
223FUJITSU Sci. Tech. J., Vol. 46, No. 2, pp. 223–228 (April 2010)

Attempting to Increase Longevity of
Applications Based on New SaaS/Cloud
Technology

 Toyoaki Furusawa
(Manuscript received November 11, 2009)

In recent years, SaaS/Cloud technology has advanced significantly in development
and operation, and IT vendors including Fujitsu must keep up with these
developments. In this field, we need to ensure applications have a long life cycle.
This paper introduces the concept of a meta-framework, which is a framework of
frameworks for resolving the issues involved in extending the life of applications.
The basic idea of a meta-framework is to validate the design and development
process, and separate the design and framework processes. This will bring us
closer to the ideal form of software development in which the end of design signifies
the end of testing. By separating the design and the framework, the design can be a
permanent asset. In addition, by creating a common base, i.e. the meta-framework,
it will be possible to easily migrate a system to the latest framework. We will be
able to create templates that are used to automatically generate source codes, and
expanding the scope of automatic generation will reduce the cost of migration.

1.	 Introduction
In the early part of the 21st century, a

high-speed Internet has become widespread and
the environment surrounding IT is undergoing
a significant transformation. As represented by
the new concept of Web 2.0, the Web is no more
just an environment for browsing information
but has become indispensable as infrastructure
for the whole of society as well as for the
activities of individual corporations, and it has
also considerably changed in quality.

Various applications such as groupware,
Customer Relationship Management (CRM) and
Enterprise Resource Planning (ERP) are now
offered as services on the Internet, and these
are referred to as SaaS (Software as a Service).
Among such applications, salesforce.com, which
has achieved success in the field of CRM and
boasts over one million user licenses around the
world, is especially well-known.

In addition to applications, IT resources
themselves such as hardware, OS, middleware
and development and verification environments
have started to be globally offered as services
(Microsoft, Google and Amazon are leading
this field). As a result, a substantial reduction
in the cost of IT investment in relation to the
adoption and operation of IT is being brought
about. For example, when designing networks
systems engineers are not required to construct
or test system load sharing. In other words, the
amounts of customers’ investment in environment
construction, and operation and maintenance,
which have so far been a significant source of
revenue for system integrators, are about to be
greatly reduced.

A similar change is taking place in system
development as well. The concept of agile
development has long been in existence and

224 FUJITSU Sci. Tech. J., Vol. 46, No. 2 (April 2010)

T. Furusawa: Attempting to Increase Longevity of Applications Based on New SaaS/Cloud Technology

the frameworks for realizing itnote 1) have made
rapid progress in the last five years. Among
them are Ruby on Rails1) based on the principle
of Convention over Configuration (COC)note 2) and
Force.com.2) They have features in which defining
models allows automatic generation of most
source codes and the results can be immediately
checked in the verification execution environment.
With Force.com, even self-customization screens
for end users are automatically generated.

Furthermore, in Cloud computing, system
development and an operation environment is
offered as a service and customers expect the
life of the system, which is an asset on top of the
environment, to be extended. Up to now, a vast
amount of investment has been required every
time the CPU, OS, middleware or framework was
updated but it may be remarkably reduced or
equalized at a low level, which is what customers
expect.

In this way, the environmental change
has created a pressing need for a considerable
reduction in all of the development, introduction,
and operation and maintenance phases and
enduring it and expanding business has now
become a requirement for IT vendors to survive.
In SaaS/Cloud, competition without borders is
appearing. To survive in such an age, a highly
competitive Cloud platform and development
infrastructure that are globally applicable are
required.

This paper describes the direction of a
next-generation application development style
suggested by new technologies such as SaaS/
Cloud.

2.	 Issues in system development
The following issues must be resolved to

note 1)	 Implementation method in application
development: Eclipse + Struts is widely
known in Java programming.

note 2)	 Concept that uses conventions for naming
and such like to simplify software structure
more than controlling applications by
configuration: indispensable for efficient
automatic generation of source codes.

reform development and operation and have a
longer life.
1)	 Different frameworks

In system integration, so many different
frameworks exist that every type of business or
every customer company is said to have their
own framework. To develop an application, a
data model, workflow, screen layouts/items and
screen transitions exist on each framework, and
they are dependent on the type of business. This
is hampering the standardization and reuse
of know-how and components. Personnel with
development skills are fixed in their positions
and it is not easy to reassign them according to
demand, resulting in higher costs.

In addition, each framework must
independently pursue the progress of the
software technologies in existence and the
investment for enhancing the framework itself
is not efficient. Eventually, keeping up with
the technological progress in the world becomes
impossible and what is manually made by system
engineers comes to take on greater importance to
compensate for a shortage of functions and the
costs grow even higher. This is likely to make
the framework outmoded and weeded out.
2)	 Too much emphasis on scratch building as

system integrators’ style of development
System integrators’ ways of thinking,

processes and frameworks have so far been
premised on development from scratch.
Architecture that allows gradual functional
enhancement has been believed to be impossible
in technical terms as well. A modification that
is made to add functions may affect the whole
system and substantial costs were required. In
recent years, frameworks have appeared that
output initial sources from design information,
which often contribute to improved efficiency,
but attempting to add functions to a system that
has been already completed unavoidably requires
wide-scale modification including automatically
generated source codes.

