and the provision of
Intel Virtualization Technology (Intel VT)1) and
AMD-Virtualization (AMD-V)2) virtualization
support functions in Intel and AMD CPUs
has provided developers with an environment
that can achieve virtualization relatively
inexpensively at practical levels of performance
using x86 hardware. Various types of software
for achieving server virtualization have also
appeared.

Amidst these developments, the kernel-
based virtual machine (KVM)3) has rapidly
come to the forefront as a server virtualization
function provided as open source software
(OSS). KVM, which was designed assuming

use of the Intel VT-xnote 1) or AMD-V function,
achieves virtualization using a relatively simple
structure. The idea of implementing KVM was
first announced in October 2006 by Avi Kivity,
then of Qumranet, an Israeli firm.4) The support
of Linux kernel developers, attracted by KVM’s
simple design approach, was soon obtained, and
KVM functionality was rapidly extended. KVM
is now formally supported by Red Hat and has
been supported by Fujitsu since version 6 of Red
Hat Enterprise Linux (RHEL6).

This paper describes the simple mechanism
of KVM and provides a brief introduction to
software and hardware functions supporting
KVM. It assumes Intel VT-x CPU functions.

2. KVM mechanism
To provide the reader with a basic

understanding of the KVM mechanism, this
section first describes Intel VT-x and then

note 1) Intel VT is the generic name of Intel’s
virtualization support function consisting of
Intel VT-x for x86 processors like Core 2 Duo
and Intel Xeon, Intel VT-i for Itanium 2, and
Intel VT-d supporting I/O virtualization.

363FUJITSU Sci. Tech. J., Vol. 47, No. 3 (July 2011)

Y. Goto: Kernel-based Virtual Machine Technology

explains the quick emulator called “QEMU,” an
important OSS component of KVM.

2.1	 Intel	VT-x	and	sensitive	instructions
Assuming that KVM would make use of the

Intel VT-x function, KVM designers implemented
KVM as a function in the Linux kernel.note 2) The
following provides an overview of Intel VT-x to
facilitate a basic understanding of KVM.

Intel VT-x can be viewed as a “function
that switches processing to the hypervisor on
detecting the execution of a sensitive instruction
by the CPU.” As shown in Figure 1, hypervisor
is a control program for operating VMs (guest
systems) on a physical machine. Two types of
sensitive instructions are defined.5)
1) “Control-sensitive instructions” attempt to

change the state of system resources.
2) “Behavior-sensitive instructions” operate

in accordance with the state of the system
resources.
Conceptually, control-sensitive instructions

executed by a program on a VM affect the
operation of the physical machine, and behavior-
sensitive instructions executed by a program

note 2) The advantage of this is that a kernel
function can easily support hypervisor
operation given the high affinity between
the kernel and hypervisor.

on a VM reveal that they were executed on a VM
since the results differ from those when they are
executed on the physical machine

If a program attempts to execute these
instructions on a guest system without any
intervention, it will cause serious problems for
the hypervisor and guest system. It is therefore
necessary for the CPU to detect that the
execution of a sensitive instruction is beginning
and to direct the hypervisor to execute that
instruction on behalf of the program.

However, x86 CPUs were not designed with
the need for virtualization in mind, so there
are sensitive instructions that the CPU cannot
detect as such when a guest system attempts to
execute them. As a result, the hypervisor cannot
execute such instructions on behalf of the guest
system. Intel VT-x was developed in response
to this problem. It adds new execution modes to
the processor and switches between these modes
once the CPU detects such an instruction so that
the hypervisor can execute that instruction on
behalf of the initiating program.

Specifically, Intel VT-x adds two program
execution modes: VMX root operation and
VMX non-root operation, where VMX stands
for “virtual machine extension.” As shown in
Figure 2, VMX non-root operation mode is
the execution mode for guest systems. If an

Figure	2
Relationship	between	hypervisor	and	program	
execution	modes	of	Intel	VT-x.

Figure	1
Hypervisor	and	virtual	machines.

Physical machine

Hypervisor

OS

Application

OS

Application

OS

VM VM VM

Application

VMX root operation
(Hypervisor user mode)

VMX non-root operation (Guest user mode)

VM Entry

VM Exit

Execution of sensitive instruction

VMLAUNCH/VMRESUME instruction

364 FUJITSU Sci. Tech. J., Vol. 47, No. 3 (July 2011)

Y. Goto: Kernel-based Virtual Machine Technology

attempt is made to execute a sensitive instruction
when in this mode, the CPU detects the attempt
and switches execution to VMX root operation
mode, which is the execution mode for hypervisor
use. This transition, called “VM Exit,” signals
the transfer of control to the hypervisor, enabling
it to execute the sensitive instruction on behalf of
the guest system.

