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Ion implantation profiles are sometimes needed in cases where the implantation 
conditions are not covered by existing databases or novel materials are being used.  
Although profiles can be derived by Monte Carlo simulation, it can take a long time 
to trace the trajectories of tens of thousands of ions.  My coworkers and I have 
proposed an extended LSS (Lindhard, Scharff, and Schiøtt) theory that predicts 
profiles almost instantaneously but with comparable precision to Monte Carlo 
simulation.  Although it works for profiles in amorphous layers, it cannot predict 
profiles in the crystalline materials used in practice.  Therefore, we proposed a 
quasi-crystal extended LSS theory (QCLSS) in which parameters corresponding to 
the characteristic channeling phenomena in crystalline materials are implemented 
with a semi-empirical model and linked to the extended LSS theory.  This can 
provide nearly instantaneous predictions of the implantation profiles of novel ion 
species in novel crystalline substrates.  By applying the QCLSS theory to Si1−xGex 
substrates (which have recently been the focus of much study), we constructed a 
database for the implantation of B, As, and P ions in substrates with arbitrary values 
of composition ratio x.

1.	 Introduction
In the development of cutting-edge devices, 

it is sometimes necessary to use new materials or 
perform ion implantation with new ion species.  
Constructing a database for the prediction of 
such profiles can be a costly and time-consuming 
process.  What is needed is a technique that 
can provide rough profile information even for 
combinations of ions and substrates for which 
little experimental data is available.

The implantation profiles of new types of 
ion in new types of substrate can be predicted 
by Monte Carlo simulation.  In Monte Carlo 
simulation, nuclear interactions and electron 
interactions are considered as two-body problems 
involving an injected ion and a single substrate 
atom.1)–3) 

Nuclear interactions are considered on 

the basis of the system shown schematically 
in Figure 1 (a).  The energy Tn lost by an ion 
of energy E as a result of these interactions is 
expressed by 
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where M1 and M2 are the mass numbers of the ion 
and substrate atom, respectively, r is the distance 
between an ion and a substrate atom, rmin is the 
minimum distance between them, Ec is the energy 
of the ion in the barycentric coordinate system, 
V(r) is the interaction potential between an ion 
and a substrate atom and is set empirically so as 
to reproduce large amounts of experimental data, 
and b is the collision parameter set by generating 
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a random number for each collision in the Monte 
Carlo simulation.

Electron interactions are modeled as changes 
in the electron behavior within the region of 
overlap between the electron clouds of an ion 
and a substrate atom, as shown in Figure 1 (b).  
An electron interaction is assumed to reduce the 
ion’s energy by Te.  The interactions between 
electrons are calculated using the average value 
obtained using a wide variety of different values 
of b.  The energy lost by ions per unit length of 
travel is called the electron stopping power Se.  
This widely used parameter is obtained from the 
following formula.1)
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where Z1 and Z2 are the atomic numbers of the 
ions and substrate atoms, respectively.  The 
interactions between ions and substrate atoms 
are a function of the atomic number and mass 
number.  Consequently, combinations of incident 
ions and substrate atoms can be accounted for by 
plugging the corresponding values of M1, M2, Z1, 
and Z2 into this formula.

Monte Carlo simulation can take some time 
to implement because tens of thousands of ion 
paths must be tracked to reduce statistical errors.  
Recent advances in computer technology have 
made it possible to perform these calculations 
within a few minutes, which is good enough 
to allow the technique to be used in practice.  
However, since it does not produce the sort of 
instantaneous results that can be provided by 
an ion implantation database, the Monte Carlo 
approach is impractical for situations such as an 
investigation of dozens of different implantation 
conditions.

On the other hand, the LSS (Lindhard, 
Scharff, and Schiøtt) theory can produce similar 
results by using the same electron and nuclear 
interactions as Monte Carlo simulation.4)–7)  This 
theory is based on the idea of using probability 
functions instead of tracing the paths of 
individual ions as in Monte Carlo simulation.  It 
provides an integral equation that should match 
the ion implantation profile.  This equation 
can be computed almost instantaneously, but 
approximations must be made when it is being 
solved.  So far, these approximations have lacked 
precision, and it has not been possible to reproduce 
the precision of Monte Carlo simulation.  As a 

Figure 1
Interactions between incident ions and substrate atoms. 
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result, the LSS theory is currently not used in 
any simulator.  

