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Kernel-based Virtual Machine Technology

 Yasunori Goto

The kernel-based virtual machine (KVM) has been attracting attention in recent 
years for application to open source server virtualization.  Since its introduction in 
October 2006, the simplicity of this idea has aroused the interest of Linux kernel 
developers, who have helped to rapidly extend KVM functionality.  KVM is now 
formally supported by Red Hat Enterprise Linux and has been supported by Fujitsu 
since version 6 of Red Hat Enterprise Linux.  This paper begins by explaining 
the mechanism of KVM and then describes its components.  Next it introduces 
hardware and software support for KVM virtualization and briefly describes some 
enhancements planned by Fujitsu to enable KVM to be used in mission-critical work.  

1. Introduction
Virtualization technology for servers in the 

x86 family of CPUs has been attracting attention 
in recent years for various reasons.  Server 
virtualization itself is a technology that has 
been around for some time, and the provision of 
Intel Virtualization Technology (Intel VT)1) and 
AMD-Virtualization (AMD-V)2) virtualization 
support functions in Intel and AMD CPUs 
has provided developers with an environment 
that can achieve virtualization relatively 
inexpensively at practical levels of performance 
using x86 hardware.  Various types of software 
for achieving server virtualization have also 
appeared.  

Amidst these developments, the kernel-
based virtual machine (KVM)3) has rapidly 
come to the forefront as a server virtualization 
function provided as open source software 
(OSS).  KVM, which was designed assuming 

use of the Intel VT-xnote 1) or AMD-V function,  
achieves virtualization using a relatively simple 
structure.  The idea of implementing KVM was 
first announced in October 2006 by Avi Kivity, 
then of Qumranet, an Israeli firm.4)  The support 
of Linux kernel developers, attracted by KVM’s 
simple design approach, was soon obtained, and 
KVM functionality was rapidly extended.  KVM 
is now formally supported by Red Hat and has 
been supported by Fujitsu since version 6 of Red 
Hat Enterprise Linux (RHEL6).  

This paper describes the simple mechanism 
of KVM and provides a brief introduction to 
software and hardware functions supporting 
KVM.  It assumes Intel VT-x CPU functions.  

2. KVM mechanism
To provide the reader with a basic 

understanding of the KVM mechanism, this 
section first describes Intel VT-x and then 

note 1) Intel VT is the generic name of Intel’s 
virtualization support function consisting of 
Intel VT-x for x86 processors like Core 2 Duo 
and Intel Xeon, Intel VT-i for Itanium 2, and 
Intel VT-d supporting I/O virtualization.  
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explains the quick emulator called “QEMU,” an 
important OSS component of KVM.  

2.1	 Intel	VT-x	and	sensitive	instructions
Assuming that KVM would make use of the 

Intel VT-x function, KVM designers implemented 
KVM as a function in the Linux kernel.note 2)  The 
following provides an overview of Intel VT-x to 
facilitate a basic understanding of KVM.  

Intel VT-x can be viewed as a “function 
that switches processing to the hypervisor on 
detecting the execution of a sensitive instruction 
by the CPU.”  As shown in Figure 1, hypervisor 
is a control program for operating VMs (guest 
systems) on a physical machine.  Two types of 
sensitive instructions are defined.5)  
1) “Control-sensitive instructions” attempt to 

change the state of system resources.  
2) “Behavior-sensitive instructions” operate 

in accordance with the state of the system 
resources.  
Conceptually, control-sensitive instructions 

executed by a program on a VM affect the 
operation of the physical machine, and behavior-
sensitive instructions executed by a program 

note 2) The advantage of this is that a kernel 
function can easily support hypervisor 
operation given the high affinity between 
the kernel and hypervisor.  

on a VM reveal that they were executed on a VM 
since the results differ from those when they are 
executed on the physical machine

If a program attempts to execute these 
instructions on a guest system without any 
intervention, it will cause serious problems for 
the hypervisor and guest system.  It is therefore 
necessary for the CPU to detect that the 
execution of a sensitive instruction is beginning 
and to direct the hypervisor to execute that 
instruction on behalf of the program.  

However, x86 CPUs were not designed with 
the need for virtualization in mind, so there 
are sensitive instructions that the CPU cannot 
detect as such when a guest system attempts to 
execute them.  As a result, the hypervisor cannot 
execute such instructions on behalf of the guest 
system.  Intel VT-x was developed in response 
to this problem.  It adds new execution modes to 
the processor and switches between these modes 
once the CPU detects such an instruction so that 
the hypervisor can execute that instruction on 
behalf of the initiating program.  

