
304 FUJITSU Sci. Tech. J., Vol. 45, No. 3, pp. 304–312 (July 2009)

LivePoplet: Technology That Enables
Mashup of Existing Applications

 Akihiko Matsuo  Kenji Oki  Akio Shimono
(Manuscript received January 29, 2009)

We have developed LivePoplet, a technology that allows the addition of functionality
by mashup without modification of the existing Web applications. With the
concepts of SaaS and Cloud computing now popular, demand has been increasing
within corporations for combining applications freely for use without having to
consider whether they are provided internally or externally. By using the LivePoplet
technology, flexible cooperation can be easily achieved for direct calling of a Web
service from a window of an existing in-company system according to the user’s
needs, for example, which allows the building of a business system of a new era
while making the most use of the existing system.

1. Introduction
As Internet technologies, in particular

recent technologies such as Web 2.0, SaaS and
Cloud computing, are becoming more widespread,
the state of applications used in corporations is
changing, which is described in Figure 1.

In the 1990s, before the Internet started
to grow popular, client-server applications were
the mainstream in corporations, and they were
similar to the business applications in the era
of mainframe systems in that the individual
business applications were provided by different
servers and the users also used individually
dedicated client programs for using applications
separately.

In the latter half of the 1990s, when the
Internet became widely used, a form of Web
application that used a Web browser as the
client appeared, and the trouble of installing
and updating dedicated client programs was
eliminated. This made it common to construct
corporate systems in companies in which
introduction of an Intranet goes ahead, as Web

applications. But the only change that had taken
place was that browsers had come to be used in
the same fashion as the client programs, and
the reality was that the servers were operated
in-house and users still accessed the individual
sites to use applications separately.

As the concepts of SaaS and Cloud
computing emerged, however, a style has become
popular in which applications and services
provided via the Internet cloud are used without
the need for awareness of their locations, and
users are expected to start using applications
according to their needs without caring about
who provides them.

2. State of business applications
in the SaaS era and the
present situations
As the era of SaaS and Cloud computing

arrives, businesses other than those requiring
processes specific to a given company become
available as services without the need for
in-house operation because SaaS applications are

305FUJITSU Sci. Tech. J., Vol. 45, No. 3, (July 2009)

A. Matsuo et al.: LivePoplet: Technology That Enables Mashup of Existing Applications

externally provided. This means that, while core
businesses of the company will require continued
operation of systems built in-house as they have
so far, for peripheral businesses without special
requirements, the use of SaaS applications
externally provided is expected to increase, which
is shown in Figure 2.

For effi cient operation of businesses in such
situations, combining the in-company systems
with external SaaS applications to achieve free
cooperation between them is desirable. However,
existing in-company systems are seldom built to
allow cooperation originally and the achievement
of cooperation with external applications,
in particular, requires activities such as
implementation of communication functions,
where these activities take many person-hours.

In addition, many systems usually exist in
a company, including company-wide common
systems and division-specifi c systems, and users
have different needs as to which systems to
cooperate with according to the divisions they
belong to or their positions. Simply adding
a static function to call other systems to the
in-company systems is often unable to address
diverse needs.

Among SaaS applications, on the other hand,

some are capable of customizing the windows
and operations, adding process descriptions in
special-purpose languages, and calling external
Web services that facilitate changing of
application operations by the user. However,
calling in-company systems from external
SaaS applications means accessing fi rewalled
in-company systems from outside, which causes
security concerns.

Under these circumstances, it is diffi cult
at present to achieve fl exible cooperation

C/S application Web application Cloud application

User

Screen

Corp. A Corp. B Corp. A Corp. B Internet

User

Corp. A

UI

Internet

2000 20101990

Browser and Rich UI runtimeBrowser

Single
sign-on

Single
sign-on

Data
cooperation

Appli-
cation
data

Appli-
cation
data

Emergence of common
UI runtime (browser)

Qualitative change in the
Web by Web 2.0 and SaaS

Internal Cloud The CloudInternal Cloud The Cloud

C/S: Client-server

Figure 1
Changing business applications.

InternetIntranet

In-company
system

In-company
system

External
SaaS

External
SaaS

In-company
system

Product

search

Address

check

Delivery

time check

Existing
application

Business
data

Document
data

SaaS
application

Personal
data

Existing
application

Personal
data

Document
data

SaaS
applicationBusiness

data

Figure 2
Style of business application use in SaaS era.

