
111FUJITSU Sci. Tech. J., Vol. 46, No. 1, pp. 111–119 (January 2010)

Novel Applications of a Compact Binary
Decision Diagram Library to Important
Industrial Problems

 Stergios Stergiou  Jawahar Jain
(Manuscript received May 28, 2009)

Fujitsu Laboratories of America has, over the course of many years, worked to
develop the frontier of binary decision diagram (BDD) technology under a project
called ParDD. Our technology allows us to partition Boolean functions, represent
them very compactly, and process them on a massively parallel computing platform.
It has been used to create numerous applications in the field of electronic design
automation. Recently under this project we have developed a novel BDD library
where the storage requirement of each node closely tracks the total size of the
stored representation. The compact nature of this data structure allows the solution
of interesting problems to which BDDs have seldom been applied before. For
example, we have used our library to create a compact inverted index, an essential
matrix for indexing documents in any corpus, including the World Wide Web. We
have also characterized its performance for Web query satisfaction in the context
of Web searches as well as for the creation of compact representations of access
control lists, a core component of Internet routers.

1.	 Introduction
In computer science, many problems can

be formulated in terms of Boolean functions. A
binary decision diagram (BDD)1) is a directed
acyclic graph used to compactly represent
a Boolean function. It includes two special
“terminal” nodes that represent the Boolean
functions 1 and 0. Each non-terminal node,
which corresponds to a subfunction f, is labeled
by a Boolean variable v and has two outgoing
edges. Edge “1” points to the sub-BDD that
represents function v· f, while edge “0” points
to the sub-BDD for function v· f. The two edges
point to different nodes.

A reduced ordered BDD (ROBDD) is a BDD
with two additional restrictions. First, all paths
from its root to the leaves examine variables in
the same variable order2). Second, there should
be no isomorphic subgraphs. These restrictions
lead to a canonical representation for a given

variable order.
BDD graphs can be manipulated efficiently.

Any Boolean operation between two graphs can
be completed in time that is at most quadratic in
the size of the given graphs. For a large variety
of functions that naturally arise in real-life
applications, their BDDs have been observed to
be compact. Compactness and efficiency have led
to many BDD applications in areas such as design
simulation, synthesis, verification, automatic test
generation, artificial intelligence, data mining,
software security, and fault tolerant computing.

ROBDDs provide efficient representations
for many functions of practical interest.
Unfortunately, some applications require the
representation of functions that have only
an exponential ROBDD size. This limits the
complexity of problems that can be attacked
using ROBDDs.

112 FUJITSU Sci. Tech. J., Vol. 46, No. 1 (January 2010)

S. Stergiou et al.: Novel Applications of a Compact Binary Decision Diagram Library to Important Industrial Problems

1.1	 Partitioned ROBDDs
Fujitsu Laboratories of America (FLA) has

developed a more efficient representation in its
ParDD project through the use of partitioned
ROBDDs (POBDDs)3)-5), which are especially
effective for large designs. In this approach,
different partitions of the Boolean space are
allowed to have different variable orderings, and
only one partition needs to be in memory at any
given time.

To handle the complexity of large
industrial designs, we have proposed algorithms
that modify the Boolean space partition of
POBDDs at run-time, thus avoiding memory
explosion. Theoretical evidence5),6) suggests
that representations using this approach can be
exponentially more compact than ROBDDs as
well as any approach using a fixed number of
partitions.

We incorporated this dynamic repartitioning
scheme in reachability7) based invariant
checking as well as model checking for a portion
of computation tree logic.8),9) Because of the
partitioned nature of POBDDs, FLA has been
able to develop methods that allow efficient
mathematical models10),11) as well as highly
effective use of symmetric multiprocessor
architectures12) and large computational grids13)

where super-linear gains over classical approaches
have been observed in proving falsification. The
adaptive nature of our partitioning approach
also leads to order-of-magnitude more efficient
runtime in proving design correctness.

1.2	 Nano decision diagrams
In the ParDD project we have recently

deviated from the classical BDD approach of
a fixed data structure per vertex. Instead, we
maintain the necessary bookkeeping information
as compactly as possible as a function of the
OBDD size.

Let n be the number of variables and d be
the number of nodes of a given BDD. Then
sn = [log (n)] bits are sufficient to index a variable.

