
239FUJITSU Sci. Tech. J., Vol. 47, No. 2, pp. 239–246 (April 2011)

Fujitsu’s Activities for Improving Linux
as Primary OS for PRIMEQUEST

 Hironobu Ishii

Linux is open source software that has evolved rapidly owing to the development,
tests, and bug fixes conducted by various volunteers in the Linux community.
Fujitsu places Linux as a primary OS for IA servers that cover a range of needs from
volume-related to mission-critical-related ones. Fujitsu is actively participating
in the Linux community and helping to enhance Linux. This paper describes four
features being developed by Fujitsu, in conjunction with the Linux community, after
the release of the kernel 2.6.18 that is the base kernel of Red Hat Enterprise Linux
5. These are 1) the Cgroup which manages system resources, 2) tracing features to
improve the visibility of system activities, 3) scheduler improvement for fairness and
responsiveness, and 4) utilizing the Machine Check Architecture (MCA) Recovery,
which has been introduced to the Xeon 7500 series, to minimize the effects of
hardware failures and recover from failures.

1.	 Introduction
Linux is open source software that has

evolved rapidly owing to the development, tests
and bug fixes conducted by various volunteers
in the Linux community. There has been a
swift shift from mainframe and UNIX servers
to IA servers in the recent server market.
Thus, Fujitsu has placed Linux as a primary
OS for IA servers that cover a range of needs
from volume-related to mission-critical-related
ones and has been actively participating in the
Linux community. Mission-critical use to which
PRIMEQUEST is applied requires functionality
and reliability comparable to those of mainframe
and large UNIX servers. Therefore, in addition
to participating in the Linux community, Fujitsu
forged a strategic partnership in 2003 with Red
Hat, which is the biggest Linux distributor and is
also focused on mission critical aspects, to work
on improving Linux OS.

This paper presents the following four
functions which Fujitsu has realized with Linux

kernel 2.6.18—the base kernel of Red Hat
Enterprise Linux 5 (RHEL5) and later versions.
Fujitsu has achieved this by playing an active
part in the Linux community to improve mission-
critical systems.
•	 Cgroup (for managing system resources)
•	 Tracing features (for improving the visibility

of system activities)
•	 Scheduler improvement (for fairness and

responsiveness)
•	 Machine Check Architecture (MCA)

Recovery of the Xeon 7500 series (for
minimizing the effects of hardware failures
and recovery from failures)

2.	 Fujitsu’s activities in relation
to Linux
Red Hat’s development model of RHEL and

Fujitsu’s activities are shown in Figure 1.
In the functional development of RHEL,

the following three development phases have the
primary role:

240 FUJITSU Sci. Tech. J., Vol. 47, No. 2 (April 2011)

H. Ishii: Fujitsu’s Activities for Improving Linux as Primary OS for PRIMEQUEST

1)	 Linux community
In the uppermost-stream Linux community,

many volunteers engage in development, reviews
and tests to bring out Linux’s standard features.
2)	 RHEL development

After sources developed by various
communities are integrated into Red Hat, plenty
of time is taken conducting tests to apply the
necessary bug fixes and incorporate the required
features that came in late to communities.
3)	 RHEL pre-shipment evaluation

Red Hat not only asks server vendors, ISVs
and IHVs to evaluate the β version but also
conducts tests in-house to improve the quality to
be ready for shipment.

Fujitsu’s activities in the development
phases mentioned above are as follows.
1)	 Linux community

Fujitsu helps to enhance quality and develop
features essential to support mission-critical
systems.
2)	 RHEL development

Fujitsu makes use of its cooperation with
Red Hat to help incorporate features into and
enhance the quality of RHEL. As a measure for
quality enhancement, Fujitsu develops a test set

to prevent the recurrence of failures generated at
Fujitsu’s customers and offers it as the standard
test set of Red Hat.
3)	 RHEL pre-shipment evaluation

Verification is conducted from the viewpoint
of evaluation in combination with Fujitsu’s
middleware.

