
158 FUJITSU Sci. Tech. J., Vol. 46, No. 2, pp. 158–167 (April 2010)

New Approach to Application Software
Quality Verification

 Jun Ginbayashi Tadahiro Uehara Kazuki Munakata
 Kazuo Yabuta

(Manuscript received November 11, 2009)

Fujitsu has developed a technique that can automatically prepare test scenarios/
data, run the tests, and check the results based on a formal description of the
application’s external specifications. This eliminates problems that can arise in
conventional test methods, such as failure to consider all possible test cases or data
values, the existence of too many test cases for exhaustive testing, and variation in
test results due to personality-related differences. By combining this technique with
an application framework, we have made it available for use in the development of
full-scale applications. This paper introduces our work on using formal verification
techniques to achieve ground-breaking improvements in software quality as part of
the Production Innovation project in Fujitsu’s SE division.

1. Introduction
Corporate business systems and social

administration systems are becoming increasingly
large-scale and complex. For example, the system
of one financial institution has expanded from 5
million to 64 million steps since the introduction of
the third-generation online system in the 1980s.1)
Meanwhile, system development timescales are
becoming much shorter. For example, until 1998
the average development time was 11.6 months,
but by 2002 it had fallen to 7.9 months.2) Under
these conditions, guaranteeing software quality
is becoming a major issue. It has been reported
that systems contain on average 122 bugs per
million steps after entering service,3) so there is
strong demand for more sophisticated testing.
However, with current testing techniques it is
difficult to provide adequate quality guarantees
for the following reasons:
1) Testing constitutes a major part of the

overall development process (about 30%
for ordinary business applications and over
50% for social administration systems or

embedded systems).
2) Although various automation techniques

have been proposed, it is difficult to get
them accepted by the developer community.

3) As systems become more complex, it becomes
harder for humans to elicit a sufficient range
of test cases and prepare the necessary test
data.
Formal verification techniques have

attracted interest as a potential means of
breaking through the limitations of conventional
testing. Fujitsu has developed a technique for
automating the creation of test scenarios and test
data, running the tests, and checking the results
based on a formal description of an application’s
external specifications.

In this paper, as part of the Production
Innovation project at Fujitsu’s systems engineers
(SE) division, we focus on formal verification
techniques, especially model checking techniques
and introduce our efforts aimed at implementing
these techniques in enterprise systems.

159FUJITSU Sci. Tech. J., Vol. 46, No. 2 (April 2010)

J. Ginbayashi et al.: New Approach to Application Software Quality Verification

2. Formal verification techniques
Formal verification techniques are a class of

so-called formal methodsnote)i that mathematically
guarantee the accuracy of software. In recent
years, formal verification has attracted attention
because of its potential to break through the
current limitations of testing.4)–6) Organizations
such as Japan’s Ministry of Economy, Trade and
Industry are also becoming increasingly aware
of the importance of using formal methods to
improve the reliability of future systems.7)

Formal verification is characterized by
the software to be verified being represented
as a model and then mathematically proven
methods being used to investigate whether or
not this model satisfies the properties to be
checked. Instead of hunting for and eliminating
bugs, this approach focuses on certain specific
properties (e.g., absence of deadlocks, logging of
all transactions, etc.) and guarantees that these
properties are always satisfied. In actual software
development processes, formal verification can be
applied in two phases:
• Analysis/design phase: Verification of

specifications
• Build/test phase: Verification of source code

When formal verification is applied to the
analysis/design phase, there are expected to
be benefits resulting from the ability to detect
specification errors at an early stage, but this
makes it necessary to express the specifications
as a mathematical model, which is a very difficult
task. On the other hand, its application to the
build/test phase has the major benefit that the
source code can be verified directly, which means
there is no need to construct a mathematical
model and the quality of the end product can be
guaranteed.

Some typical examples of how formal
verification has previously been applied are shown
in Figure 1. Although it has been used to verify

note)i Techniques for the specification, develop-
ment, and verification of software and
hardware based on logic and mathematics.

the specifications of some embedded systems
and business systems, its application to source
code verification has so far been biased towards
embedded systems. In our work described below,
we dealt with source code verification.

3. Model checking techniques
Among formal verification techniques,

attention has been drawn to model checking
techniques, which can perform verification
relatively mechanically. A model checking
technique treats software as a finite state
transition model and automatically checks
whether or not this state transition model
satisfies the separately stated properties. An
example of model checking based on an explicit
state search is shown in Figure 2.