Moreover, if nodes are stored consecutively
in memory, sd = [log (d)] bits are sufficient to
identify their location. On the basis of the above
observations, each node is structured as follows:

variable: sn bits 1-edge: sd bits 0-edge: sd bits

For comparison, traditional decision
diagram libraries specify conservative upper
bounds for variable and index bits, typically
24 and 32 bits, respectively. To reflect the lighter
memory footprint of our new decision diagram
structure, we named it the nano decision diagram
(nanoDD).

2.	 NDD library
Our nanoDD library (NDD library) provides

an implementation of nanoDDs. It has been
designed and implemented from scratch to
additionally support a variation of BDDs called
zero-suppressed BDDs (ZDDs).14) ZDDs have
been shown to be more compact in terms of the
number of nodes required to support a given
Boolean function, provided that the function’s
ON-set is relatively sparse.

The NDD library implements all classical
2-operand operations, as well as the operations
Constrain, Restrict, and ITE. It implements
variable reordering through the classical Sifting
algorithm. Another novel aspect of this library
is that it supports the execution of all operations
within a user-specified context. Within each
context, the user assigns 2-operand operations to
variables. Whenever the creation of a new node is
requested, the library checks whether the variable
of the new node is assigned to an operation. If
so, the assigned operation is applied to the new
node’s children and the result is returned instead.
Contexts seamlessly encapsulate universal
and existential quantification schedules such
that they can be used with all operations while
maintaining a simple programming interface.

113FUJITSU Sci. Tech. J., Vol. 46, No. 1 (January 2010)

S. Stergiou et al.: Novel Applications of a Compact Binary Decision Diagram Library to Important Industrial Problems

3.	 BDD-based inverted index
representation
An inverted index is a data structure that

operates on a collection of documents and is used
to efficiently identify the subset of documents that
include a specific keyword. It can be stored as a
collection of lists, each of which corresponds to a
unique keyword wi and includes the numerical
identifiers of the documents that contain wi.

The size of the inverted index can grow quite
large, with direct implications for the required
storage space and access time. Therefore, in many
cases, each list is stored in a compressed manner
that allows it to be quickly and incrementally
decompressed. In this paper, we analyze
nanoDDs for representing inverted indices.
Below we give some background information
about the mainstream list compression scheme
and BDDs.

For each list, the corresponding Boolean
function is constructed and the BDD for it is
built with a traditional BDD package using the
ZDD representation. There are two aspects to
representing lists with decision diagrams. The
first concerns the mapping of list elements to a
Boolean function and the second is related to the
way the decision diagrams are stored on disk.

3.1	 Encodings
3.1.1	 Lists as Boolean functions

Let us represent list [23, 33, 37, 54] as a
Boolean function. In binary, the list elements
are [010111, 100001, 100101, 110110].

3.1.2	 Binary encoding
The Boolean function that represents the

list with the minimum number of variables is
obtained by simply assigning each variable to
each significant bit weight. For example, the
above list corresponds to function

f = x1x2x3x4x5x6 + x1x2x3x4x5x6 + x1x2x3x4x5x6
+ x1x2x3x4x5x6.

3.1.3	 Linear encoding
An alternative representation would be to

assign a different variable for each document
id. However, this representation is impractical
because the number of documents can be quite
large. Moreover, node sharing is no longer
possible (unless multiple lists are represented by
a single Boolean function.)

3.1.4	 Base-2k encoding
Let us represent the list elements in a 2k

base. This allows linear and binary encoding to
be combined. For each of the base-2k digits, we
use 2k distinct variables to represent them in a
one-hot manner. For example, assume that we
want to encode number 54, which is 312 in base-
4. Each of the digits is one-hot encoded, giving
1000 : 0010 : 0100. Therefore, element 54 is
encoded as

g = x1x2x3x4x5x6x7x8x9x10x11x12.

This increase in the number of variables may
initially appear inefficient, but in fact it leads to
better sharing and more compact representation,
especially when ZDDs are used.

3.2.	Performance characterization
3.2.1	 Corpus

In order to benchmark the NDD library, we
created an inverted index for the largest possible
set of Web pages available online. This set,
which was downloaded from Stanford’s WebBase
project, contains more than 94 million Web pages.
By comparison, the first Google implementation
had only 25 million.

Table 1
Inverted index statistics.

Processed pages 94 million

Unique terms 114 million

Processed terms 22 000 million

List-based inverted index 163 GB

114 FUJITSU Sci. Tech. J., Vol. 46, No. 1 (January 2010)

S. Stergiou et al.: Novel Applications of a Compact Binary Decision Diagram Library to Important Industrial Problems

For each Web page, we extracted its text
terms. Every sequence of up to 50 characters
was kept. In total, almost 22 billion terms were
processed. For each unique term, we calculated
the set of pages in which it appeared. There were
more than 114 million unique terms.