Two new instructions introduced by Intel
VT-x–VMLAUNCH and VMRESUME–enable
switching to VMX non-root operation mode,
which is called “VM Entry.”

The main role of KVM is the handling of VM
Exits and the execution of VM Entry instructions.
KVM is implemented as a module in the Linux
kernel.

2.2	 KVM	and	QEMU
The KVM kernel module cannot, by itself,

create a VM. To do so, it must use QEMU, a
user-space process.6)

QEMU is inherently a hardware emulator.
It is provided as OSS for emulating standard
x86 personal computers (PCs) and other
architectures. It existed before the release of
KVM and can operate without KVM.

Given that QEMU is a software-based
emulator, it interprets and executes CPU
instructions one at a time in software, which
means its performance is limited. However, it is
possible to greatly improve QEMU performance
while also achieving a VM function if three
conditions are met.
1) A target instruction can be directly executed

by the CPU.
2) That instruction can be given without

modification to the CPU for direct execution
in VMX non-root operation mode.

3) A target instruction that cannot be directly
executed can be identified and given to
QEMU for emulator processing.
The development of KVM was based on this

idea. Application of this idea enables the creation
of VMs while maximizing the use of existing OSS

resources with minimal modifications. Much
support has been received from Linux kernel
developers for this reason.

The QEMU/KVM execution flow is shown in
Figure 3. First, a file named /dev/kvm is created
by the KVM kernel module (step 0 in the figure).
This file enables QEMU to convey a variety of
requests to the KVM kernel module to execute
hypervisor functions. When QEMU starts up
to execute a guest system, it repeatedly makes
ioctl() system calls specifying this special file
(or file descriptors derived from it). When it is
time to begin executing the guest system, QEMU
again calls ioctl() to instruct the KVM kernel
module to start up the guest system (step 1). The
kernel module, in turn, performs a VM Entry
(step 2) and begins executing the guest system.
Later, when the guest system is about to execute
a sensitive instruction, a VM Exit is performed
(step 3), and KVM identifies the reason for the
exit. If QEMU intervention is needed to execute
an I/O task or another task, control is transferred
to the QEMU process (step 4), and QEMU
executes the task. On execution completion,
QEMU again makes an ioctl() system call and
requests the KVM to continue guest processing
(i.e., execution flow returns to step 1). This

Figure	3
QEMU/KVM	execution	flow.

Linux kernel (hypervisor)

KVM kernel module

User space

 VM
(guest system)

QEMU

0) /dev/kvm 3) VM Exit 2) VM Entry

1) ioctl() 4) Return

365FUJITSU Sci. Tech. J., Vol. 47, No. 3 (July 2011)

Y. Goto: Kernel-based Virtual Machine Technology

QEMU/KVM flow is basically repeated during
the emulation of a VM.

QEMU/KVM thus has a relatively simple
structure.
1) Implementation of a KVM kernel module

transforms the Linux kernel into a
hypervisor.

2) There is one QEMU process for each guest
system. When multiple guest systems
are running, the same number of QEMU
processes are running.

3) QEMU is a multi-thread program, and
one virtual CPU (VCPU) of a guest system
corresponds to one QEMU thread. Steps 1–4
in Figure 3 are performed in units of threads.

4) QEMU threads are treated like ordinary
user processes from the viewpoint of the
Linux kernel. Scheduling for the thread
corresponding to a virtual CPU of the guest
system, for example, is governed by the
Linux kernel scheduler in the same way as
other process threads.

3. KVM Components
This section introduces KVM-related

components other than QEMU and describes the
overall KVM structure.

QEMU itself is launched by entering
a simple command of the same name via a
character user interface (CUI). If the process
status (ps) command is entered while a guest
system is running, the status of QEMU execution
is displayed, as illustrated by this example.

[goto@lifua ~]$ ps auxw |grep qemu
qemu /usr/bin/qemu-kvm -S -M
 fedora-13 -enable-kvm -m 1024 -smp 1, sockets=1,
cores=1, threads=1
 -drive file=/home/goto/kvm_image/fedora13.img,
 -device rtl8139, vlan=0, id=net0,
mac=52:54:00:65:03:a0

The command options “-m 1024” and “-smp
1” indicate the memory capacity and the number
of CPUs, respectively, of the guest system.
Though the example shown above contains about
one-third the actual number of lines, all QEMU
settings, such as device settings, have been
passed as QEMU-command parameters.