From a state transition model, all the
possible paths (a→c→d→e ... etc.) are generated,
and automatic checks are performed to see if the
properties are established at each state. If a
state is found to contravene a property, then one
path that arrives at this illegal state (a→b→c′→
e ...) is presented as a counterexample. Since this
path can be used to reproduce the same error, it
provides useful information for debugging.

Although the applications of model checking
have so far been centered on embedded software,
at Fujitsu Laboratories we have been investigating
applications to the quality assurance of business
applications since 2006. We have also been

Figure 1
Example applications of formal verification techniques.

Embedded systems Business systems

Target of this technique

・Paris Metro control system
(B-Method)
・Mission-critical transaction

management (Z)
etc.

Verification
of
specifications

・NASA Mars probe
(SPIN)
・FeliCa IC chip (VDM)
・Photocopier firmware

(SPIN)
etc.

Verification
of source
code

・Windows device driver
(SDV)
・C source code
etc.

・Business applications
(Web applications
developed in EZDeveloper)

Parentheses give the names of formal
verification techniques.

160 FUJITSU Sci. Tech. J., Vol. 46, No. 2 (April 2010)

J. Ginbayashi et al.: New Approach to Application Software Quality Verification

developing techniques for automatically verifying
whether or not Web applications implemented in
Java meet their business specifications.8),9)

First, we discuss the issues with conventional
test methods. In conventional test methods, the
test scenarios and test data are drawn up from
external specifications, and tests are run and
results are checked almost entirely manually.
Consequently, these methods are prone to various
sources of human error. For example, some test
cases or test data may be overlooked, the number
of test cases may be too numerous for complete
testing, there may be human errors in the actual
tests and results-checking process, and there
may be personality-related differences in the way
the tests are implemented.

4. New model-checking-based
testing technique

4.1 Outline
At Fujitsu Laboratories, we have developed a

new technique that addresses the above problems
through the use of model checking techniques.
An overview of this technique is shown in

Figure 3. In this technique, the application’s
external specifications are first expressed in a
machine-readable formal representation called a
property definition document. Once the external
specifications have been defined as properties, the
subsequent verification work can be performed
automatically. This includes preparing test
scenarios and data, performing the actual tests,
and checking the results. Rewriting business
specifications has a relatively simple one-to-one
correspondence, so it is less likely that details will
be overlooked, and automating the subsequent
tasks eliminates actual tests/checking errors and
personality-related differences.

An example of a property definition
document for a product sales system is shown in
Figure 4. Property #1 specifies that the number
of stocked units in the stock table must be zero
or more, and property #4 specifies that when the
Finish input button is clicked, if the customer
code on the order registration page is not empty
and this customer exists in the customer master
table, then the total cost of the order on the next
page (order confirmation page) should be the unit

Figure 2
Example of model checking.

Finite state transition diagram
Properties

If the order amounts to $500 or
more during a purchasing
transaction, the order state
must be “pending authorization”.

Test exhaustively by the following paths.

check: a

c� d� e…
check: a b e…

check: a � b � c’� e…

…

Check that properties are
established at each state.

Not established Counterexample

G (order ≧ $500

�

 X order state = pending
authorization)

a

b e

dc
Order ≧ $500

Authorization required
= true

Order <$500
Authorization required Authorization required

=false

Order state = pending
authorization

Order state =
authorizedInput the

quantity.

Input the
quantity.

Input the
quantity.

Purchase.

Purchase.

Authorize.Authorize.c’
Order ≧ $500

Authorization required
= false

Input the
quantity.

Modify the
quantity.
Modify the
quantity.

Modify the
quantity.
Modify the
quantity.

Purchase.Purchase.

161FUJITSU Sci. Tech. J., Vol. 46, No. 2 (April 2010)

J. Ginbayashi et al.: New Approach to Application Software Quality Verification

Manual work

業務仕様書業務仕様書External
specifications

Rewrite external
specifications. テスト

シナリオ
テスト

シナリオ
Property
definition
document

業務仕様書業務仕様書Test report

Prepare test scenarios/data.

Run actual tests.

Check results.

Automation
(verifier)

Personality-
related

differences

*External specifications written in
machine-readable form

Check whether or not
valid properties are
actually obtained when
the web application is
run.

Omissions

Too many
test cases

Actual tests/
checking errors

Figure 3
Overview of our technique.

Figure 4
Example of property definition document.