The collection of all sets of pages for all
unique terms is the inverted index. The size
of the complete inverted index in the classic,
uncompressed list implementation is 163 GB
(Table 1).

3.2.2 	 NanoDD inverted index
We computed the complete nanoDD-based

inverted index for the Stanford crawl. The
computation time was less than 25 hours. By
comparison, it took almost 4 days to parse the
corpus and generate the list-based inverted
index. Therefore, while the time required to build
the nanoDD inverted index is not negligible, we
do not consider it to be an issue. The resulting
nanoDD inverted index was less than 25% of
the size obtained using the classical list-based
approach. The clear major benefit of this result
is the cost decrease emanating from the direct
reduction of disk space required for storing the
inverted index.

3.2.3	 Comparison with existing BDD
packages

To compare the performance of our NDD
library with the state-of-the-art BDD package
(Colorado University Decision Diagram, CUDD),
we implemented a tool that generates a ZDD-

based inverted index using the open-source
CUDD library. Our results are as follows.

In terms of computation time, our nanoDD
approach was almost 8 times as fast as the
CUDD implementation. In terms of memory
requirements, our inverted index was less
than 1/6 the size of the CUDD one. Note that
the decrease in size is not due to the structure
of the obtained ZDDs because, by construction,
they are canonical (and therefore the same in
both approaches). It is due to the structure of
the nodes. For CUDD, the size is at least 16
bytes per node (depending on the version used)
independent of the actual function stored. For
nanoDDs, the size varies depending on the
nodes needed to store a given function and can
range from 2 to 8 bytes. In both approaches, the
intermediate memory required for caches was
not taken into account since the cache contents
are not stored as part of the result.

We also compared our NDD library with
CUDD15) and Cal16) on ACM/SIGDA combinational
circuits. We use static variable orders as
computed by a depth-first search traversal of the
circuit. Only non-trivial circuits that could be
completed in either of the libraries within 1800 s
are shown. The results are given in Table 2.

4.	 NanoDD-based Web searches
The major benefit of using nanoDD inverted

indices for Web searches is that they maintain
manipulability. To achieve this, we designed
special manipulation operations that are more
suited to the task of Web searching. In addition,

Table 2
Comparison with CUDD 2.4.2 and Cal 2.1 on ACM/SIGDA circuits. Time is given in seconds and memory (mem) in MB.
Rt is the time ratio, Rm is the space ratio, and Rp = Rt * Rm.

Circuit NDD CUDD Cal

Name In Out Time Mem Time Mem Rt Rm Rp Time Mem Rt Rm Rp

C3540 50 22 0.49 64.3 0.59 64 120% 100% 120% 1.05 52.1 214% 81% 174%

i10 257 224 0.5 63.2 0.62 74.2 124% 117% 146% 1.19 64.7 238% 102% 244%

C6288 32 32 225.17 5149.9 402.36 6312.6 179% 123% 219% 468.67 6278.2 208% 122% 254%

C2670 233 140 9.05 285.6 21.17 402.6 234% 141% 330% 22.79 564.2 252% 198% 497%

115FUJITSU Sci. Tech. J., Vol. 46, No. 1 (January 2010)

S. Stergiou et al.: Novel Applications of a Compact Binary Decision Diagram Library to Important Industrial Problems

we adapted the storage scheme of the nanoDDs
to the application.

4.1.	Operations
The basic operation performed between

K ordered lists is a conjunction, which is
implemented as a K-way merge. Specifically,
elements are read one at a time starting from the
head of the lists until all common elements have
been detected.

For example, let us detect the common
elements between the following two lists.

list1 : 10, 20, 23, 36, 47, 52

list2 : 16, 18, 23, 47

We maintain pointers p1, p2 to the list
elements, which initially point to elements “10”
and “16”, respectively. Since p1 points to an
element that is smaller than the one that p2
points to, it moves forward to element “20”. Now
p2 points to a smaller element, so it advances
to “18”. Since “18” is also smaller than “20”, p2

proceeds to “23”. Now, p1 proceeds to “23” and
this common element is output. At this stage,
the two pointers move forward to elements “47”
and “47”, respectively. Again, element “47” is
output. Since p2 has reached the end of list 2, no
more common elements can be detected, so the
process is complete.