306 FUJITSU Sci. Tech. J., Vol. 45, No. 3, (July 2009)

A. Matsuo et al.: LivePoplet: Technology That Enables Mashup of Existing Applications

between in-company systems and external SaaS
applications.

3. Achievement of front-end
cooperation by mashups
On the Internet, a technology for creating a

new Web application by combining services from
different sources appeared around 2005, which is
called mashup technology. To take HousingMaps
(http://www.housingmaps.com), which is famous
as a pioneer of mashup applications, as an
example to explain this technology, this
application provides a function to display real
estate vacancies on a map but the site itself does
not have map data or real estate information
and no cooperation process is taking place
on the server. This site only has Web pages
containing code to call a map display service
provided by Google and a real estate property
search service provided by craigslist, an online
classified advertisement service. The application
is described in JavaScript that runs on the
browser, which eliminates the need for preparing
any particular resource on the server, and simply
creating Web pages with JavaScript code allows
for the simple creation and publication of a
Web application that uses services such as map
services. This mechanism is shown in Figure
3. The feature of not needing to be the provider
of content to easily implement an application

that uses that content attracted the attention
of developers on the Internet and many mashup
applications have come to be created. Many
services for mashups have become available as
well.

In corporations, there is a growing demand
to be able to simply create applications with two
or more services cooperating with each other by
using such a mashup technique.

The traditional cooperation scheme that has
been used for internal cooperation requires the
cooperating systems to directly call each other’s
APIs, and cooperation is allowed only to system
providers. In addition, many person-hours are
necessary for checking operations to ensure
the reliability of the systems already running,
which makes it unsuitable to call a Web service
provided as a beta version or to make frequent
functional additions.

With cooperation via mashups, applications
that use services do not require their creators
to be the system providers. Users themselves
can develop in a scripting language such as
JavaScript and easily add functions according to
their needs while checking application behavior,
which makes mashups suitable for achieving
application cooperation that is desired in the
Cloud computing era.

While this mashup technique is effective on
the Internet, where many services for mashups
are available, use of this inside corporate
Intranets makes it difficult to isolate functions to
allow them to be called from mashup applications
because not many in-company systems are
provided with cooperation functionality.

There is also a technique called scraping,
which extracts information from Web application
windows. Although this is applicable in some
cases, many business applications are built to
call a function through many window transitions
for activities such as authentication processes
and function selection via menus, which require
a number of exchanges with the server before
reaching the intended process window. If

Client

Browser

HTML

<script src="...">
</script>

<script src="...">
</script>

HTML

<script src="...">
</script>

<script src="...">
</script>

Mashup
application site

Site providing real estate
property search service

Site providing
map display service

2) HTML
 interpretation
 (JavaScript
 execution)

1) Page read

3) Call site providing
 API with script tag

Figure 3
Mechanism of mashup application.

307FUJITSU Sci. Tech. J., Vol. 45, No. 3, (July 2009)

A. Matsuo et al.: LivePoplet: Technology That Enables Mashup of Existing Applications

the window layouts of the target application
are changed or the displayed content varies
depending on the conditions, information
may not be acquired or may not be able to be
extracted unless the content currently displayed
is recognized.

Accordingly, cooperation of existing
in-company systems by means of the mashup
technology currently available may require
many person-hours for system modification and
scraping processes, and the development of a
simpler mashup technology is in demand.

4. LivePoplet: mashup
technology with existing
applications
To address this issue, we have conducted

a study on technology to allow cooperation via
mashups with respect to existing applications,
developed a technology to allow mashups without
modifying the existing applications and named
this LivePoplet technology, which is outlined
below.

4.1 Assumed form of cooperation
Cooperation via LivePoplet assumes calling

a function of an application from a window of
another application.

In-company systems often have many
windows and provide complicated functions, such
as windows for input assistance offering choices
of items. For this reason, making in-company
systems into mashup services requires making
many functions into services. The mashup
applications that use them also require the
window functions already provided by the
in-company systems to be built from scratch.
Consequently, a substantial amount of person-
hours will be necessary for offering in-company
system functions by mashup applications.