Property definition document

External specifications

Rewritten by hand

Order registration
－ �

No. Event Precondition Expected result (postcondition)

1 - - stock_table.num_items_in stock ≧ 0

2 Finish button is
clicked.

order_registration_page.customer_code = " " Error ID =“ZZM9000E”

3 Finish button is
clicked.

not (order_registration_page.customer_code = " ")
not (include(customer mask, customer code from order
registration page))

Error ID =“ZZM9001E”

4 Finish button is
clicked.

not (order_registration_page.customer_code = " ")
include(customer mask, customer code from order
registration page)

order_confirmation_page.order_total=
order_confirmation_page._unit_cost ×
order_confirmation_page.num_units

Number of items in stock must always be ≧ 0

Display a message in the confirmation message display area and perform the following
processing.
・If customer details are missing, display an error message
・If there is no customer code in the customer master table, display an error message
・If there are no errors, calculate [order total] = [unit cost] × [no. of units]

Click the “Finish input”
button

Statements in the form: “If «precondition», then «postcondition»”

162 FUJITSU Sci. Tech. J., Vol. 46, No. 2 (April 2010)

J. Ginbayashi et al.: New Approach to Application Software Quality Verification

cost multiplied by the number of units.
A verifier is a piece of software that drives

a Web application with a variety of different
operating procedures and input data on the basis
of design information such as a property definition
document and screen transition diagram, while
checking whether or not its properties (external
specifications) are satisfied. If it detects an
unmet property, it outputs the sequence of steps
leading up to that state as a counterexample.

An example of a verification procedure for a
product sales system is shown in Figure 5. From
the logged-in state, the options for possible user
operations and the selection of input data are
designated on the basis of the property definition
document and design information, and each of
these options is run separately. In this case,
there are three options: Finish input (no quantity
specified), Finish input (quantity ≦ number
of units in stock), and Finish input (quantity >
number of units in stock). Each subsequent
state has its own set of executable options that

are designated in the same way by repeating
the cycle. The software is run exhaustively in
this way for all possible combinations of user
operations and data. This means that it is
verified by being subjected to a thorough set of
tests.

While this is going on, continuous checks are
made for the occurrence of unsatisfied properties.
For example, property #1 in Figure 4 is checked
for all actions (state transitions), and #2–4 are
checked for all actions where the Finish input
button is clicked. In the example in Figure 5,
the number of items in stock becomes negative
after the Purchase button has been clicked in
the sequence of clicks indicated by the italicized
options. This is a violation of property #1, and
the path of options leading to this state is shown
by the bold lines.

Two technical aspects of this technique are
worth pointing out:
1) Comprehensive searching by Java PathFilter

(JPF)10)

Figure 5
Example of verifying product sales system.

Log in.

Finish input
(no quantity
specified).

Finish input
(no quantity specified).

Finish input
(quantity number of items in stock).

Purchase.

Finish input
(no quantity specified).

Finish input
(quantity >
number of items in
stock).

Modify.

Finish input
(quantity > number
of items in stock).

Finish input
(no quantity specified).

Finish input
(quantity > number of
items in stock).

Error: Number of
items in stock has
become negative.

Properties

Product sales system
Check input numbers and accept purchases

if there are sufficient items in stock.

quantity: number of items to be purchased

All possible user actions are
performed while the state of

the application is
comprehended.

Properties
checked at all

transitions

«No. of items in stock must not be negative»
«After purchase, no. of items in stock must be

reduced by no. of items purchased»

≦

Purchase.Purchase.

163FUJITSU Sci. Tech. J., Vol. 46, No. 2 (April 2010)

J. Ginbayashi et al.: New Approach to Application Software Quality Verification

In this technique, JPF is used as the
model checking engine. JPF is an open-source
tool developed at the NASA Ames Research
Center11) that has been used as a framework
for Java verification tools by a wide range of
businesses and research organizations besides
Fujitsu Laboratories. It has the following
characteristics:
• It incorporates a specially developed Java

virtual machine (JVM) that runs the
verification byte code. This allows it to
access the heap contents, stack, program
counter, etc. as state information and
select other options by backtracking to any
previous state.

• It has an interface for extending the tool’s
functions. This interface makes it possible to
access objects in the heap and modify/extend
the search algorithm. For this technique,
we have also implemented a function for
checking properties on the interface.