We note that the basic operation
implemented for traversing lists is essentially
get_next_element (L). In reality, the operation
that we would like to implement efficiently for
nanoDDs is get_next_element_greq (L, element) to
detect the next element in list L that is greater
than or equal to element.

	 get_next_element_greq (L, element)
We maintain an array of variable

assignments A that is updated while traversing
the nanoDD. The first element stored in the
nanoDD is obtained by performing a depth-
first traversal starting from the root node and

initially following 0-edges until terminal node 1
is reached.

For each visited node, we monitor the
variable id and the id of the edge that was
followed. Variables that do not appear in the
path from the root to the terminal node 1 are
initially assigned the value 0.

Whenever get_next_element_greq (L, element)
is called, the binary representation of element
is checked against array A, and the number of
common variable assignments from the root is
detected. The algorithm backtracks until the
first non-common variable from the top (or the
root if there are no common assignments) and
traverses the nanoDD according to the remaining
assignments imposed by element.

Let us see how get_next_element_greq
works for the simple decision diagram shown in
Figure 1.

This decision diagram represents function
f = x1x3x4 + x1x3x4, so it encodes list [8, 11, 12, 15]
The first element is obtained by the traversal
shown in Figure 2.

The variable assignments are therefore
(x1, x2, x3, x4) = (1, 0, 0, 0), giving the first list
element “8”.

If we wanted to access the next element in
the list, we would search for the next element
greater than “8” with get_next_element_greq
(L, 9). Then the algorithm would backtrack
to variable x3, since the first three variable
assignments between (1, 0, 0, 0) and (1, 0, 0, 1)
are the same, and continue along the path shown
in Figure 3.

The current variable assignments are (1, 0,
1, 1), giving us element “11”. We can obtain the
remaining list elements in a similar manner.

The power of decision diagrams in the
context of searches stems from the fact that
elements of the underlying list can be skipped
over if their presence is of no importance. Assume
for example that the conjunction between lists
[8, 11, 12, 15] and [7, 13, 15] is desired.

The first elements of both lists are obtained.

116 FUJITSU Sci. Tech. J., Vol. 46, No. 1 (January 2010)

S. Stergiou et al.: Novel Applications of a Compact Binary Decision Diagram Library to Important Industrial Problems

Since “8” is larger than “7”, the next element
greater that or equal to “8” is searched for in
the second list and element “13” is obtained.
Next, get_next_element_greq (L, 13) is applied
to the first list. At this point, the algorithm
detects that (1, 1, 0, 1) (corresponding to “13”)
has only the first variable common with (1, 0, 0,
0) (which corresponds to “8”). Subsequently, it
directly backtracks to variable x1 and traverses
down the nanoDD, setting variables following
x1 in a manner consistent with the requested
assignment (1, 1, 0, 1) and eventually ending up
at (1, 1, 1, 1).

4.2	 Storage scheme
A single nanoDD node requires exactly

2sd + sn bits. Nodes are stored consecutively in
memory or on disk in the order that the depth-
first traversal visits them, where 0-edges are
followed before 1-edges. In this way, we can
incrementally extract information from a nanoDD
on disk. Terminal nodes need not be explicitly
stored since they can be assigned fixed “virtual”
positions.

4.3	 Performance characterization
4.3.1	 AOL query data

AOL recently released anonymized
information about actual search queries
performed by its search engine, which is
essentially a front-end for Google. As these
are actual user queries, they provide the best
opportunity for benchmarking the performance
of our operations.

4.3.2	 Experimental results
We averaged the query times for a random set

of 10 000 queries from the AOL query set, which
are k-terms or longer, for k = [2 … 6] to investigate
how the system performs for progressively more
complex queries. For each set of 10 000 queries,
both the nanoDD-based manipulation code and the
list-based manipulation code were executed. The Figure 1

Example of simple decision diagram.

x1

x3

x4 x4

01

1-edge

0-edge

Figure 3
Continuation path.

x1

x3

x4 x4

01

1-edge

0-edge

Figure 2
Traversal for obtaining first element.

x1

x3

x4 x4

01

1-edge

0-edge

117FUJITSU Sci. Tech. J., Vol. 46, No. 1 (January 2010)

S. Stergiou et al.: Novel Applications of a Compact Binary Decision Diagram Library to Important Industrial Problems

performance ratio is given in Table 3.