As described above, Fujitsu is active in each
of the RHEL development phases with a particular
focus on activities in the Linux community. This
is because Fujitsu believes the quickest way to
enhance the functionality and quality of Linux
is to conduct activities in the Linux community,
which is its source. Past examples of Fujitsu’s
activities include the development of the dump
function, enhancement of MCA for Itanium 2
and development of udev and hot plug functions
intended for RHEL4 and 5.1)

3.	 Cgroup
Cgroup is an abbreviation of Control

Group, also known as the resource management
function, which divides processes that run on one
OS into several groups to control the resources
available to the individual groups. This feature
is expected to be implemented on kernel 2.6.24

Linux
community

Customers

Fujitsu

Red Hat

α version

β version

Independent
proposal

Other
communities

Community activities

RHEL development

Evaluation in combination
with Fujitsu’s middleware

Pre-shipment
evaluation

Product
version

Joint proposal

Figure 1
Development model of RHEL and Fujitsu’s activities.

241FUJITSU Sci. Tech. J., Vol. 47, No. 2 (April 2011)

H. Ishii: Fujitsu’s Activities for Improving Linux as Primary OS for PRIMEQUEST

and later in the Linux community and offered as
a new function of RHEL6. An overview of Cgroup
is shown in Figure 2 and the Cgroup interface
provided by the kernel is offered as a virtual file
system. Directory creation for this virtual file
system is mapped to group creation. Under each
directory representing a group, virtual files for
viewing and setting parameters with the same
names as the configuration parameter names
are automatically allocated. In relation to these
virtual files, writing corresponds to parameter
setting and reading to parameter viewing. The
following subsections explain the resource
management function with a focus on memory
and CPU, which are the most frequently used
resources.
1)	 Memory Cgroup2),3)

One major problem with the existing Linux
has been that, when a group of batch processing
programs and a group of online processing
programs are run simultaneously in one system,
the online processing programs’ response
sometimes becomes unstable. With Linux, there
is a policy of maximizing performance by making
effective use of memory and caching I/O data as
much as possible. For this reason, a large volume
of writing to files by batch processing is generated,

which fills most of the available memory of the
system with dirty pages (pages that cannot be
released without writing the content back to the
disk). When online processing programs request
new memory allocation under these memory
usage conditions, the OS reallocates memory to
the online processing programs after reclaiming
the memory in use. If dirty pages are to be
recovered, however, the page content needs to
be written back to the disk and memory recovery
and reallocation take longer. This causes the
response of the online processing programs to be
unstable.

Memory Cgroup offers the following
functions to solve the problem above.
•	 Limits the total amount of anonymous

memory used by processes in the group
(dynamic data area), memory for file
mapping (execution code, static data, mmap
processing) and file cache. When the usage
has reached the limit, part of the memory is
reclaimed and, if the page to be reclaimed is
dirty, it is written back to the swap or file.

•	 Limits the total amount of anonymous
memory used by processes in the group,
memory for file mapping, file cache and
swap usage. When the usage has reached

Cgroup file system

Linux kernel

• cgexec
• cgclassify

Configuration
file

cgrulesengd daemon

Group
definition
operation

User

Direct
operation

Process start/
distribution

libcgroup

• cgconfig
• cgset
• cgcreate
• cgclear

Process monitoring

Process distribution

Figure 2
Cgroup overview.

242 FUJITSU Sci. Tech. J., Vol. 47, No. 2 (April 2011)

H. Ishii: Fujitsu’s Activities for Improving Linux as Primary OS for PRIMEQUEST

the limit, part of the memory is reclaimed.
If the usage has reached the limit but no
more recoverable resource exists, a certain
process in the same group may be forced
to terminate by the Out Of Memory Killer
(OOM-Killer).

•	 Processes that do not belong to any group
are regarded as belonging to the Root
Cgroup and control by the Cgroup does not
affect these processes. The Cgroup group
can be made into a hierarchical structure.
For example, the groups of online processing

programs and batch processing programs can be
defined as belonging to separate groups to specify
the amount of memory or the total amount of
memory and swap available to the respective
groups. In this way, even if a large volume of
file cache is used by batch processing, available
memory for online processing programs or readily
recoverable pages (pages that do not contain data
to be written back to the disk) can be maintained.
This prevents the response of online processing
from deteriorating (Figure 3).
2)	 CPU Cgroup4)

CPU Cgroup is a function that manages CPU
allocation to processes belonging to groups. CPU
allocation to the individual group is represented

by an integer called a share value. The share
value of a group immediately after the creation of
the CPU group is 1024. If three CPU groups A, B
and C are created, for example, the share values
of A, B and C immediately after the creation of
the groups are:

A:B:C = 1024:1024:1024 = 1:1:1.
If the share values of A and B are

subsequently changed to 4096 and 2048
respectively by writing to the virtual files for
setting share values of the respective groups, the
values become:

A:B:C = 4096:2048:1024 = 4:2:1.
This means that the group of processes

belonging to A can acquire four times as much
CPU time as the group of processes belonging
to C, and the group of processes belonging to
B can acquire twice as much CPU time as the
group of processes belonging to C. However, the
CPU time each process can acquire is affected
by the number of active processes that belong
to that group. The CPU share value of the Root
Cgroup is fixed at 1024. For example, if the Root
Cgroup has a process that consumes a large
amount of CPU time in the previous example,
CPU allocation to the individual CPU groups is
as shown below with the Root Cgroup taken into

(a) When Memory Cgroup is not used

(b) When Memory Cgroup is used

Used for online
processing

Available or readily
reusable area

Used for batch
processing

Used for online
processing

Used for batch processing
(Increased dirty file cache)

Used for online
processing

Used for batch
processing

Used for online
processing Used for batch processing

Start of extensive file output by batch
processing does not affect online processingMemory limit

Start of extensive file output by batch
processing affects online processing

Figure 3
Advantage gained from Memory Cgroup.

243FUJITSU Sci. Tech. J., Vol. 47, No. 2 (April 2011)

H. Ishii: Fujitsu’s Activities for Improving Linux as Primary OS for PRIMEQUEST

consideration:
A:B:C:Root = 4096:2048:1024:1024

= 4:2:1:1.
Since allocating all processes to groups other

than the Root Cgroup needs much effort, a group
of light processes such as that for monitoring
is allocated to the Root Cgroup. Because CPU
allocation of the Root Cgroup cannot be changed,
allocating a group of busy processes to the Root
Cgroup may make it impossible to ensure the
CPU time for a light process for monitoring,
adversely affecting the monitoring operation.
For this reason, it is desirable to allocate a group
of busy processes to a group other than the Root
Cgroup.

This CPU Cgroup function is indispensable
for controlling the allocation of CPU time between
guest OSs also in the mechanism called Kernel-
based Virtual Machine (KVM), which realizes a
virtual machine on the Linux kernel.

4.	 Tracing features
Fujitsu’s concept of a mission-critical

system is one where it should be possible to
find out the cause of any problem generated
without conducting a reproduction test. To
that end, we believe a function is necessary to
continuously record the behavior of the system
in operation, as a flight recorder in an aircraft
does. With the existing Linux kernel, this type
of analysis required the addition of message
output by modifying the kernel source, followed
by recompilation to use for reproducing the
phenomenon. However, this method has the
following problems.
•	 The addition of message output significantly

changes the system operation timing, which
hinders the reproduction of the problem.

•	 A system reboot is necessary after the source
modification and recompilation and the
problem cannot be investigated in a system
in operation. In addition, rebooting is likely
to hinder the reproduction of the problem.
To address these challenges, the

introduction of various forms of tracing features
has been discussed in the Linux community.
Such introduction can be roughly classified into
the following two types.
1)	 Dynamic probe method

A patch is applied dynamically to the
machine instruction for the routine to be observed,
the control is transferred to the instruction code
inserted as a probe and then control is brought
back to the original routine to be observed.
Instructions inserted as the probe are called
a handler and dynamically loaded as a kernel
module.5)–7) There is a tool called systemtap to
facilitate the creation of the handler.8) This
automates the process from the creation of a
kernel module to be used as a handler with a
scripting language called tapset through the
loading of the module to the extraction of the
measurement result.
2)	 Static probe method

Instructions for the probe are embedded in
the kernel execution code in advance. Methods
currently implemented include the ftrace which
probes the kernel function’s entry and exit by
using a compiler profiling feature9),10) and explicit
logging of points to trace to the kernel sources,
such as event tracing and tracepoint.11),12)