2) Reduction in number of items to verify by
using application framework profiling
Since JPF uses its own JVM to run the

system being verified, the system must be
implemented as a single closed Java program.
During the verification of a system that accesses
a database or a network, these parts must be
excluded from the program. We therefore decided
to target this technique at business applications
developed in Fujitsu’s EZDeveloper development
framework12) where the program structure is
profiled. In this way, the business logic parts of
the program to be verified can be automatically
designated, and JPF can be used to check the
model by providing stubs to mimic the network
or database. This makes it possible to verify
full-scale applications by focusing on the parts
requiring verification in the above way. In one
instance, from a total of 34 316 lines of source
code, we were able to restrict the verification to
just 9903 lines of business logic.

4.2 Application example
To illustrate this technique, we describe how

it was applied to a product sales system developed
in EZDeveloper. This example has already been
partially introduced in the previous sections,
but here we describe the entire application. The
main specifications of this system are as follows:
1) On the order page, when a customer selects

a product, specifies the number of items
required, and clicks the Finish input button,
the number of items in stock is checked.
If there are sufficient items in stock, the
customer is given the option of clicking the
Register button.

2) If the customer clicks the Register button on
the confirmation page, the order is placed
and the customer is returned to the order
page.

3) If the customer clicks the Modify button,
the customer is returned to the order page
without the order being placed.
These screen transitions are shown in

Figure 6.
When verifying this system with the

property definition document shown in Figure 4,
we discovered a case that violated the property
that the number of stocked units in the stock
table must be zero or more (Figure 7). This

Figure 6
Page transitions in validation example.

Stock table Customer
master table

Customer
selection page

Order page Confirmation
page

Log in.

Continue.

Return.

Product list
view Select.

Select.Customer
list view

Product
selection

page

Finish input
(products,
quantities).

Register.

Modify.

164 FUJITSU Sci. Tech. J., Vol. 46, No. 2 (April 2010)

J. Ginbayashi et al.: New Approach to Application Software Quality Verification

fault was detected after the following sequence of
operations:

Log in → Finish input (quantity ≦ number
of units in stock) → Register → Finish input
(quantity ≦ number of units in stock) → Modify
→ Finish input (quantity > number of units in
stock) → Register

In this sequence, a fault unintentionally
allowed the Register button to be clicked despite
there being insufficient items in stock when the
Finish input button was clicked. As a result,
the number of items in stock became negative
after the Register button was clicked. It was not
possible to detect this fault by using typical test
cases such as those shown below. The ability of
our technique to detect this sort of fault illustrates
its strength at exhaustively testing combinations
of user operations.

• Log in → Finish input (quantity ≦ number
of units in stock) → Register

• Log in → Finish input (quantity ≦ number
of units in stock) → Modify

• Log in → Finish input (quantity > number
of units in stock) → Modify

... etc.
When this fault was fixed and the verification

was repeated, the system passed successfully. An
overview of the program states searched by this
technique is shown in Figure 8. In this example,
we not only checked the 30 or so scenarios
covered by conventional testing (bold lines in
Figure 8), but were also able to automatically
verify the equivalent of over 1000 test scenarios
while confirming that the specifications in
Figure 4 were consistently met.

Figure 7
Fault detection (Tool page).

Fault detected

Log in.

Finish input (3 items).

Register.

Finish input (2 items).

Modify.

Finish input (3 items).

Register.

Error path

0
Order page

NIS=5
errorCode:“”

1
Order page

NIS=5
errorCode:“”

36
Confirmation page

NIS=5
errorCode:“”

37
Order page

NIS=2
errorCode:“”

38
Confirmation page

NIS=2
errorCode:“”

42
Order page

NIS=2
errorCode:“”

44
Confirmation page

NIS=2
errorCode:“”

45
Confirmation page

NIS=-1
errorCode:“”

41
Order page

NIS=0
errorCode:“ZZM2008E”

Finish input (3 items).

Finish input
(3 items).

Finish input
(3 items).Finish input

(2 items).

Register.

Register.

Finish input
(2 items).

Register.

Finish input
(3 items).Finish input

(2 items).

Finish input (2 items).

Finish input (2 items).

Finish input
(3 items).

Finish input
(3 items).

Finish input (2 items).

Finish input
(2 items).

Finish input (3 items).

Finish input
(3 items).

Register.

Modify.

Finish input (3 items).

Finish input
(2 items).

Finish input
(2 items).

Finish input
(2 items).

Finish input (2 items).

Finish input
(2 items).

Finish input (3 items).

Finish input (3 items).

Finish input
(3 items).