For this reason, to meet customers’ requests

225FUJITSU Sci. Tech. J., Vol. 46, No. 2 (April 2010)

T. Furusawa: Attempting to Increase Longevity of Applications Based on New SaaS/Cloud Technology

for extra functions, costs that exceed the added
value of the additional functions are required.
3)	 No approach to extending life of system

Customers do not readily invest in systems
without added value. When a system that
is actually running is migrated along with a
renewed piece of hardware or OS, the functions
basically do not change significantly. However,
estimates of system integrators show huge
costs because the renewal of the platform alone
requires everything to be rebuilt and customer
satisfaction cannot be obtained. What has been
made and is running requires huge amounts for
migration alone.

This has been the fate of open systems
because the CPU, OS, middleware and framework
are renewed beyond system integrators’ reach.
To offer the system in a Cloud environment,
however, the system infrastructure is hidden
from customers, which may make it difficult to
account for the costs of renewal.

As for the above issues, some say that the
use of standardized frameworks can resolve
the issues described in 1) and 2). However,
frameworks have limited lives. As software
technologies progress, standardized frameworks
also undergo transformation. With Struts,
for example, differences existed that could be
described as generational changes when it shifted
from V1 to V2. These changes were made to keep
up with new innovative functions such as Grid
computing and capture of distributed database,
and with future improvements in development
performance, operability and maintainability. As
a result, frameworks that have failed to keep up
in these areas are weeded out and frameworks
also undergo structural change. In such
cases, the frameworks themselves go through
substantial generational changes accompanied
by no little incompatibility.

3.	 Proposal of meta-framework
Frameworks involve the challenges described

in the previous section. To take an example from

the case of Fujitsu, there are general-purpose
frameworks such as EZDeveloper,3) QuiQpro,4)

and eProad,5) and it may be possible to integrate
them. These architectures are basically based on
the MVC model and the compatibility between
them starts off being high. It is not impossible
to share design information and a source code
generation engine and data model between such
frameworks.

We have assumed that further pursuing this
direction may solve the problems presented in
the previous section and listed the requirements
for the framework as shown below.
1)	 Standardization of data and screen models

To start with, data models and screens are
not dependent on the language, architecture or
framework of the system but are the most basic
design information that can be standardized.
Describing the design information of individual
systems in a form independent of the language
or framework and controlling that information
allows us to extract pure design information,
which is invariable regardless of the form of
infrastructure.
2)	 Multi-framework

It would be ideal to have the capability to
migrate from the same design information to the
most appropriate framework for a given type of
business or form of operation as required. For
that purpose, we need to have extendibility that
allows source codes to be output based on various
data models and screen standards dependent on
the type of business. If a template or source code
generation engine for outputting source codes
from design information can be easily extended
for each type of business, source code generation
based on customer-specific frameworks as well as
many business fields becomes possible, and this
is expected to help reduce the costs of migrating
to new hardware or OS’s in addition to improving
productivity and quality in a wide range of
fields.
3)	 Bi-directionality

In many cases, automatically generated

226 FUJITSU Sci. Tech. J., Vol. 46, No. 2 (April 2010)

T. Furusawa: Attempting to Increase Longevity of Applications Based on New SaaS/Cloud Technology

source codes as they are cannot satisfy customer
requirements and the output source codes need
to be edited. Once edited, the result ceases to
synchronize with the original design information
and modification of the result requires manual
modification of the original information and
vice versa. For example, modification of design
after source codes have been changed cannot
take advantage of the automatic generation of
source codes. For this reason, the function to
automatically generate source codes can only be
used in the initial phase of scratch development
(development of an original system) and cannot
help to improve the efficiency of developing
packages or SaaS that undergo constant
functional enhancement or incremental SI
development.

In such a system, the development
process flows only in one direction. Making
this bi-directional can improve the efficiency of
modification and allow incremental development
that starts small and grows large. For this
purpose, we need a system for extracting and
managing the added source to reflect it in the
source generation template. To address this
issue, the direction is indicated by the Generation
Gap pattern and Hook Operation pattern6) in
the design patterns but the restrictions that
apply when the patterns are used in the actual
applications must be verified.
4)	 Real-time operation verification

With agile frameworks such as Force.com
and Ruby on Rails, when a model (information)
has been modified, it is immediately reflected
in the source code and distributed to servers
automatically in a verification environment and
the operation can be verified at once. This is an
effective way to minimize any additional work
when a problem is found, and will likely help to
reduce development costs. In the next-generation
development environment, the ability to conduct
a real-time check on the result of design change
will become common.