This leads to a hypothesis that enabling
users to call functions of other applications
while using in-company systems, rather than
making in-company systems into services to call

from mashup applications, should effectively
improve working efficiency while maximizing
use of the functions of the existing systems. For
example, while using an in-company system
for the settlement of travel expenses, a Web
service that computes the fare when given a
travel itinerary can automatically be called.
Similarly, information entered in a company-
wide business meeting management system can
be automatically reflected into a list of business
meetings per company division. In this way,
tasks that traditionally required users to open
multiple windows for manual copying and pasting
can be automated.

4.2 Method of implementing functional
additions
Making these functional additions requires

modifications to be made to the window display
portion of an application. To eliminate the need
to modify the main portion of the application,
a technique for changing the operation of the
application on the browser has been adopted.
That is, rather than changing the operation of the
application on the server, scripts for cooperation
processes are added to the window’s HTML
content, thereby changing the operation on the
browser.

Methods of changing the operation of the
application on the browser include preparing
scripts for additional functions on the browser
in advance and providing a relay server between
the browser and application server, where scripts
can be added.

The first method requires preparations for
the individual browsers, and extensions and
plugins must be installed in advance as well,
which makes it unsuitable for in-company
systems of corporations with a need to reduce the
burden of management on the client.

The method of using a relay server, on the
other hand, requires no particular plugin on
the browser and can be implemented without
depending on the browser functions. It also

308 FUJITSU Sci. Tech. J., Vol. 45, No. 3, (July 2009)

A. Matsuo et al.: LivePoplet: Technology That Enables Mashup of Existing Applications

has the advantage that it is easy to conduct
centralized management of information about
the state of usage and access rights on the relay
server. Accordingly, the relay server method has
been used for the present study.

4.3 User interface for cooperation
functions
To call from a window of an application

a function of another application, the window
display content and the responses to the user’s
operations must be partially modifi ed. However,
if the modifi cation affects the display layouts of
the application or hinders the input required,
adjustment for individual applications or
changing of the user interface becomes necessary
and a user interface that does not affect the
windows and functions of the cooperation source
application whenever possible is desirable. For
this reason, the developed technology has been
built to display the functions of other applications
in popup windows shown overlaid on the windows
of the source application.

5. Implementation of LivePoplet
The LivePoplet technology is mainly

composed of a portion for relay processing
between the user’s browser and application
server, another portion for rewriting the content
of HTML pages sent from the application server
and a third portion for providing applications that
run in the form of LivePoplet. Figure 4 shows an
overall confi guration of servers for implementing
the LivePoplet technology. A description of the
operations of the individual portions follows.

5.1 Relay server
The relay server comes between the user’s

browser and the application-providing server to
provide the function of relaying communications
with the server. One method of relay processing
is to use the proxy confi guration of the browser.
With this method, however, the relay server is not
capable of re-encryption if communications using
SSL are relayed, which makes it unsuitable for
corporate systems because they often use SSL.
For this reason, the CGI proxy method rather
than the proxy server method is used for this

F
ire

w
al

l

Intranet

Internet

Relay server

Page rewrite User
information

Web search
LivePoplet

User

Site providing �
SaaS application

LivePoplet server

Map display
LivePoplet

Search site

Map information site

Internal
application

Internal information
search

Web service

Inventory search
LivePoplet

Figure 4
LivePoplet server confi guration.

309FUJITSU Sci. Tech. J., Vol. 45, No. 3, (July 2009)

A. Matsuo et al.: LivePoplet: Technology That Enables Mashup of Existing Applications

technology.
In the CGI proxy method, the URI of the

original access destination is encoded in some
fashion in the URI to specify the relay server as
the access destination of the browser and have the
relay server reconstruct the URI of the original
access destination. For the present technology,
a proprietary encoding method is used to satisfy
the security requirements necessary for relaying
for corporate systems. The following lists the
typical encoding methods and an example of the
encoding of the present method. In this example,
relayserver.com is used as the relay server and
http://www.app.com/index.html as the access
destination.
1) First method: Passing the URI of the access

destination as an argument
 http://relayserver.com/?url=http%3A%2F%2Fwww.app.com%2Findex.html
2) Second method: Adding the FQDN (full

qualified domain name) of the access
destination as it is

 http://www.app.com.relayserver.com/index.html
3) Present method: Adding the FQDN of the