Specifically, Intel VT-x adds two program 
execution modes: VMX root operation and 
VMX non-root operation, where VMX stands 
for “virtual machine extension.”  As shown in 
Figure 2, VMX non-root operation mode is 
the execution mode for guest systems.  If an 

Figure	2
Relationship	between	hypervisor	and	program	
execution	modes	of	Intel	VT-x.

Figure	1
Hypervisor	and	virtual	machines.

Physical machine

Hypervisor

OS

Application

OS

Application

OS

VM VM VM

Application

VMX root operation
(Hypervisor user mode)

VMX non-root operation (Guest user mode)

VM Entry

VM Exit

Execution of sensitive instruction

VMLAUNCH/VMRESUME instruction



364 FUJITSU Sci. Tech. J., Vol. 47, No. 3 (July 2011)

Y. Goto: Kernel-based Virtual Machine Technology

attempt is made to execute a sensitive instruction 
when in this mode, the CPU detects the attempt 
and switches execution to VMX root operation 
mode, which is the execution mode for hypervisor 
use.  This transition, called “VM Exit,” signals 
the transfer of control to the hypervisor, enabling 
it to execute the sensitive instruction on behalf of 
the guest system.  

Two new instructions introduced by Intel 
VT-x–VMLAUNCH and VMRESUME–enable 
switching to VMX non-root operation mode, 
which is called “VM Entry.”  

The main role of KVM is the handling of VM 
Exits and the execution of VM Entry instructions.  
KVM is implemented as a module in the Linux 
kernel.  

2.2	 KVM	and	QEMU
The KVM kernel module cannot, by itself, 

create a VM.  To do so, it must use QEMU, a 
user-space process.6)  

QEMU is inherently a hardware emulator.  
It is provided as OSS for emulating standard 
x86 personal computers (PCs) and other 
architectures.  It existed before the release of 
KVM and can operate without KVM.  

Given that QEMU is a software-based 
emulator, it interprets and executes CPU 
instructions one at a time in software, which 
means its performance is limited.  However, it is 
possible to greatly improve QEMU performance 
while also achieving a VM function if three 
conditions are met.  
1) A target instruction can be directly executed 

by the CPU.  
2) That instruction can be given without 

modification to the CPU for direct execution 
in VMX non-root operation mode.  

3) A target instruction that cannot be directly 
executed can be identified and given to 
QEMU for emulator processing.  
The development of KVM was based on this 

idea.  Application of this idea enables the creation 
of VMs while maximizing the use of existing OSS 

resources with minimal modifications.  Much 
support has been received from Linux kernel 
developers for this reason.  

The QEMU/KVM execution flow is shown in 
Figure 3.  First, a file named /dev/kvm is created 
by the KVM kernel module (step 0 in the figure).  
This file enables QEMU to convey a variety of 
requests to the KVM kernel module to execute 
hypervisor functions.  When QEMU starts up 
to execute a guest system, it repeatedly makes 
ioctl() system calls specifying this special file 
(or file descriptors derived from it).  When it is 
time to begin executing the guest system, QEMU 
again calls ioctl() to instruct the KVM kernel 
module to start up the guest system (step 1).  The 
kernel module, in turn, performs a VM Entry 
(step 2) and begins executing the guest system.  
Later, when the guest system is about to execute 
a sensitive instruction, a VM Exit is performed 
(step 3), and KVM identifies the reason for the 
exit.  If QEMU intervention is needed to execute 
an I/O task or another task, control is transferred 
to the QEMU process (step 4), and QEMU 
executes the task.  On execution completion, 
QEMU again makes an ioctl() system call and 
requests the KVM to continue guest processing 
(i.e., execution flow returns to step 1).  This 

Figure	3
QEMU/KVM	execution	flow.
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QEMU/KVM flow is basically repeated during 
the emulation of a VM.  

QEMU/KVM thus has a relatively simple 
structure.  
1) Implementation of a KVM kernel module 

transforms the Linux kernel into a 
hypervisor.  

2) There is one QEMU process for each guest 
system.  When multiple guest systems 
are running, the same number of QEMU 
processes are running.  