Fujitsu first implemented a flight recorder
function (continuous tracing function) via the
systemtap script. Because it is a script, it had
some performance problems and there was a
limit to the number of trace points that could be
extracted. Next, Fujitsu attempted direct probing
of static probe-based tracepoints by creating a
kernel module.13) A flight recorder of this type
is already provided for RHEL5 to customers
who bought RHEL support from Fujitsu, and
has proved itself useful for expediting problem
solving. This method, however, had a problem
of high cost when provided continuously and
Fujitsu worked with the community to improve
ftrace, which is higher-functionality, higher-
performance static tracing infrastructure.14)–17)
With RHEL6, a flight recorder function via ftrace

244 FUJITSU Sci. Tech. J., Vol. 47, No. 2 (April 2011)

H. Ishii: Fujitsu’s Activities for Improving Linux as Primary OS for PRIMEQUEST

is expected to be available.

5.	 Scheduler improvement
In the process of tuning performance

to build a system with a stable transaction
performance in the order of milliseconds,18)
Fujitsu found the following two problems in the
Order One Scheduler (O(1) Scheduler), which is
the scheduler of RHEL5, and worked to improve
them.
1)	 CPU resource allocation equalization

This improvement has been made to
maintain equal CPU resource allocation to
processes and threads under a high load
condition. With RHEL5 O(1) scheduler, CPU
time was preferentially allocated to interactive
processes, which are often in sleep, to ensure a
certain level of response. However, a problem
has been found that, in a system with many
interactive processes, CPU resources are allocated
only to some of the interactive processes and the
overall performance of the system deteriorates.
The solution to this problem has been discussed
in the community.19) The community was in a
phase in which a shift from the O(1) Scheduler
to the new Completely Fair Scheduler (CFS) was
taking place and the discussion was incorporated
into the improvement of the CFS.20) This
improvement is expected to be applied to RHEL6.
Regarding RHEL5, the result of this discussion
has been incorporated as a modification intended
for the O(1) Scheduler. These have equalized
CPU resource allocation and allowed stable
performance without significantly compromising
the response of interactive processes.
2)	 Response improvement

The existing Linux scheduler is scheduled
to have a greater throughput by improving the
CPU cache hit rate. Accordingly, measures were
taken so that when a process that started to run
on a CPU and once went to sleep was to wake up
from the sleep state, it would be scheduled on the
same CPU whenever possible. For this reason,
in a large-scale symmetric multiprocessor (SMP),

the system performance sometimes peaked even
when not all CPUs were exhausted, depending on
the loading conditions. To address this problem,
Fujitsu proposed a new scheduling technique,
which has been adopted.21) Specifically, a
parameter called sched_relax_domain_level,
which modifies the behavior of the system group
scheduler, has been introduced. This parameter
tunes the range of search for a CPU that is idle
(without a process to execute) when waking up
the process. The range of search for an idle CPU
can be tuned in six stages between 0, which
means do not search for another idle CPU, and 5,
which means search for idle CPUs in the entire
system.22) This function has made it possible
to maximize the capacity of CPUs of a large-
scale SMP system and maintain high response
performance.

6.	 MCA Recovery
For the PRIMEQUEST 1000 series, which

is presented in this Special Issue, the Xeon
7500 series CPUs (Intel development codename:
Nehalem-EX) are used.23) These are the first x86
CPUs equipped with the MCA Recovery function
(Figure 4). This feature is equivalent to that
implemented in the Itanium 2 processor, which
has been used for the existing PRIMEQUEST
400/500 series. Further, Fujitsu has used
its experience with the Itanium 2 version of
PRIMEQUEST to help enhance the quality of
this feature.

The Xeon 7500 series CPUs are provided
with a mechanism for hardware failure self-
diagnosis and error correction. To handle any
hardware failure, this feature first attempts
error correction on the hardware layer. If
the correction succeeds, software processing
continues and Corrected Machine Check
Interrupt (CMCI) is generated to simply make a
notification of the error correction. If the error
cannot be corrected on the hardware level, a
Machine Check Exception (MCE) is generated to
request the OS to conduct a recovery process.