access destination after integrating into one
component

 http://http-www-app-com.relayserver.com/index.html
One characteristic of the present method is

that the FQDN of the original URI is integrated
into one string joined by hyphens and added
before the FQDN of the relay server to obtain an
FQDN for encoding (any hyphen included in the
original FQDN is replaced with two successive
hyphens), after which the path name is appended
as it is. Compared with typical methods, the
present method has an advantage of achieving
the following two features at the same time.
• Enabling the same origin policy restriction

of browsers
In consideration of security, browsers

adhere to the same origin policy, which prevents
direct calling of services or such like belonging to
other domains. If this policy is not followed, just
showing a malicious page may lead to the risk
of being freely accessed to another application

to read out information. In the first method,
all URIs are seen from the browser as the same
domain (cgiproxy.com) and using this method
to access an external site and an in-company
system at the same time can be said to be
dangerous. With the present method, a different
domain remains a different domain even after
encoding and the problem does not occur.
• Support for SSL communications

External SaaS applications often use SSL to
prevent information leaks and SSL certificates
must be prepared for FQDNs. With a method
in which an FQDN changes according to the
relay destination, preparing an SSL certificate
in advance is not possible. Use of a wildcard
certificate allows an arbitrary name for one layer,
which cannot be applied to an arbitrary layer.
For this reason, the second method is unable
to support SSL, which is essential for business
applications. With the present method, the name
changes according to the access destination only
for one layer and use of a wildcard certificate
allows SSL communication to an arbitrary URI.

With a DNS configuration that directs all

*.relayserver.com accesses to relayserver.com,
the relay server, in response to any access to
such a URI, reconstructs the http-www-app-
com component and joins it with the path name
to reconstruct the original URI and makes the
access to return to the user’s browser. If the
original URI is via SSL, SSL communication
takes place between the application providing
site and the relay server, which is decoded once
on the relay server. Because SSL communication
using the certificate of the relay server is enabled
between the user’s browser and the relay server,
all communication paths for relaying can be
encrypted.

5.2 Page rewrite
In response to any access from the browser,

the relay server decodes the access destination
URI into the URI of the original access
destination. It then accesses this URI. If the

310 FUJITSU Sci. Tech. J., Vol. 45, No. 3, (July 2009)

A. Matsuo et al.: LivePoplet: Technology That Enables Mashup of Existing Applications

content of the reply is in HTML, a script injection
process takes place and the URI of any link in
the HTML is rewritten to an encoded URI to
access to the relay server when the link is clicked
in the browser.

In the script injection process, JavaScript
code is added by inserting a script tag into a
specific place on the page and, in theory, the
content and operation of the page displayed can
be freely modified by using this code. However,
modification such as addition of a button in
a window of the original application causes a
conflict with the original display and functions of
the application, which may require adjustment
for the individual windows or leave the user in
confusion.

To deal with this problem, the script to be
injected first has been built to change only the
operation activated by right-clicking of the
mouse. The window itself is not changed, and a
popup menu for calling LivePoplet is displayed
upon right-clicking. Figure 5 shows an example
of a popup menu display.

The content of the popup menu displayed
may be changed for individual users and
individual URIs in the window displayed, which
has achieved cooperation to meet the user’s
needs.

5.3 Application in the form of LivePoplet
A different application called from the

popup menu is displayed as LivePoplet in a
popup window independent of the window layout
of the original application. Figure 6 shows how
LivePoplet is called. This popup is not a dialog
or window but is shown overlaid on the original
display of the application; it is in an area within
the browser window that uses an iframe element
of HTML and can be moved about the browser
window.

Processes such as drawing and moving a
window frame of LivePoplet are performed by
the script injected and what is displayed in
LivePoplet is an ordinary HTML document.
Scripts such as JavaScript can be used as well,
which makes it possible to display a window
of another site or Web application as it is and
display mashup applications using mashup
services or scraping.

For the cooperation between the original
application and LivePoplet, an interface is
prepared that, when calling LivePoplet, passes a
string selected in the browser as an argument of
the URI for calling. This function allows hand-
over of information from the original application
to LivePoplet and a LivePoplet can be called
indicating, for example, the result of a search for

Figure 5
Example of popup menu display.

Figure 6
Example of LivePoplet display.

