
449FUJITSU Sci. Tech. J., Vol.44, No.4, pp.449-457 (October 2008)

Massive Parallelization of First Principles
Molecular Dynamics Code

V Hidemi Komatsu V Takahiro Yamasaki V Shin-ichi Ichikawa

(Manuscript received April 16, 2008)

PHASE is a first principles molecular dynamics simulation program for explain-
ing and predicting various properties of semiconductors and metals through
electron-state calculations based on quantum dynamics. Its code was developed by
the Revolutionary Simulation Software project sponsored by the Ministry of Educa-
tion, Culture, Sports, Science and Technology (MEXT), and Fujitsu has been partici-
pating in the development. As part of the recent trend toward large-scale computing,
the need for simulating tens of thousands of atoms has been increasing, and to this
end, there is a need for high-speed massively parallel processing on tens of thou-
sands of central processing units (CPUs) simultaneously. This, in turn, requires that
simulation programs be converted to massively parallel code to support such highly
parallel operations. In this paper, we describe the method that we used to massive-
ly parallelize the PHASE code; it is a method for achieving massive parallelization
of a two-dimensional decomposition of kernel sections having high computational
load in large-scale problems. We show that the amount of data transferred between
CPUs (processes) here is small compared with the computational complexity, indi-
cating that the performance for massively parallel processing should be high.

1. Introduction
First principles molecular dynamics is a

simulation method that attempts to explain and
predict various properties of semiconductors and
metals by numerically solving electron states
based on quantum dynamics. PHASE1) is repre-
sentative of code for performing such simulations.
It has been developed under the Multiscale
Simulation System for Function Analysis of
Nanomaterials project in the Revolutionary
Simulation Software project sponsored by the
Ministry of Education, Culture, Sports, Science
and Technology (MEXT).2) Fujitsu partici-
pates in these projects, and one of the authors
(T. Yamasaki) was one of the PHASE code
developers.

Calculations by first principles molecular
dynamics are performed directly according to
quantum dynamics without using approximations

based on classical dynamics. This means that
the computational complexity increases dramati-
cally as the scale of the problem being simulated
increases: specifically, by the third power of the
number of atoms. As a result, simulating tens of
thousands of atoms, as is now desired, calls for
a computer having high-speed computational
abilities. Current simulation programs, however,
typically handle only a few hundred atoms.

At the same time, high-speed scientific
computers that are now being conceived will link
many scalar central processing units (CPUs) on
the order of tens of thousands of units and allot
a computational load and data to each CPU with
the aim of achieving massively parallel comput-
ing that, on the whole, can process large-scale
problems at high speed. This, in turn, will
require that simulation programs themselves be
modified to a format suitable for massively paral-

450 FUJITSU Sci. Tech. J., Vol.44, No.4, (October 2008)

H. Komatsu et al.: Massive Parallelization of First Principles Molecular Dynamics Code

lel processing.
In this paper, we first outline PHASE

processing and describe the current paralleliza-
tion method and a problem it has in high-speed
execution. We then describe a massive paral-
lelization method that we have developed to
overcome this problem. Next, we describe a
method that we apply before direct massive
parallelization of the PHASE program to extract
sections having a particularly large computation-
al load in a large-scale problem and to prepare
and massively parallelize three types of kernel
code that models those sections. We also describe
a method for transposing and transferring data
between sections of kernel code in order to link
high-computational-load kernel codes in PHASE.
Finally, we evaluate data transfer complexity
and computational complexity per process and
show that data transfer between processes can
be made sufficiently small compared with the
computational complexity, which indicates that
the scalability of the degree of parallelism should
be high.