245FUJITSU Sci. Tech. J., Vol. 47, No. 2 (April 2011)

H. Ishii: Fujitsu’s Activities for Improving Linux as Primary OS for PRIMEQUEST

When a CMCI is received, the OS only
logs the error. When an MCE is received, the
OS analyzes the error content and conducts
a recovery process according to the error. Any
uncorrectable error generated in the CPU is a
fatal error and the OS that received the MCE
panics. One example of an uncorrectable error
that the OS attempts to recover is an ECC
multi-bit error generated on the memory or
cache. The memory controller of the Xeon
7500 series is equipped with a feature called
memory scrubbing, which regularly accesses and
diagnoses the memory. And if any uncorrectable
ECC multi-bit error is detected by this diagnosis,
the OS is notified of an MCE. The OS checks the
content of the MCE and marks the related pages
with an error. If these pages are not used, they
are marked as unusable and isolated. If they
are in use, the OS waits for them to be released
and marks them as unusable for isolation at that
time.

Fujitsu has helped enhance the quality of
this feature by reviewing it after the release of
the first patch from Intel and creating a module
that emulates failures for debugging.24)–27)

7.	 Conclusion
Fujitsu believes that, to enhance the

functionality and quality of Linux, it is important
to continue to work in the Linux community,
which is its source. This paper has described
four functions that Fujitsu has helped to develop
and enhance by participating in the Linux
community: Cgroup, tracing features, scheduler
improvement and MCA Recovery.

Of these functions, the tracing features
and scheduler improvement have already made
contributions to stable operation of various
systems that use RHEL5. In addition, Cgroup,
the flight recorder function (continuous tracing
function) via ftrace, CFS scheduler and MCA
Recovery function are expected to be offered with
RHEL6. This will hopefully help customers’
systems to operate even more stably.

Fujitsu is committed to remaining active in
the community to further improve Linux.

Lastly, we would like to extend our gratitude
to the members of the community who are
striving to improve Linux together with us.

Error corrected on
hardware/firmware

Error not corrected on
hardware/firmware

MCE handlerCMCI handler

Hardware/firmware

Guest OS on KVM

Error logging

Error
page

Error
page

MCE handler

Error
page

Page isolation area

MCE
notification
by SIGBUSRelated pages are

marked for
uncorrectable error in
memory

• If accessed, kernel panics
 or process abnormally
 terminates (SIGBUS)
• Isolated when page is
 released by process
 termination or by some
 kernel activity

Is
ol

at
io

n
ar

ea

CMC interrupt
Machine check
exception

Reboot

Figure 4
Concept of MCA Recovery.

246 FUJITSU Sci. Tech. J., Vol. 47, No. 2 (April 2011)

H. Ishii: Fujitsu’s Activities for Improving Linux as Primary OS for PRIMEQUEST

References
1)	 Norio Kurobane: Rapidly Growing Linux OS:

Features and Reliability. Fujitsu Sci. Tech. J.,
Vol. 41, No. 3, pp. 318–322 (2005).

2)	 KAMEZAWA Hiroyuki: Memory Resource
Controller.

	 http://lxr.linux.no/linux+v2.6.35/
Documentation/cgroups/memory.txt

3)	 KAMEZAWA Hiroyuki: Memory Resource
Controller.

	 http://events.linuxfoundation.org/images/
stories/slides/jls09/jls09_kamezawa.pdf

4)	 Paul Menage: CGROUPS.
	 http://lxr.linux.no/linux+v2.6.35/

Documentation/cgroups/cgroups.txt
5)	 Masami Hiramatsu: SystemTap How-to.
	 http://www.linuxfoundation.jp/jp_uploads/

seminar20061109/MHiramatsu.pdf
6)	 A. Mavinakayanahalli et al.: Probing the Guts of

Kprobes. Proceedings of the Linux Symposium,
Volume Two, pp. 101–115 (July 19–22, 2006).

	 http://www.linuxsymposium.org/2006/
linuxsymposium_procv2.pdf

7)	 Jim Keniston et al.: Kernel Probes (Kprobes).
	 http://lxr.linux.no/linux+v2.6.35/

Documentation/kprobes.txt
8)	 SystemTap.
	 http://sourceware.org/systemtap/
9)	 Mike Frysinger: function trace guts.
	 http://lxr.linux.no/linux+v2.6.35/

Documentation/trace/ftrace-design.txt
10)	 Steven Rostedt: ftrace-Function Tracer.
	 http://lxr.linux.no/linux+v2.6.35/

Documentation/trace/ftrace.txt
11)	 Teodore Ts’o: Event Tracing.
	 http://lxr.linux.no/linux+v2.6.35/