311FUJITSU Sci. Tech. J., Vol. 45, No. 3, (July 2009)

A. Matsuo et al.: LivePoplet: Technology That Enables Mashup of Existing Applications

a selected item name as shown in Figure 7.
Automatic bi-directional cooperation

calls for attention. Implementing automatic
cooperation by a script results in the original
application and LivePoplet being handled as the
same HTML document in the browser. If the
original application contains any malicious script,
the information on LivePoplet may be read out.
For this reason, iframe elements are generally
used to have them handled as different HTML
documents even within one window so that
the original application and LivePoplet cannot
directly refer to each other’s information. If the
original application and LivePoplet are both
trusted, display without using iframes to allow
automatic exchange of information is possible.

6. Implementation of new
business applications by the
LivePoplet technology
Use of the LivePoplet technology allows

the addition of various cooperation functions
without modifying existing Web applications.
The following sections describe examples of
cooperation and functional additions implemented
by applying this technology.

6.1 Calling in-company systems from
external SaaS applications
There is frequent demand for calling

functions of in-company systems such as when
referring to information in an in-company system
while using external SaaS applications. Calling

an in-company system within an Intranet from
an external application requires access from
outside through a firewall, which is difficult
to implement. With the present technology,
however, placing the LivePoplet server within
the Intranet allows a user to call an in-company
system from an external SaaS application.

6.2 Cooperating with beta version
services
Many mashup services are provided as

beta versions and are not guaranteed to reliably
operate or are subject to frequent specification
changes. Having such services cooperate with
applications for which stable operation is
required may compromise the quality or stability
of the applications themselves. With the
present technology, however, any problem with
cooperation functions that may be generated
does not affect the operation of the applications
themselves and handling mashup services prone
to frequent specification changes is easy.

6.3 Change of application UI functions
Use of the script injection function allows

modification to the window display content of
existing applications or replacement with more
sophisticated displays. For example, functions
can be added to displays containing simple
HTML forms and table elements to allow use of
information in the zip code field for automatic
setting of the default value of the address field or
to provide the tables with the column-by-column
sort and width adjustment functions. Functions
such as batch saving of the content of the input
form on the display for reuse can be added as
well.

7. Conclusion
As the concepts of SaaS and Cloud computing

are gaining popularity, business applications are
undergoing changes, and it is becoming more
important to be able to freely combine various
applications and services to construct new

Figure 7
Example of search string selected for calling.

312 FUJITSU Sci. Tech. J., Vol. 45, No. 3, (July 2009)

A. Matsuo et al.: LivePoplet: Technology That Enables Mashup of Existing Applications

applications that better serve the needs of users.
The present technology has made it possible
to call new services from existing in-company
systems and to construct business systems of a
new era while taking advantage of the existing
systems.

The present technology is in the prototyping

phase at present and will be experimentally
provided in the near future. In addition,
research on technologies to implement business
applications of a new era is scheduled including
cooperation between applications to allow
bi-directional communications and single sign-on
functions by LivePoplet server.

Akihiko Matsuo
Fujitsu Laboratories Ltd.
Mr. Matsuo received a B.S. degree
in Physics from Tokyo University of
Science, Tokyo, Japan in 1987. He joined
Fujitsu Laboratories Ltd., Kawasaki,
Japan in 1987 and has been engaged
in research and development of
software engineering. He is a member
of the Information Processing Society
of Japan (IPSJ).

Kenji Oki
Fujitsu Laboratories Ltd.
Mr. Oki received a B.S. degree in
Information Science and Engineering
and an M.S. degree in Computer
Science from Tokyo Institute of
Technology, Tokyo, Japan in 2004 and
2006, respectively. He joined Fujitsu
Laboratories Ltd., Kawasaki, Japan in
2006, where he has been engaged in
research and development of software

engineering, particularly Web technologies and software
verifi cation.

Akio Shimono
Fujitsu Laboratories Ltd.
Mr. Shimono received B.S. and M.S.
degrees in Civil Engineering from the
University of Tokyo, Japan in 1996 and
2000, respectively. He joined Fujitsu
Ltd., Tokyo in 2000 and was engaged in
production of B-to-C Web systems. He
transferred to Fujitsu Laboratories Ltd.,
Kawasaki, Japan in 2007 to conduct
research on Web-oriented architecture.

He is a member of the Information Processing Society of Japan
(IPSJ).