4.4	 Energy analysis
At an abstract level, the energy consumption

of a typical computing node of a search engine
comprises two components: the silicon factors
(CPU, chipset, and memory) and the hard
drive factor. We will assume an average power
dissipation of 60 W for the CPU and 8 W per
hard drive. Since the size of the inverted index
is less than 25% of the size of the list-based
representation, let us assume average power
consumption of 92 W for the list-based inverted
index setup and 68 W for the nanoDD-based
setup. This corresponds to a single hard drive
node for nanoDDs and four hard drive nodes for
explicit lists. Thus, the power consumption of
the nanoDD setup is 74% of the list-based setup.

If we factor in the benefits due to the higher
query performance, we see that the energy
consumption is reduced as listed in Table 4.
The energy reduction is justified because the
operations require less time to complete.

5.	 NanoDD-based access control
list compression

5.1	 Problem formulation
In its simplest incarnation, the problem

of Internet router access control is as follows:
A list of source/destination IP address tuples is
maintained, which denotes the packets that are
not allowed to be forwarded through the router.
Let this list be L = {<IPs, IPd>i}. IP addresses are
typically 32-bit-long integers, so each tuple is

characterized by a 64-bit number.
For each tuple i we construct a minterm

mi that depends on 64 variables. For example,
tuple

11011110101011110010000000000111
00100000000001101101111010101111

is represented by minterm

x1x2x3x4x5 ··· x60x61x62x63x64.

Next, we construct function f, where

f (x1,···,x64) = V|L|
i=1 mi.

We subsequently build the ZDD for function
f and perform a depth-first search on the
resulting directed acyclic graph to obtain a sum-
of-products representation for f in the form of
f = V pi. Each product term pi depends on a
subset of the 64 variables and can therefore be
represented in positional notation by using three
symbols (0, 1, X). For example, product term
x1x4x6 is represented in positional notation by

1XX0X1XXX ··· XX.

When presented with a source/destination IP
tuple T, the access control list (ACL) subsystem
must decide whether or not the corresponding
packet should be forwarded. This operation
is done by evaluating function f with variable
assignments obtained from tuple T. For example,
if tuple T is 10011 ··· 10 in binary, then f (1, 0, 0,

Table 3
Comparison of list-based and nanoDD-based
manipulation times.

k
Performance ratio between

nanoDDs and lists

2 115%

3 125%

4 130%

5 140%

6 150%

Table 4
Energy consumption of nanoDDs as a percentage of list-
based approach.

k Energy as % of list-based approach

2 64%

3 59%

4 57%

5 53%

6 49%

|L|
i=1

118 FUJITSU Sci. Tech. J., Vol. 46, No. 1 (January 2010)

S. Stergiou et al.: Novel Applications of a Compact Binary Decision Diagram Library to Important Industrial Problems

1, 1, ··· , 1, 0) is calculated.

5.2	 Experimental evaluation
5.2.1	 Border gateway protocol

The border gateway protocol (BGP) is the
core routing protocol of the Internet. It works by
maintaining a table of IP networks or “prefixes”
that designate network reachability among
autonomous systems. It is described as a path
vector protocol. BGP makes routing decisions
based on path, network policies, and/or rulesets.
For the purposes of our experimental evaluation,
to construct function f, we collected 200 000 rules
originating from AT&T’s network.

5.2.2	 Experimental results
We used our NDD library to compute and

store function f. The obtained compaction was
more than 400%. Naturally, our technique is
useful mainly for the cases where there is no
hardware acceleration for ACL support since
the cost of extracting information from the BDD
would otherwise outweigh the benefit of the
obtained compaction.

6.	 Conclusion
At FLA, the ParDD project first focused

on creating partitions of Boolean functions to
represent them very compactly and process them
efficiently on a massively parallel computing
platform. This technology was used to create
numerous applications in the field of electronic
design automation. To find BDD applications
in other fields, we were motivated to develop a
novel BDD library whose node structure can
be dynamically adjusted to match the size of
the stored representation. The compact nature
of this data structure spawned solutions to
interesting problems where BDDs have seldom
been applied.

Apart from compact node size, and thus a
smaller memory footprint, nanoDDs were found
to yield significantly faster BDD manipulations,
as demonstrated on ACM/SIGDA benchmark

circuits as well as for Fujitsu proprietary designs.
Given the wide variety of problems in which
BDDs are used, gains in both space and time are
a compelling proof of the significance of FLA’s
ParDD project technology.

References
1)	 S. B. Akers: Binary decision diagrams. IEEE

Transactions on Computers, Vol. C-27, No. 6,
pp. 509–516 (1978).