39
Order page

NIS=0
errorCode:“”

40
Order page

NIS=0
errorCode:“ZZM2008E”

43
Order page

NIS=3
errorCode:“”

31
Order page

NIS=2
errorCode:“”

32
Order page

NIS=0
errorCode:“”

33
Order page

NIS=0
errorCode:“ZZM2008E”

34
Order page

NIS=0
errorCode:“ZZM2008E”

35
Order page

NIS=2
errorCode:“ZZM2008E”

30
Order page

NIS=2
errorCode:“”

20
Order page

NIS=3
errorCode:“ZZM2008E”

29
Order page

NIS=5
errorCode:“”

25
Order page

NIS=5
errorCode:“”

24
Order page

NIS=5
errorCode:“”

2
Order page

NIS=5
errorCode:“”

0
Order page

NIS=5
errorCode:“”

1
Order page

NIS=5
errorCode:“”

36
Confirmation page

NIS=5
errorCode:“”

37
Order page

NIS=2
errorCode:“”

38
Confirmation page

NIS=2
errorCode:“”

42
Order page

NIS=2
errorCode:“”

44
Confirmation page

NIS=2
errorCode:“”

Log in.

Finish input (3 items).

Register.

Finish input (2 items).

Modify.

Finish input (3 items).

Register.

19
Order page

NIS=3
errorCode:“ZZM2008E”

18
Order page

NIS=3
errorCode:“”

Error path (sequence of actions

that led to a fault) is displayed.

45
Confirmation page

NIS=-1
errorCode:“”

Confirmation page
NIS=-1

errorCode:“”

NIS: Number of items in stock

NIS is−1, so business
specifications are not met.

165FUJITSU Sci. Tech. J., Vol. 46, No. 2 (April 2010)

J. Ginbayashi et al.: New Approach to Application Software Quality Verifi cation

4.3 Confi rmed benefi ts and future issues
The technique provides four major benefi ts

over the conventional test techniques. However,
there are still a few issues that need to be
resolved.

4.3.1 Benefi ts
In contrast to the issues of conventional test

techniques discussed earlier, the benefi ts of this
technique are as follows:
1) Drastically cutting the omission of test cases

and data
When verifi cation is performed using this

technique, exhaustive tests are performed
by varying the combinations of data and
user operations on the basis of the property
specifi cations and design values. As a result, the
omission of test cases (test scenarios) of the type
discussed in section 5 can be almost completely
eliminated. On the other hand, the setting of
data variations depends on the accuracy with
which the property specifi cations and design
information are described, so the omission of
a property specifi cation can still lead to the
omission of test data.
2) Performing verifi cation with a high test

density
Since programs are run automatically, it

is possible to verify many more test cases than
would be possible by manual testing.
3) Eliminating human error from the running

of tests and the checking of results
Since testing and checking are performed

automatically, human error can be eliminated
from these processes.
4) Excluding personality-related differences

Since the test cases are produced
automatically, a uniformly high standard of
quality can be achieved by eliminating differences
related to the personalities of developers.

4.3.2 Issues
There are three issues that need to be

addressed:
1) Describing properties is diffi cult.

Although external specifi cations can be
converted into a property defi nition document
with a one-to-one correspondence, this is a task
that requires specialized formal language skills.
To address this issue, techniques and tools should
be developed to support the creation of property
descriptions (e.g., property editor tools).
2) Test data omissions are still liable to occur.

The designation of data variations as
described above is dependent on the accuracy
of the statements used to describe properties

Figure 8
Overview of program states searched by this technique.

Over 1000 scenarios tested and all confirmed to be fault-free.

Scenarios typically
covered by

conventional testing
(about 30)

166 FUJITSU Sci. Tech. J., Vol. 46, No. 2 (April 2010)

J. Ginbayashi et al.: New Approach to Application Software Quality Verification

and design information. A technique should be
developed that incorporates program analysis
methods to enable exhaustive verification to be
performed without the specifications having to be
defined.
3) Only a restricted range of applications can

be verified.
This technique can currently verify

Web applications developed on a designated
framework, but it is necessary to develop a
technique for expanding the applicable scope to
any ordinary Web application or Java application.
Furthermore, in the future we plan to target a
wide range of real applications by establishing a
development process that combines this technique
with conventional test methods by clarifying the
separate roles for them.