In response, my coworkers and I proposed 
an extended LSS theory that makes more 
accurate approximations and can perform 
nearly instantaneous calculations that give 
results of comparable accuracy to those of Monte 
Carlo simulation.8),9)  Since it does not consider 
channeling phenomena that occur in crystalline 
substrates that are actually used in VLSI (very-
large-scale integrated circuit) processes, we 
later proposed another theory called the quasi-
crystal extended LSS theory (QCLSS), which is 
linked to the extended LSS theory by modeling 
these phenomena empirically.10),11)  QCLSS can 
provide nearly instantaneous predictions of 
ion implantation profiles in cases where there 
is insufficient data.  These predictions can be 
produced in roughly the same amount of time as 
needed to generate profiles based on information 
stored in a database.

In this paper, I first review the extended 
LSS theory and then describe the QCLSS theory.

2.	 Extended LSS theory
A schematic illustration of the implantation 

range of ions with energy E according to the 
extended LSS theory is shown in Figure 2.  
We postulate a probability function that gives 
particular values to the range R along the beam 
direction and the projected ranges Rp and R⊥ 
perpendicular and parallel to the implantation 
plane.  Here, I present an analysis for R that 
can be derived relatively simply and a simple 
explanation of how existing models can be 
extended.  A detailed derivation can be found in 
Reference 8).

When ions are implanted with energy E, 
the probability that they will achieve a range R 
is denoted by P(E,R), where the stochastic mean 
value of R is defined as

0



R(E)        R P (E,R)dR . 	 (3)

For both nuclear and electron interactions, it 
has been shown that 〈R(E)〉 should confirm to the 
following integral equation.1) 

 1 



 [ R(E)   R(E  Tn) ] dn

[ R(E)   R(E  Te) ] de

N ,
,	  (4)

where N is the atomic density of the substrate, 
Tn and Te are the interaction energy losses, and 

Figure 2
Definition of LSS theory parameters. 
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σn and σe are the corresponding collision cross-
section areas.  These integral equations cannot 
be solved directly, so approximations are used.  
For example, the term 〈R(E − Tn)〉 representing 
the range of ions with energy of E − Tn is 
approximated by a certain number of terms from 
a Taylor expansion as

R(E  Tn)

  R(E )   d  R(E ) d2  R(E )1
dE dE22

d3  R(E )1
dE36+ Tn

2Tn Tn
3
,
,	(5)

which can then be reduced to a differential 
equation.  The solution 〈R(E)〉(1) of the first-order 
Taylor expansion of integral equation (4) is given 
by

1
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The solution 〈R(E)〉(2) of the second-order Taylor 
expansion is given by
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And the solution 〈R(E)〉(3) of the third-order Taylor 
expansion is given by

.
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In the above differential equations,

Sn,e (E)     Tn,e dn,e 	 (9)

n,e (E)     Tn,e dn,e
2 2 	 (10)

n,e (E)     Tn,e dn,e .3 3 	 (11)

These terms are calculated from the interaction 
potentials.  It thus follows that the number of 
terms in the Taylor expansion corresponds to 
the order of the resulting differential equation.  
Mathematically, only the first-order differential 
equation has an analytical solution.  The results 
obtained by solving the differential equation of 
this first-order Taylor expansion correspond to the 
analytical solution of the original LSS theory.1)  
From differential equation (6), which is derived 
from the first term of the Taylor expansion, we 
can derive the following well-known formula for  
〈R(E)〉.
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However, the second-order differential equation 
(7) cannot be solved analytically.  Therefore, the 
solution is assumed to be of the form
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where ∆R
(2)(E) is a very small term.  Substituting 

this into Equation (7), we obtain
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Here, ∆R
(2)(E) is ignored in the second-order 

differential terms.  From the differential equation 
of the first-order Taylor expansion [Equation (6)], 
the term 1⁄N on the left hand side cancels out the 
first term on the right hand side, so Equation 
(14) can be simplified to
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The second term of Equation (15) can be 
calculated from the first-order perturbation 
solution, so the original second-order differential 
equation (7) becomes a first-order differential 
equation in ∆R