The systems mentioned in 1) to 4) are not

dependent on the framework and provide a very
versatile development method. Because it is a
foundation common to multiple frameworks, we
call this a “meta-framework.”

The following explains the concept of
the development style assumed in the meta-
framework shown in Figure 1.
1)	 Model design

A model library has major data models
registered in advance including persons,
organizations and commodities. A GUI tool for
model design is used to select data models to use
as bases, create derivative models and associate
between the models.
2)	 Screen design

A screen design template is used to select
screens to use as bases and a GUI tool is used to
specify the relationships with the models created
in 1).
3)	 Automatic generation engine

1), 2) and source templates dependent on the
language and framework are input for outputting
a source code.
4)	 Editing

The source code is modified as required.
The result of the modification is converted
into an additional source template, which
constitutes part of the input in 3). This achieves
bi-directionality.
5)	 Development and verification

The generated source is compiled and
distributed to the development and verification
environment and then developed and executed.

Ideally, to add a simple attribute, 2), 3) and
5) following 1) should be automatically executed
and the result verified at once, and this has
been partly achieved at a framework level with
Force.com and Ruby on Rails.

4.	 Effect of meta-framework and
future development
The following summarizes the effects that

can be expected when a meta-framework is
realized.

227FUJITSU Sci. Tech. J., Vol. 46, No. 2 (April 2010)

T. Furusawa: Attempting to Increase Longevity of Applications Based on New SaaS/Cloud Technology

4.1	 Extended life of developed asset
For migrating to a new environment, design

information can be utilized to output a source for
a new framework. Porting only the additional
source code of the older version minimizes the
migration costs. Accordingly, survivability of
business know-how, which is a core asset, can be
improved.

4.2	 Mobilization of resources by
standardization of styles
Work is mostly model design and testing.

The development procedure is common, which
makes it easier to reassign personnel.

4.3	 Improved efficiency and response to
cumulative business issues by agile
development
Starting small and growing large becomes

possible. New development costs are said to

account for 20% of customers’ IT investment
budgets. How to propose system improvement
at reasonable costs while carrying out operation
and maintenance, rather than scratch building,
will be one of the main issues of business in the
future.

5.	 Conclusion
Fujitsu and Fujitsu Laboratories have

started studying the feasibility of a development
and operation environment in the age of Cloud
computing and a meta-framework is among
the themes of this study. We intend to move
forward with the research and study for technical
verification that will allow us to give an interim
report by the end of fiscal year 2009.

References
1)	 Ruby on Rails.
	 http://rubyonrails.org/
2)	 Force.com.

Source code template
(e.g. C++)

screen, logic

Template

Screen design
template

Added source code
converted into

template

Added source code

Automatically generated
source code (Java, ROR, etc.)

Model design

Model library

Screen design

Screen definition
(XUL, XAML, MXML, etc.)

Edited source code
Body (including self-customization)

Testing
Operation (configuration, control)

Generation/updating

GUI tool
(model design)

GUI tool
(screen design)

Automatic generation engine
(next-generation Scaffold)

Editing
VisualStudio, Eclipse

Reflection

Development/verification

5)

3)

4)

1)

2)

Compilation

Figure 1
Concept of meta-framework.

228 FUJITSU Sci. Tech. J., Vol. 46, No. 2 (April 2010)

T. Furusawa: Attempting to Increase Longevity of Applications Based on New SaaS/Cloud Technology

	 http://www.salesforce.com/platform/
3)	 Fujitsu: “Manufacturing Innovation” in Software

Development (especially, EZDeveloper). (in
Japanese), FUJITSU JOURNAL, Vol. 33, No. 5,
pp. 2–7 (2007).

	 http://jp.fujitsu.com/about/journal/
publication_number/300/topstory/03.shtml

4)	 QuiQpro. (in Japanese).

	 http://quiq.fsol.co.jp/
5)	 Fujitsu Kansai Systems: SDAS for .NET /eProad.

(in Japanese).
	 http://jp.fujitsu.com/group/fks/services/

eproad/
6)	 H. Yuuki: Generation Gap pattern and Hook

Operation pattern. (in Japanese).
	 http://www.hyuki.com/dp/dpinfo.html

Toyoaki Furusawa
Fujitsu Ltd.
Mr. Furusawa received a Ph.D. in
Elementary Particle Theory from Osaka
University, Osaka, Japan in 1986. He
joined Fujitsu Ltd. in 1988 and has
been engaged in developing artificial
intelligence products, middleware
products based on Java, and ERP
packages. Currently, he is in charge of
research and development of SaaS/

Cloud technology for system engineers.

http://jp.fujitsu.com/group/fks/services/eproad/
http://jp.fujitsu.com/about/journal/publication_number/300/topstory/03.shtml