2. Outline of PHASE processing
The pseudopotential method used by the

PHASE program groups together the atomic
nucleus and core electrons, treating them as
a frozen ion core, and solves only the state of
valence electrons. This approach enables the
prediction of many material properties. This
method is called “pseudopotential” because the
potential is treated on condition that the wave
function agrees with the true wave function
outside the bonding radius and changes smoothly
in the vicinity of an atomic nucleus. Suppressing
large fluctuations in the proximity of an atomic
nucleus in this way makes it easy to expand wave
function Ψ(r) as plane wave functions exp(−iG·r),
where G is the wavenumber in momentum space
and r is a real space vector (the number of
required wavenumbers G may be small). The
pseudopotential consists of non-local terms

having different scattering powersnote 1) corre-
sponding to each of the components of the wave
function, such as the s, p, and d orbitals,note 2)
and local terms having the same scattering
power. Here, band (i) and the k-point are used
as subscripts to distinguish the wave functions
of individual valence electrons. Bands repre-
sent different energy levels of wave functions,
while a k-point, as a quantum-state index reflect-
ing the fact that crystals have translational
symmetry,note 3) gives a distribution to a band.
The result of multiplying this k-point index by
Planck’s constantnote 4) and dividing by 2π yields
the “crystal momentum”. In semiconductors and
insulators, electron occupied bands and unoccu-
pied bands are determined without regard to
k-points, and in large-scale systems, band distri-
bution is small, which means that the electron
state can be sufficiently reproduced with a small
number of sampling k-points.

The parallelization of the original PHASE
code is done solely on the basis of bands and
sampling k-points, but in large-scale systems
like semiconductors and insulators, the effect
of parallelizing in the k-point direction is limit-
ed. This method also suffers from an insufficient
number of bands when performing paralleliza-

note 1) Scattering power is the effect that core
electrons near the atomic nucleus have on
the outer orbitals of valence electrons.

note 2) Individual electrons enter the s, p, and d
orbitals in that order from the atomic nucle-
us outward.

note 3) A crystal lattice possesses periodicity in that
the lattice state does not change for spatial
movement through the lattice by a distance
equal to the lattice constant. This gives rise
to momentum being conserved in electrons,
which becomes crystal momentum corre-
sponding to k-points. Crystal momentum
gives width (distribution) to band energy
levels.

note 4) Planck’s constant is a universal constant of
the natural world that converts the wave
nature of a single electron into a physi-
cal quantity. Multiplying frequency by
Planck’s constant gives energy and multiply-
ing wave number by Planck’s constant gives
momentum.

451FUJITSU Sci. Tech. J., Vol.44, No.4, (October 2008)

H. Komatsu et al.: Massive Parallelization of First Principles Molecular Dynamics Code

tion on the level of tens of thousands of CPUs
(processes), which prevents sufficient parallelism
from being obtained. Furthermore, if we were to
try parallel decomposition in only the band direc-
tion, the number of bands per process would be
small, making it difficult to obtain acceptable
computational performance on a scalar comput-
er. There is also a method of one-dimensional
parallelization in the wavenumber direction, but
this generates inter-process data transfer propor-
tional to the square of the total number of band
elements, resulting in a large transfer load when
the degree of parallelization is high. In light of
the above, we used two-dimensional paralleliza-
tion in the band (i) direction and wavenumber (G)
direction on a plane wave basis.

3. Extraction of high-load
sections in PHASE and
massive parallelization
When dealing with large-scale problems

in PHASE, there are three types of code called
“kernel sections” in which the computational
workload (complexity) is greatest:
1) pseudopotential and wave function product
2) Gram-Schmidt orthogonalization
3) three-dimensional fast Fourier

transformation (FFT)
The pseudopotential and wave function

product constitutes a section that calculates
how individual valence electrons are affected
using the non-local terms of pseudopotential.
A wave function that evolves over time using
the pseudopotential and wave function product
must be made to satisfy the orthogonalization
conditions by Gram-Schmidt orthogonalization.
Three-dimensional FFT converts the represen-
tation of a wave function in wavenumber space
to a representation in real space and vice versa.
This transformation must be performed when
calculating the effect of local potential on an
electron or when configuring charge density from
valence electrons. The processing of these three
sections in the original code of PHASE is shown

in Figure 1.
In recent research, we prepared code

modeled on these kernel sections and massive-
ly parallelized it. The massive parallelization
method is described below and the numerical
formulas show computational algorithms.
1) Pseudopotential and wave function product

In PHASE, core electrons near each atomic
nucleus are embedded on the potential side as a
pseudopotential, and only the wave functions of
valence electrons on the outside of that potential
are solved. This high-load section in PHASE that
takes the product of non-local pseudopotential
and the wave functions of valence electrons can
be expressed as follows.