Documentation/trace/events.txt
12)	 Mathiew Desnoyers: Using the Linux Kernel

Tracepoints.
	 http://lxr.linux.no/linux+v2.6.35/

Documentation/trace/tracepoints.txt
13)	 Zhao Lei et al.: Flight Recorder: A Solution for

Investigating Linux Kernel Accidents.
	 http://video.linuxfoundation.org/video/1646
14)	 Li Zefan: tracing: Allow to disable cmdline

recording.
	 http://git.kernel.org/linus/e870e9a
15)	 Li Zefan: tracing: Convert some block events to

DEFINE_EVENT.
	 http://git.kernel.org/linus/77ca1e0
16)	 Lai Jiangshan: tracing:add trace_bprintk().
	 http://git.kernel.org/linus/1ba28e0
17)	 Lai Jiangshan: tracing: infrastructure for

supporting binary record.
	 http://git.kernel.org/linus/1427cdf
18)	 Fujitsu: Developing the Next-Generation

“arrowhead” Trading System. Annual Report
2010, p. 59.

	 http://www.fujitsu.com/downloads/IR/
annual/2010/all.pdff

19)	 Satoru Takeuchi: [BUG] scheduler: strange
behavior with massive interactive processes.

	 http://lkml.org/lkml/2007/3/26/319
20)	 Ingo Molnar: CFS Scheduler.
	 http://lxr.linux.no/linux+v2.6.35/

Documentation/scheduler/sched-design-CFS.txt
	 http://people.redhat.com/mingo/cfs-scheduler/

sched-design-CFS.txt
21)	 Hidetoshi Seto: sched, cpuset: customize sched

domains, core.
	 http://git.kernel.org/linus/1d3504f
22)	 Simon Derr et al.: CPUSETS.
	 http://lxr.linux.no/linux+v2.6.35/

Documentation/cgroups/cpusets.txt
23)	 Motoyoshi Hirose et al.: PRIMEQUEST 1000

Series: High-Reliability, Mission-Critical
Intel Architecture Server Supporting Social
Infrastructure Systems. Fujitsu Sci. Tech. J.,
Vol. 47, No. 2, pp. 192–206 (2011).

24)	 Hidetoshi Seto: x86, mce: don’t init timer if!mce_
available.

	 http://git.kernel.org/linus/33edbf0
25)	 Hidetoshi Seto: x86, mce: sysfs entries for new

mce options.
	 http://git.kernel.org/linus/9af43b5
26)	 Hidetoshi Seto: x86, mce:unify smp_thermal_

interrupt.
	 http://git.kernel.org/linus/a65c88d
27)	 Hidetoshi Seto: x86, mce:remove intel_set_

thermal_handler().
	 http://git.kernel.org/linus/8363fc8

Hironobu Ishii
Fujitsu Ltd.
Mr. Ishii is currently engaged in Linux
improvement activities and customer
support operations.

http://lxr.linux.no/linux+v2.6.35/Documentation/cgroups/memory.txt
http://events.linuxfoundation.org/images/stories/slides/jls09/jls09_kamezawa.pdf
http://lxr.linux.no/linux+v2.6.35/Documentation/cgroups/cgroups.txt
http://www.linuxfoundation.jp/jp_uploads/seminar20061109/MHiramatsu.pdf
http://www.linuxsymposium.org/2006/linuxsymposium_procv2.pdf
http://lxr.linux.no/linux+v2.6.35/Documentation/kprobes.txt
http://lxr.linux.no/linux+v2.6.35/Documentation/trace/ftrace-design.txt
http://lxr.linux.no/linux+v2.6.35/Documentation/trace/ftrace.txt
http://lxr.linux.no/linux+v2.6.35/Documentation/trace/events.txt
http://lxr.linux.no/linux+v2.6.35/Documentation/trace/tracepoints.txt
http://www.fujitsu.com/downloads/IR/annual/2010/all.pdf
http://lxr.linux.no/linux+v2.6.35/Documentation/scheduler/sched-design-CFS.txt
http://people.redhat.com/mingo/cfs-scheduler/sched-design-CFS.txt
http://lxr.linux.no/linux+v2.6.35/Documentation/cgroups/cpusets.txt