(2), from which we can obtain the 
following analytical solution for ∆R

(2).
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The third-order solution can be written as


(3)

  R(E)
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and by applying a similar perturbation 
approximation, we arrive at the following 
formula.
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Integral equations for Rm, Rp
m, and R⊥

m and 
their cross terms are derived in the same manner, 

and an analytical solution is obtained by applying 
the same perturbation approximation as for R.  
In this way, analytical solutions for the moments 
Rp, ∆Rp, and γ necessary for ion implantation 
profiles were derived for the first time.

For Pearson profiles, it is necessary to 
consider moments up to the fourth order β, but 
these cannot be derived from the LSS integral 
equation.  A plot of γ and β values extracted from 
the results of Monte Carlo simulations in which 
B, As, and P ions were implanted into Si and Ge 
amorphous substrates at energies of 10, 20, 40, 
80, 160, and 320 keV is shown in Figure 3.  For 
these implantation conditions, γ2 and β lie more 
or less on a single line expressed by 

   2.661  1.852 2 . 	 (19)

Therefore, we chose to use this formula.
An As ion implantation profile evaluated 

according to LSS theory is compared with 
Monte Carlo simulation results in Figure 4.  
The conventional first-order model can provide 
an accurate representation of only the peak 
concentration position, while the profile shape 
differs significantly from the Monte Carlo 
simulation results.
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Figure 4
Comparison of As implantation profiles obtained by 
Monte Carlo simulation and LSS theory with various 
levels of approximation. 
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Figure 4 shows the results of models 
obtained from the second- and third-order 
Taylor expansions.  The second-order expansion 
produces a profile roughly similar to the Monte 
Carlo simulation results, while the third-order 
expansion matches it closely.

Monte Carlo simulation and extended LSS 
theory are compared in Figure 5 in terms of how 
the moments depend on the acceleration energy.  
The first-order model is sufficiently accurate for 
calculating Rp, but produces values for ∆Rp that 
are approximately half as large as they should 
be.  Eliminating the higher-order terms of the 
Taylor expansion corresponds to ignoring the 
large angular dispersion of the energy transfer 
quantities, so a qualitative match tends to be 
obtained.  ∆Rp is obtained with sufficient accuracy 
from the second-order model.  This means that the 
second-order model is sufficient when Gaussian 
profiles are used.  For γ, if we do not use at least 
the third-order model, then accurate results will 
not be obtained.  This third-order model has been 
confirmed to match the results of Monte Carlo 
simulations with various other types of ions.

3.	 Quasi-crystal extended LSS 
theory
In practice, channeling phenomena occur in 

crystalline substrates used for VLSI processes, 
and the resulting profiles cannot be accurately 

represented with Pearson profiles.  The 
implantation profiles in crystalline substrates are 
denoted by tail functions.12)–15)  In a tail function, 
the parameters characteristic of crystalline 
materials are L, α, and Φchan.  We have proposed 
a quasi-crystal extended LSS theory (QCLSS) to 
represent these parameters empirically.11)  These 
three parameters are introduced below.
1)	 Parameter L 

L corresponds qualitatively to the channeling 
length measured from position Rp.  Therefore, we 
postulate that L is associated with range Rmax in 
a manner expressed by 

L  L (Rmax  Rp), 	 (20)

where ξL is a constant of proportionality and Rmax 
is evaluated solely in terms of its interaction with 
the electron stopping power Se:

Rmax  
0





E dE
NSe (E )

. 	(21)

For a Si substrate, L is obtained by experiment.  
The values of Rmax and Rp can be evaluated from 
the extended LSS theory.  Values of ξL obtained 
by combining these formulas are shown in 
Figure 6, where E1 is the energy at which the 
electron and nucleus stopping powers are equal 
and ξL is not fixed but varies with the acceleration 
energy and mass numbers M1 and M2 of the ions 
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and substrate atoms, respectively.  We have 
proposed that these parameters are related by 
the function

2 1
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and we have confirmed that this function is also 
applicable to Ge substrates.10),11)  Equation (22) 
was not derived physically, but its qualitative 
significance is described below.