| Ψ
i
′ > = ∑

n
 D

n
 | β

n
 >< β

n
 | Ψ

i
 >

Here, Dn | βn >< βn | is the pseudopotential
produced by each atom, Ψ is the wave function
of an electron, n is a subscript identifying the
pseudopotential orbit as well as a subscript
identifying each atom, and i is a subscript denot-
ing the wave function (band). This computation
can be divided into 1st and 2nd computation
sections having a computational complexity

Figure 1
Outline of original PHASE code.

452 FUJITSU Sci. Tech. J., Vol.44, No.4, (October 2008)

H. Komatsu et al.: Massive Parallelization of First Principles Molecular Dynamics Code

proportional to the third power of the number of
atoms.

Pseudopotential product—1st computation
section:

< β
n
 | Ψ

i
 > = ∑

G
 β*

n
(G)Ψ

i
(G)

Pseudopotential product—2nd computation
section:

Ψ
i
′(G) = ∑

n
 D

n
β

n
(G) < β

n
 | Ψ

i
 >

Here, G is the wave number in momentum
space. We note here that a minor term associated
with reference energy is generated with reference
to pseudopotential β , but we omit it in the above
computations for the sake of simplicity.

We prepared kernel code for these compu-
tation sections modeled in the above way and
performed parallelization by two-dimensional
decomposition of that code in the band (i)
direction and wavenumber (G) direction. We
incorporated coefficient D into β and reduced both
of the above 1st and 2nd computation sections to
matrix products. Moreover, to promote reuse of
cache memory on scalar computers, we formed
blocks of loops. The flow diagram for the massive-
ly parallel code of this pseudopotential product is
shown in Figure 2. Performing parallelization
by two-dimensional decomposition in this way
enables a sufficiently large block size to be accom-
modated in each direction thereby maintaining
computational efficiency. A new requirement
here is an aggregate transfer (MPI_allreduce
transfer) among processes in the wavenumber
direction between the 1st and 2nd computation
sections.
2) Gram-Schmidt orthogonalization

This section follows the pseudopotential
product section described above, and like that
section, it has a computational complexity propor-
tional to the third power of the number of atoms.
It is also divided into 1st and 2nd computation
sections, but here they are repeated by turns.
That is, all of the following is repeated for i from
1 to N, where N is the total number of bands.

Gram-Schmidt orthogonalization—1st
computation section:

< Ψ′
j
 | Ψ

i
 > = ∑

G
 Ψ′

j
(G)Ψ

i
(G)

Gram-Schmidt orthogonalization—2nd
computation section:

| Ψ′
i
 > = | Ψ

i
 > − | Ψ′

j
 >< Ψ′

j
 | Ψ

i
 >

Expressing the above for each G component,
we get:

Ψ′
i
(G) = Ψ

i
(G) − ∑

j = 1

i − 1Ψ′
j
(G) < Ψ′

j
 | Ψ

i
 >

In the original PHASE program, this
Gram-Schmidt orthogonalization section was
parallelized only in the wavenumber direction,
and because this was different from the paral-
lelization direction (band direction) of other
sections, an inter-process data transpose trans-
fer was applied before and after Gram-Schmidt
orthogonalization. Here, however, to eliminate
the need for this transpose transfer and obtain
high parallelism, we applied a two-dimensional
data distribution the same as in the other
sections like the pseudopotential product and
performed two-dimensional parallelization in
the wavenumber (G) and band (i) directions. As
in the pseudopotential product described above,
loops are divided into blocks, with i in the above

Figure 2
Massively parallel code of pseudopotential product.

453FUJITSU Sci. Tech. J., Vol.44, No.4, (October 2008)

H. Komatsu et al.: Massive Parallelization of First Principles Molecular Dynamics Code

expressions being the inner loop and j being the
outer loop.