3) QEMU is a multi-thread program, and 
one virtual CPU (VCPU) of a guest system 
corresponds to one QEMU thread.  Steps 1–4 
in Figure 3 are performed in units of threads.  

4) QEMU threads are treated like ordinary 
user processes from the viewpoint of the 
Linux kernel.  Scheduling for the thread 
corresponding to a virtual CPU of the guest 
system, for example, is governed by the 
Linux kernel scheduler in the same way as 
other process threads.  

3. KVM Components
This section introduces KVM-related 

components other than QEMU and describes the 
overall KVM structure.  

QEMU itself is launched by entering 
a simple command of the same name via a 
character user interface (CUI).  If the process 
status (ps) command is entered while a guest 
system is running, the status of QEMU execution 
is displayed, as illustrated by this example.  

[goto@lifua ~]$ ps auxw |grep qemu
qemu          ......          /usr/bin/qemu-kvm -S -M
 fedora-13 -enable-kvm -m 1024 -smp 1, sockets=1, 
cores=1, threads=1 .....
 -drive file=/home/goto/kvm_image/fedora13.img, 
 .....     -device     rtl8139,     vlan=0,     id=net0, 
mac=52:54:00:65:03:a0 ......

The command options “-m 1024” and “-smp 
1” indicate the memory capacity and the number 
of CPUs, respectively, of the guest system.  
Though the example shown above contains about 
one-third the actual number of lines, all QEMU 
settings, such as device settings, have been 
passed as QEMU-command parameters.  

As might be expected, it is not necessarily 
easy to specify all of these options directly 
with the QEMU command.  For this reason, a 
graphical user interface (GUI), referred to as 
“virt-manager,”7) has been prepared for Red Hat 
Enterprise Linux (RHEL) as well as for other 
operating systems to enable the user to operate 
and manage one or more guest systems.  Figure 4 
shows a screen shot when multiple guest systems 
are executing.  The window at the upper-left 
is the virt-manager screen, and the windows 
at the lower-left and right are guest-system 
screens, indicating that two guest systems are 
running.  This screen shot shows an example 
of executing VMs on Fedora Linux distribution; 
the corresponding display for RHEL6 may differ 
slightly.  

In addition to such GUIs, virt-manager can 
also take the form of a CUI called “virsh,” which 
can also be used to operate guest systems.  

The overall structure of KVM, from the 
GUI to the Linux kernel, includes five main 
components.  
1) virt-manager

A GUI/CUI user interface used for managing 
VMs; it calls VM functions using libvirt, which is 
described next.  
2) libvirt

A tool-and-interface library8) common to 
server virtualization software supporting Xen, 
VMware ESX/GSX, and, of course, QEMU/KVM
3) QEMU

An emulator that interacts with the KVM 
kernel module and executes many types of 
guest-system processing such as I/O; one QEMU 
process corresponds to one guest system.  
4) KVM kernel module
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In a narrow sense, KVM is a Linux kernel 
module; it handles VM Exits from guest systems 
and executes VM Entry instructions.  
5) Linux kernel

Since QEMU runs as an ordinary process, 
scheduling of the corresponding guest system is 
handled by the Linux kernel itself.  

If we revise Figure 3 to include virt-manager 
and the other components, we get the overall 
KVM configuration shown in Figure 5.  All of 
the components are OSS.  

4. KVM hardware and software 
support functions
The matter of most concern in server 

virtualization is performance.  Ideally, the 
performance of a VM is no worse than that of 
the physical machine.  To this end, there is 
a variety of hardware and software support 
functions available for virtualization in addition 
to the basic KVM mechanism described above.  
The basic aim is to use them to improve KVM 

performance.  This section introduces several of 
these functions.  
1) Extended Page Table (EPT)

The EPT function extends the address 

Figure	4
Screen	when	guest	systems	are	executing.

Figure	5
Whole	image	of	KVM.
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conversion mechanism (MMU: memory 
management unit) provided by the CPU.  Since 
a VM has a two-part structure in the form of a 
hypervisor and a guest system, a conventional 
MMU structure, designed without a VM in mind, 
cannot be applied as is.  