2)	 R. E. Bryant: Graph-based algorithms for Boolean
function manipulation. IEEE Transactions on
Computers, Vol. 35, No. 8, pp. 677–691 (1986).

3)	 J. Jain, J. Bitner, D. S. Fussell, and J. A.
Abraham: Functional partitioning for verification
and related problems. Proceedings of Brown/MIT
VLSI Conference, 1992.

4)	 A. Narayan, A. Isles, J. Jain, R. Brayton, and A.
Sangiovanni-Vincentelli: Reachability analysis
using partitioned-ROBDDs. Proceedings of
IEEE/ACM International Conference on
Computer-Aided Design, 1997.

5)	 A. Narayan, J. Jain, M. Fujita, and A.
L. Sangiovanni-Vincentelli: Partitioned-
ROBDDs—a compact, canonical and efficiently
manipulable representation for Boolean functions.
Proceedings of IEEE/ACM International
Conference on Computer-Aided Design, 1996.

6)	 B. Bollig and I. Wegener: Partitioned BDDs
vs. other BDD models. Proceedings of the
International Workshop on Logic and Synthesis,
1997.

7)	 O. Coudert and J. C. Madre: A unified framework
for the formal verification of sequential circuits.
International Conference on Computer Aided
Design, 1990, pp. 126–129.

8)	 E. M. Clarke and E. A. Emerson: Design and
synthesis of synchronization skeletons using
branching time temporal logic. Proc. IBM
Workshop on Logics of Programs, Lecture Notes
in Computer Science, Vol. 131, 1981, pp. 52–71.

9)	 K. L. McMillan: Symbolic model checking.
Kluwer Academic Publishers, 1993.

10)	 S. Iyer, D. Sahoo, E. A. Emerson, and J. Jain:
On partitioning and symbolic model checking.
Proceedings of the International Symposium of
Formal Methods, 2005.

11)	 S. Stergiou and J. Jain: Disjunctive transition
relation decomposition for efficient reachability
analysis. Proceedings of the IEEE International
High Level Design Validation and Test Workshop,
2006.

12)	 D. Sahoo, J. Jain, S. Iyer, D. Dill, and E. A.
Emerson: Multi-threaded reachability.
Proceedings of the 42nd Design Automation
Conference, 2005.

13)	 S. Iyer, J. Jain, D. Sahoo, and E. A. Emerson:
Under-approximation heuristics for grid-based
BMC. Proceedings of the 4th International
Workshop on Parallel and Distributed Methods
in Verification, 2005.

14)	 S. Minato: Zero-suppressed BDDs for set

119FUJITSU Sci. Tech. J., Vol. 46, No. 1 (January 2010)

S. Stergiou et al.: Novel Applications of a Compact Binary Decision Diagram Library to Important Industrial Problems

manipulation in combinatorial problems. Design
Automation Conference, 1993, pp. 272–277.

15)	 F. Somenzi: CUDD: CU decision diagram

package—release 2.4.2, 2009.
16)	 R. Ranjan: CAL: Binary decision diagram

package—release 2.1, 1998.

Stergios Stergiou
Fujitsu Laboratories of America
Dr. Stergiou received a B.S. degree in
Computer Science from the Dept of
Informatics, Athens, Greece, an M.S.
degree in Computer Science from the
Dept. of Computer Engineering and
Informatics, Patra, Greece, and a Ph.D.
degree in Computer Science from the
National Technical University of Athens,
Greece. He joined FLA in 2006 and

has been engaged in research and development of formal
verification and logic synthesis algorithms as well as Web-related
technologies. He is the author of more than 20 publications.

Jawahar Jain
Fujitsu Laboratories of America
Dr. Jain received M.S. and Ph.D.
degrees in Electrical and Computer
Engineering from the University of
Texas at Austin in 1989 and 1993,
respectively. Thereafter, he worked
as a joint post-doctoral fellow at the
University of Texas at Austin and
Texas A&M. He joined FLA in 1994
and conducted research in the area of

electronic design automation for more than ten years. He has
more than 50 publications and 40 patents (granted or pending).
He is currently a Senior Research Fellow actively researching
applications of symbolic manipulation technologies in diverse
areas including Web-based services. One of his key interests is
novel applications of information processing technologies in the
field of health care. He has co-authored important publications
in the area of partitioned BDDs and their applications to symbolic
model checking with Turing Award winner Professor Emerson of
the University of Texas at Austin.