The flow diagram for the massively parallel
code of this Gram-Schmidt orthogonalization is
shown in Figure 3 and the way data is distrib-
uted to the processes is shown in Figure 4. To
improve the utilization rate of each CPU here,
multiple blocks are cyclically placed in a single
process in the band direction.
3) Three-dimensional FFT

In PHASE, when calculating, for example,
the product of local potential and electron wave
function, the wave function is transformed from
wavenumber space to real space, and the calcu-
lation is performed by using the FFT. As a
result, a three-dimensional FFT and its inverse
function will be repeated any number of times.
Denoting the total number of wavenumbers as
N, this section requires a computational complex-
ity proportional to (number of bands × N logN),
making it the section with the third highest load
in PHASE. Moreover, in a manner similar to
the pseudopotential product and Gram-Schmidt
orthogonalization sections, this section can
perform parallelization in both the band direction
and wavenumber direction or in the band direc-
tion and real-space-coordinates direction.

After parallelizing this three-dimensional
FFT section in the band direction and x, y, z
wavenumber directions (Gx, Gy, Gz directions),
we performed parallelization by two-dimensional
decomposition even within the wavenumber
direction, the same as in the method present-
ed by Eleftheriou.3) In short, when performing
a one-dimensional FFT in the x direction, for
example, two-dimensional parallelization will be
performed in the y and z wavenumber directions.

Here, when shifting from one-dimensional
FFT in the x direction to one-dimensional FFT in
the y direction, a transpose transfer of x-direction
data and y-direction data for each process
(y-direction transpose transfer) is necessary.
Likewise, when shifting from one-dimensional
FFT in the y direction to one-dimensional FFT in
the z direction, a transpose transfer of y-direction
data and z-direction data for each process
(z-direction transpose transfer) is necessary.

4. Kernel-linking transfer section
In the previous section, we described the

parallelization methods for the three kernel
sections in PHASE, but each of these sections
features a different way of ordering data

Figure 3
Massively parallel code of Gram-Schmidt
orthogonalization.

Figure 4
Data distribution method in Gram-Schmidt
orthogonalization.

454 FUJITSU Sci. Tech. J., Vol.44, No.4, (October 2008)

H. Komatsu et al.: Massive Parallelization of First Principles Molecular Dynamics Code

(wave functions). There is therefore a need for
inter-process data transfer that transposes data
between these three kernel sections. In the
following, we describe the transfer methods in
the wavenumber and band directions in the case
of massive parallelization.
1) Reordering transfer in the wavenumber

direction
Except for the section related to

three-dimensional FFT, an upper limit (cutoff
value) is set in relation to absolute values of
wavenumbers in the PHASE kernel sections.
Therefore, data is reordered and calculated
in the order of wavenumber absolute values.
Specifically, in the pseudopotential product
section and Gram-Schmidt orthogonalization
section, wave function data Ψi(G) is arranged
in order of wavenumber absolute value (G2 =
Gx2 + Gy2 + Gz2), while in the three-dimensional
FFT section, they are arranged in the order of
x, y, z (Gx, Gy, Gz). Therefore, a data transpose
transfer in the wavenumber direction must be
performed before and after the three-dimensional
FFT section. Given that the number of process-
es in the wavenumber direction at the time of
massive parallelization is far greater than the
number of wavenumber elements associated with
each process, each wavenumber element is trans-
ferred directly to its target process by means of
an index.
2) Reordering transfer in the band direction

Before entering Gram-Schmidt orthogonali-
zation in PHASE, convergence can be accelerated
by reordering wave functions that must be
orthogonalized in the order of eigenvalues (intrin-
sic energies) for the band in question. There is
therefore a need here for data transpose transfer
in the band direction. In the massive paral-
lelization methods presented here, the number of
processes allotted in the band direction is small
compared with the number of band elements
associated with each process. We therefore use a
method that groups together the data to be trans-
ferred to each process beforehand and transfers

that data once for each process. The flow diagram
for the data transfer code in the band direction is
shown in Figure 5.

In the above, transposing tens of thousands
of wave functions in the order of eigenval-
ues requires that index values be created and
assigned beforehand by a sorting process that
transposes eigenvalues in ascending order. Here,
to carry out this sorting process in parallel, we
use a method that combines the “distribution
counting sort” method applicable to parallel
execution and the “simple insertion sort” method.
In other words, data distribution to each process
is performed by the distribution counting sort
while intra-process sorting of data allocated to
each process is performed by the simple insertion
sort. Finally, all the data is merged.