Before EPT was available, it was necessary 
to perform address conversion processing in 
software using a technique called “shadow 
paging.”  The development of EPT has enabled 
“physical addresses” in the VM to be converted 
by the CPU into actual physical addresses in the 
physical machine, making software conversion 
unnecessary.  The KVM makes full use of 
EPT, resulting in significantly improved VM 
performance.  
2) VT-d

VT-d is an address conversion mechanism 
for I/O devices (IOMMU).  It provides a memory 
address conversion table (having a data structure 
identical to that of the MMU page table) for each 
device function.  With VT-d, memory addresses 
on the guest system can be specified as data 
transfer destinations from a device; i.e., data can 
be directly transferred to a guest OS.  

VT-d is a chip-set function and must be 
supported by firmware.  Accordingly, if VT-d 
is supported by both firmware and the Linux 
kernel, the latter will recognize it and put it to 
use.  
3) virtio

VM devices are usually created and 
processed by QEMU device emulation.  The 
overhead for this emulation is high, however, so 
I/O performance is quite poor.  To overcome this 
problem, a mechanism called “virtio” has been 
introduced.  Virtio prepares a buffer that can be 
accessed from both a guest system and QEMU.  
Using this buffer, I/O processing for multiple 
items of data can be performed together, thereby 
reducing the overhead associated with QEMU 
emulation and achieving high-speed processing.  
This mechanism can be accessed from the 
guest system as a virtio peripheral component 

interconnect (PCI) device.  
The beneficial effect of virtio can be obtained 

and high-speed I/O achieved by implementing a 
virtio driver in each guest OS (there is, of course, 
a virtio driver for Windows).  
4) Kernel  Samepage Merging (KSM)

Different VMs on the same physical machine 
can sometimes be executing the same OS and the 
same applications.  In such a situation, there is 
a high possibility that they will have memory 
areas with the same content.  Consolidating 
such areas into one memory area would reduce 
memory usage.  

With this in mind, the KSM function9) 
was added for KVM in the Linux kernel.  The 
KSM function uses the “ksmd” kernel thread to 
periodically monitor process-memory usage and 
to automatically merge duplicate pages into a 
common page.  

Ideally, all memory pages would be 
compared to identify duplicate memory content, 
but continuously comparing all pages in use by all 
system processes would be extremely inefficient.  
For this reason, Linux makes it possible to specify 
which memory area is to be a candidate for KSM 
by using the third parameter of the madvise() 
system call, i.e., the “advice” parameter.  QEMU 
uses this function when allocating memory for a 
guest so that the user can immediately enjoy the 
benefits of the KSM function.  In RHEL6 as well, 
this function is effective in the system’s initial 
state.  

5. Future KVM enhancements
The goal is to enable KVM to be used in 

mission-critical operations and applications, 
but there are still many things that need to be 
enhanced to improve functionality and quality.  
The following introduces several items scheduled 
for development at Fujitsu with the aim of 
enhancing the KVM function.  
1) Enhancement of libvirt functionality and 

quality
The libvirt function is still far from  
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complete compared to the mature level of the 
KVM kernel module and QEMU.  It is not, as 
a result, at a state where the power of KVM 
can be fully demonstrated, and it has not yet 
reached a stable level of quality.  Enhancing the 
functionality and quality of the libvirt function is 
therefore an urgent development item.  
2) Enhancement of resource management 

functions
It is expected that KVM will link with 

Cgroup10), resource management functions that 
came into use with RHEL6.  At present, the 
Cgroup functions can be used for various types 
of resource allocation such as allocating a certain 
number of actual CPUs to a general process.  
However, when considering the linking of KVM 
and Cgroup functions from the viewpoint of 
controlling guest systems, there are still problems 
that need to be dealt with such as inadequate I/O 
control.  There are therefore plans to enhance the 
Cgroup functions.  
3) Machine-check support

Information on the occurrence of 
uncorrectable faults such as multi-bit errors in 
the hardware of the physical machine must be 
passed on to guest systems.  A basic framework 
for this has been incorporated in KVM, but 
machine-check support specifically for KVM 
needs to be enhanced to enable memory-error 
recovery to be performed on a guest OS.  

6. Conclusion
This paper described the basic mechanism 

of the kernel-based virtual machine (KVM) and 
server-virtualization-support functions that are 
standard in Red Hat Enterprise Linux 6.  It 
also introduced Fujitsu’s efforts in developing 
and enhancing KVM functions.  Fujitsu expects 
these development activities to make KVM an 
important component of mission critical systems 
for customers in the future.  
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