As might be expected, it is not necessarily
easy to specify all of these options directly
with the QEMU command. For this reason, a
graphical user interface (GUI), referred to as
“virt-manager,”7) has been prepared for Red Hat
Enterprise Linux (RHEL) as well as for other
operating systems to enable the user to operate
and manage one or more guest systems. Figure 4
shows a screen shot when multiple guest systems
are executing. The window at the upper-left
is the virt-manager screen, and the windows
at the lower-left and right are guest-system
screens, indicating that two guest systems are
running. This screen shot shows an example
of executing VMs on Fedora Linux distribution;
the corresponding display for RHEL6 may differ
slightly.

In addition to such GUIs, virt-manager can
also take the form of a CUI called “virsh,” which
can also be used to operate guest systems.

The overall structure of KVM, from the
GUI to the Linux kernel, includes five main
components.
1) virt-manager

A GUI/CUI user interface used for managing
VMs; it calls VM functions using libvirt, which is
described next.
2) libvirt

A tool-and-interface library8) common to
server virtualization software supporting Xen,
VMware ESX/GSX, and, of course, QEMU/KVM
3) QEMU

An emulator that interacts with the KVM
kernel module and executes many types of
guest-system processing such as I/O; one QEMU
process corresponds to one guest system.
4) KVM kernel module

366 FUJITSU Sci. Tech. J., Vol. 47, No. 3 (July 2011)

Y. Goto: Kernel-based Virtual Machine Technology

In a narrow sense, KVM is a Linux kernel
module; it handles VM Exits from guest systems
and executes VM Entry instructions.
5) Linux kernel

Since QEMU runs as an ordinary process,
scheduling of the corresponding guest system is
handled by the Linux kernel itself.

If we revise Figure 3 to include virt-manager
and the other components, we get the overall
KVM configuration shown in Figure 5. All of
the components are OSS.

4. KVM hardware and software
support functions
The matter of most concern in server

virtualization is performance. Ideally, the
performance of a VM is no worse than that of
the physical machine. To this end, there is
a variety of hardware and software support
functions available for virtualization in addition
to the basic KVM mechanism described above.
The basic aim is to use them to improve KVM

performance. This section introduces several of
these functions.
1) Extended Page Table (EPT)

The EPT function extends the address

Figure	4
Screen	when	guest	systems	are	executing.

Figure	5
Whole	image	of	KVM.

Linux kernel (hypervisor)

KVM kernel module

User space

VM
(guest system)

QEMU

/dev/kvm Intel VT-x

libvirt

virt-manager

367FUJITSU Sci. Tech. J., Vol. 47, No. 3 (July 2011)

Y. Goto: Kernel-based Virtual Machine Technology

conversion mechanism (MMU: memory
management unit) provided by the CPU. Since
a VM has a two-part structure in the form of a
hypervisor and a guest system, a conventional
MMU structure, designed without a VM in mind,
cannot be applied as is.

Before EPT was available, it was necessary
to perform address conversion processing in
software using a technique called “shadow
paging.” The development of EPT has enabled
“physical addresses” in the VM to be converted
by the CPU into actual physical addresses in the
physical machine, making software conversion
unnecessary. The KVM makes full use of
EPT, resulting in significantly improved VM
performance.
2) VT-d

VT-d is an address conversion mechanism
for I/O devices (IOMMU). It provides a memory
address conversion table (having a data structure
identical to that of the MMU page table) for each
device function. With VT-d, memory addresses
on the guest system can be specified as data
transfer destinations from a device; i.e., data can
be directly transferred to a guest OS.

VT-d is a chip-set function and must be
supported by firmware. Accordingly, if VT-d
is supported by both firmware and the Linux
kernel, the latter will recognize it and put it to
use.
3) virtio

VM devices are usually created and
processed by QEMU device emulation. The
overhead for this emulation is high, however, so
I/O performance is quite poor. To overcome this
problem, a mechanism called “virtio” has been
introduced. Virtio prepares a buffer that can be
accessed from both a guest system and QEMU.
Using this buffer, I/O processing for multiple
items of data can be performed together, thereby
reducing the overhead associated with QEMU
emulation and achieving high-speed processing.
This mechanism can be accessed from the
guest system as a virtio peripheral component

interconnect (PCI) device.
The beneficial effect of virtio can be obtained

and high-speed I/O achieved by implementing a
virtio driver in each guest OS (there is, of course,
a virtio driver for Windows).
4) Kernel Samepage Merging (KSM)

Different VMs on the same physical machine
can sometimes be executing the same OS and the
same applications. In such a situation, there is
a high possibility that they will have memory
areas with the same content. Consolidating
such areas into one memory area would reduce
memory usage.