5. Computational complexity and
transfer complexity in massive
parallelization
Among the massively parallelized PHASE

kernel sections described above, the sections
with the highest loads in terms of both
computational complexity and transfer complex-
ity are the pseudopotential product section and

Figure 5
Data transfer code in band direction.

455FUJITSU Sci. Tech. J., Vol.44, No.4, (October 2008)

H. Komatsu et al.: Massive Parallelization of First Principles Molecular Dynamics Code

Gram-Schmidt orthogonalization section. The
total computational complexity and total trans-
fer complexity per process of these two sections
plus the three-dimensional FFT section can be
approximated as follows, where Ne denotes the
total number of bands, Nf the total number of
wavenumbers, Ni the number of processes in the
band direction, and Nk the number of processes
in the wavenumber direction. Here, we consid-
er that the total number of pseudopotentials is
nearly equivalent to the total number of bands
Ne.
1) Pseudopotential and wave function product

Computational complexity:
16 × (Ne)2 × Nf / (Ni × Nk)
Transfer complexity:
16 × (Ne)2 / Ni (bytes) (Allreduce transfer)

2) Gram-Schmidt orthogonalization
Computational complexity:
8 × (Ne)2 × Nf / (Ni × Nk)
Transfer complexity:
8 × (Ne)2 / Ni (bytes) (Allreduce transfer)

3) Three-dimensional FFT
Computational complexity:
5 × Ne × Nf × logNf / (Ni × Nk)
Transfer complexity:
16 × Ne × Nf / (Ni × Nk) (bytes) (transpose
transfer)
Here, parameter values for a scale of

10 000 atoms are of the order of Ne = 50 000 and
Nf = 1 000 000 (supposed number of processes:
Ni = 4, Nk = 10 000). In Gram-Schmidt orthog-
onalization, there is a process that performs
orthogonalization within one block as preprocess-
ing, and no parallel execution is performed in the
band direction here. It is therefore desirable that
the ratio of processes in the wavenumber direc-
tion be increased to improve the utilization rate of
each CPU. In other words, increasing the number
of band blocks associated with one CPU (one
process) is equivalent to making one block’s worth
of preprocessing less noticeable. This is why the
number of processes in the band direction Ni is
made small here. The computational complexi-

ty per process of this preprocessing section is 8 ×
Nblk × Nf × Ne/Nk and the transfer complexity is
8 × (Nblk − 1) × Ne, where Nblk is the block size.
Placing multiple band blocks in one process helps
to minimize the computational complexity and
transfer complexity of this preprocessing section
compared with later processing.

From the above, the ratio of transfer
complexity to computational complexity in the
pseudopotential product section and Gram-Schmidt
orthogonalization section is given by

(transfer complexity) / (computational complexity)

= Nk / Nf.

This is the reciprocal of the number of
wavenumber elements per process. In PHASE,
the number of wavenumber elements is normal-
ly several hundred times the number of atoms.
Thus, for an assumed number of processes on
the order of Ni = 4 and Nk = 10 000, the ratio
of transfer complexity to computational complex-
ity can be made sufficiently small (about 1/100)
and the transfer time can be kept short compared
with the computational time. At the same time,
both computational and transfer complexities in
the three-dimensional FFT section are very small
compared with the above two sections.

In addition, the total transfer complexity
of the two transfer sections that link the above
three kernel sections is given by

16 × Ne × Nf / (Ni × Nk) (bytes).

This is sufficiently small compared with the
total transfer complexity of the pseudopotential
product and Gram-Schmidt orthogonalization
sections (about 1/500), so it is not expected to
cause a significant drop in total computational
performance.