The coefficient before the ln term represents 
the channeling of paths where the ions are 
angled relative to the beam direction.  The ln 
term indicates that there is a large probability 
of scattering by nuclei when E is less than E1 
and that the channeling ions are distant from 
the atomic nuclei and have less stopping power 
than the average electron stopping power in the 
amorphous substrate, as shown in Equation (2), 
when E is greater then E1.
2)	 Parameter α 

Parameter α represents the shape of the 
channeling tail.  Although the physical reason 

is not clear, its energy dependence can be 
represented fairly accurately by the following 
formula for various ion implantation conditions 
in Si substrates, as shown in Figure 7.

4
1

1

1 E
E

a (E )  1 +


	(23)

We have confirmed that α follows this curve.  
Specifically, it takes a value of 1 (exponential 
profile) in the region where the nucleus stopping 
power is predominant and a value of 2 (Gaussian 
profile) in the region where the electron stopping 
power is predominant.
3)	 Parameter Φchan 

The dose dependence of Φchan for the 
implantation of P ions into a Si substrate is shown 
in Figure 8.  This dependence is qualitatively 
described below.

Φchan is thought to be associated with the 
accumulation of damage.  When the dose Φ 
is small, the regions of damage formed by ions 
can be regarded as being independent, so Φchan 
is proportional to Φ.  As the dose increases, the 
damage regions start to overlap and eventually 
cover the entire surface.  Thus, if we ignore 
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Variation of α with energy. 
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the intermediate region, we can consider just 
two regions: a region where damage regions 
are formed independently by separate ions and 
a region where the damage regions become 
saturated.  This is expressed by 

 for
for

chansat
chan

chansat chansat

   
 

    .	 (24)

The saturation channel dose Φchansat is represented 
by the following empirical formula derived from 
the profiles of B, As, and P in Si substrates:

-1.06
1

2
cm-2.M

M
chansat  3.3  1013 	(25)

Ge and Si1−xGex have been actively studied.  
In particular, since the composition ratio of 
Si1−xGex is also a parameter, this makes the 
corresponding database much larger.  The 
results of applying the QCLSS theory to ion 
implantation profiles in Si1−xGex substrates with 
various different values of composition ratio x 
are shown in Figure 9.  The theoretical results 
agree well with experimental data obtained by 
secondary ion mass spectrometry (SIMS).

In the QCLSS theory, the profiles in Si1−xGex 

are reproduced without fitting parameters from 
the relationships between the ions and Si/Ge 
atoms instead of using physical parameters 
for the Si1−xGex material itself.  Therefore, we 
can expect to achieve similar levels of precision 
for any composition ratio x and not just for the 
specific values of x used in the experiments.  We 
have demonstrated a database compatible with 
the application of this theory.10),11) 

The parameter that determines the 
amorphous layer thickness is the through dose 
Φa/c.  This has been evaluated experimentally 
for Si and Ge.  As shown in Figure 10, Φa/c is 
expressed empirically in terms of the reduced 
mass M *.10) 

cm-2,-4.954
a

c    1.71  1020 (M *) 	 (26)

where

 *M M1  M2

M1M2 .
	(27)

For unknown ion/substrate combinations, this 
can be used to obtain a theoretical estimate of the 
amorphous layer thickness in the QCLSS theory.
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4.	 Conclusion
The QCLSS theory can be applied to any 

combination of ion implantation profiles in 
crystalline substrates.  It covers a wide and 
practical range of implantation conditions.  
However, it lacks physical explanation, especially 
for parameters associated with the crystalline 
material, so there is still room for improvement.
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