With this in mind, the KSM function9)
was added for KVM in the Linux kernel. The
KSM function uses the “ksmd” kernel thread to
periodically monitor process-memory usage and
to automatically merge duplicate pages into a
common page.

Ideally, all memory pages would be
compared to identify duplicate memory content,
but continuously comparing all pages in use by all
system processes would be extremely inefficient.
For this reason, Linux makes it possible to specify
which memory area is to be a candidate for KSM
by using the third parameter of the madvise()
system call, i.e., the “advice” parameter. QEMU
uses this function when allocating memory for a
guest so that the user can immediately enjoy the
benefits of the KSM function. In RHEL6 as well,
this function is effective in the system’s initial
state.

5. Future KVM enhancements
The goal is to enable KVM to be used in

mission-critical operations and applications,
but there are still many things that need to be
enhanced to improve functionality and quality.
The following introduces several items scheduled
for development at Fujitsu with the aim of
enhancing the KVM function.
1) Enhancement of libvirt functionality and

quality
The libvirt function is still far from

368 FUJITSU Sci. Tech. J., Vol. 47, No. 3 (July 2011)

Y. Goto: Kernel-based Virtual Machine Technology

complete compared to the mature level of the
KVM kernel module and QEMU. It is not, as
a result, at a state where the power of KVM
can be fully demonstrated, and it has not yet
reached a stable level of quality. Enhancing the
functionality and quality of the libvirt function is
therefore an urgent development item.
2) Enhancement of resource management

functions
It is expected that KVM will link with

Cgroup10), resource management functions that
came into use with RHEL6. At present, the
Cgroup functions can be used for various types
of resource allocation such as allocating a certain
number of actual CPUs to a general process.
However, when considering the linking of KVM
and Cgroup functions from the viewpoint of
controlling guest systems, there are still problems
that need to be dealt with such as inadequate I/O
control. There are therefore plans to enhance the
Cgroup functions.
3) Machine-check support

Information on the occurrence of
uncorrectable faults such as multi-bit errors in
the hardware of the physical machine must be
passed on to guest systems. A basic framework
for this has been incorporated in KVM, but
machine-check support specifically for KVM
needs to be enhanced to enable memory-error
recovery to be performed on a guest OS.

6. Conclusion
This paper described the basic mechanism

of the kernel-based virtual machine (KVM) and
server-virtualization-support functions that are
standard in Red Hat Enterprise Linux 6. It
also introduced Fujitsu’s efforts in developing
and enhancing KVM functions. Fujitsu expects
these development activities to make KVM an
important component of mission critical systems
for customers in the future.

References
1) Intel: Virtualization (Intel VT).
 http://www.intel.com/technology/

virtualization/technology.htm?iid=tech_vt+tech
2) AMD Virtualization.
 http://sites.amd.com/us/business/it-solutions/

virtualization/Pages/virtualization.aspx
3) Main Page—KVM.
 http://www.linux-kvm.org/page/Main_Page
4) [PATCH 0/7] KVM: Kernel-based Virtual

Machine.
 http://marc.info/

?l=linux-kernel&m=116126591619631&w=2
5) Gerald J. Popek, Robert P. Goldberg: Formal

Requirements for Virtualizable Third Generation
Architectures, (1974).

 http://portal.acm.org/ft_gateway.cfm?id=
361073&type=pdf&CFID=5009197&CFTOKEN=
14838199

6) About—QEMU.
 http://wiki.qemu.org/Main_Page
7) Virtual Machine Manager.
 http://virt-manager.et.redhat.com/
8) Libvirt: The virtualization API.
 http://libvirt.org/
9) [PATCH 0/4] ksm - dynamic page sharing driver

for linux.
 http://marc.info/

?l=linux-kernel&m=122640987623679&w=2
10) H. Ishii: Fujitsu’s Activities for Improving Linux

as Primary OS for PRIMEQUEST.
 Fujitsu Sci. Tech. J., Vol. 47, No. 2, pp. 239–246

(2011).

Yasunori Goto
Fujitsu Ltd.
Mr.	Goto	is	engaged	in	the	development	
and	support	of	Linux	kernel/KVM.		

http://marc.info/?l=linux-kernel&m=116126591619631&w=2
http://portal.acm.org/ft_gateway.cfm?id=361073&type=pdf&CFID=5009197&CFTOKEN=14838199
http://marc.info/?l=linux-kernel&m=122640987623679&w=2
http://www.intel.com/technology/virtualization/technology.htm?iid=tech_vt+tech
http://sites.amd.com/us/business/it-solutions/virtualization/Pages/virtualization.aspx