5. Conclusion
In this paper, we introduced work being

done as part of the Production Innovation project
at Fujitsu’s SE division with the aim of improving
software quality based on model checking
techniques. We have developed a technique that
can be applied to full-scale business software
by using JPF as a mechanism for automatically
performing exhaustive searches and by combining
it with Fujitsu’s EZDeveloper development
framework. In the future, we intend to make the
verification technique even stronger and increase
its applicable range, while at the same time
pursuing practical advantages by combining it
with conventional test methods.

References
1) Ministry of Economy, Trade and Industry:

Toward Accelerating IT-Based Productivity
Improvement. (in Japanese), IT Frontier
Initiative.

 http://www.meti.go.jp/press/20070629005/
20070629005.html

2) Construction modes for business systems. (in
Japanese), Nikkei Open Systems, pp. 118–125
(February 2003).

3) Information Technology Promotion Agency of
Japan, Software Engineering Center (IPA/SEC):
Software development data white paper 2007.
(in Japanese), Nikkei BP, 2007.

4) Special feature: Software is hard. (in Japanese),
Nikkei Electronics, No. 916, pp. 87–121 (December
19, 2005).

5) Special feature: Formal methods under the
spotlight in the drive for bug-free software. (in
Japanese), Nikkei Computer, No. 657, pp. 60–64
(July 24, 2006).

6) Special feature: Making things more fun. (in
Japanese), Nikkei Computer, No. 668, pp. 38–53
(December 25, 2006).

7) Ministry of Economy, Trade and Industry:
Guidelines for improving the reliability of IT
systems. (in Japanese).

 http://www.meti.go.jp/press/20060615002/
20060615002.html

8) Fujitsu Laboratories: Fujitsu Develops Software
Verification Technology for Practical-use Web
Applications.

 http://www.fujitsu.com/global/news/pr/
archives/month/2008/20080404-02.html

9) Fujitsu: Basic technique for the automation
of testing in Java-based Web application
development.

 http://jp.fujitsu.com/about/journal/
technology/20090401/

10) Java PathFinder.
 http://javapathfinder.sourceforge.net/
11) NASA Ames Research Center.
 http://www.nasa.gov/centers/ames/home/

index.html
12) Fujitsu: Innovative manufacturing and

engineering in software development.
 http://jp.fujitsu.com/about/journal/

publication_number/300/topstory/03.shtml

http://www.meti.go.jp/press/20070629005/20070629005.html
http://www.meti.go.jp/press/20060615002/20060615002.html
http://www.fujitsu.com/global/news/pr/archives/month/2008/20080404-02.html
http://jp.fujitsu.com/about/journal/technology/20090401/
http://www.nasa.gov/centers/ames/home/index.html
http://jp.fujitsu.com/about/journal/publication_number/300/topstory/03.shtml

167FUJITSU Sci. Tech. J., Vol. 46, No. 2 (April 2010)

J. Ginbayashi et al.: New Approach to Application Software Quality Verification

Jun Ginbayashi
Fujitsu Ltd.
Dr. Ginbayashi received B.S. and M.S.
degrees in Mathematics from the
University of Tokyo, Japan in 1981 and
1984 and M.Sc. and D.Phil. degrees in
Computing Science from the University
of Oxford, U.K. in 1993 and 1996,
respectively. He joined Fujitsu Ltd.,
Tokyo, Japan in 1986, where he has
been engaged in software engineering

and system development methods and tools. He is a member of
IEEE and the Information Processing Society of Japan (IPSJ).

Tadahiro Uehara
Fujitsu Laboratories Ltd.
Mr. Uehara received a B.E. degree
in Control Engineering and an M.E.
degree in Intelligent Science from Tokyo
Institute of Technology, Tokyo, Japan in
1993 and 1995, respectively. He joined
Fujitsu Laboratories Ltd., Kanagawa,
Japan in 1995, where he has been
engaged in research in software
engineering, especially object oriented

technologies and testing technologies for business applications.

Kazuo Yabuta
Fujitsu Ltd.
Mr. Yabuta received an M.S. degree
in Electronics from Sophia University,
Japan in 1976. He joined Fujitsu Ltd.,
Tokyo, Japan in 1976, where he has
been engaged in software engineering
and system development methods and
tools. He is a member of Information
Processing Society of Japan (IPSJ).

Kazuki Munakata
Fujitsu Laboratories Ltd.
Mr. Munakata received an M.E.
degree in Information Science from
Japan Advanced Institute of Science
and Technology, Ishikawa, Japan in
2001. He joined Fujitsu Laboratories
Ltd., Kanagawa, Japan in 2005,
where he has engaged in research
in software engineering, especially
software verification and requirements
engineering.