Assuming that we use the Recursive Halving
method4) in the MPI_allreduce transfer in the
pseudopotential product and Gram-Schmidt
orthogonalization sections, which have the largest
transfer load, and given that the data transfer

456 FUJITSU Sci. Tech. J., Vol.44, No.4, (October 2008)

H. Komatsu et al.: Massive Parallelization of First Principles Molecular Dynamics Code

performance is uniform at 4 GB/s and computa-
tional performance is 100 Gflops (1011 operations
per second) per process, the ratio of transfer time
to computational time is given by

(transfer time) / (computational time)

= 2 × (Nk / Nf) × (100/4).

This result tells us that the transfer time
can be kept small compared with the computa-
tional time by two-dimensional decomposition.

The estimated execution time broken down
by calculation and communication sections
when performing one-dimensional decomposi-
tion in just the wavenumber direction is shown in
Figure 6. In addition, Figure 7 shows a graph
of estimated scalability (speed-up factor) versus
number of processes with respect to execution
time with eight processes when parallelizing
by one-dimensional decomposition in only the
wavenumber direction and by two-dimensional
decomposition as proposed here. Since the

transfer load for the allreduce transfer, which
has the biggest transfer load, can be reduced to
the reciprocal of the number of parallel bands
by two-dimensional decomposition, its trans-
fer efficiency is better than that obtained by
one-dimensional decomposition. This graph
shows how significantly better performance can
be obtained by using two-dimensional paralleliza-
tion instead of one-dimensional parallelization,
especially for parallel execution on the level of
tens of thousands of processes.

6. Conclusion
To demonstrate the feasibility of massive-

ly parallelizing the first principles molecular
dynamics simulation program PHASE for tens of
thousands of CPUs, we extracted three high-load
sections in the calculation of large-scale problems,
prepared kernel code modeling these sections,
and converted that kernel code for massive paral-
lelization. We also described a data transpose
transfer section for linking these three sections of
kernel code and prepared code for this purpose.

Furthermore, upon investigating the compu-
tational complexity and transfer complexity with
regard to this kernel linking code, we found that
the data transfer complexity between CPUs could

Figure 6
Breakdown of estimated execution time by
one-dimensional decomposition in wavenumber direction.

Figure 7
Estimated scalability by two-dimensional decomposition
in wavenumber and band directions.

457FUJITSU Sci. Tech. J., Vol.44, No.4, (October 2008)

H. Komatsu et al.: Massive Parallelization of First Principles Molecular Dynamics Code

be kept small compared with the computation-
al complexity for parallel execution by tens of
thousands of CPUs and that massive paralleliza-
tion could be achieved for tens of thousands of
processes (CPUs).

In future research, we plan to carry out
performance evaluations on real machines using
the kernel linking code described here. In this
paper, we made estimations for large-scale
parallelization by assuming the same network
configuration as for a low degree paralleliza-
tion, but we expect that a large-scale network
capable of high-speed processing can be achieved
for group communications in the manner
of MPI_allreduce transfer, which has found
widespread use in actual applications.

This research was performed as part of the
Petascale System Interconnect project of MEXT,
Japan.

References
1) RSS21 MEXT R&D Program for Constructing

the Next-Generation IT Infrastructure, R&D of
Strategic Simulation Software: PHASE Detailed
Information.

 http://www.ciss.iis.u-tokyo.ac.jp/rss21/en/
theme/multi/material/index.html

2) RSS21 MEXT R&D Program for Constructing
the Next-Generation IT Infrastructure, R&D
of Strategic Simulation Software: Software
Publication.

 http://www.ciss.iis.u-tokyo.ac.jp/rss21/en/
result/download/index.php

3) M. Eleftheriou et al.: Scalable framework for
3D FFTs on the Blue Gene/L supercomputer:
Implementation and early performance measure-
ments. IBM J. Res. Develop. Vol.49, No.2/3,
pp.457-464 (2005).

4) R. Thakur et al.: Optimization of Collective
Communication Operations in MPICH. Int. J.
HPC. Appli. Vol.19, No.1, pp.49-66 (2005).

Hidemi Komatsu
Fujitsu Ltd.
Dr. Komatsu received the Ph.D. degree
in Astrophysics from the University
of Tokyo, Tokyo, Japan in 1988. He
joined Fujitsu Ltd., Japan in 1988 and
has been engaged in parallelization
and parallel tuning of user programs
for supercomputers. He was a member
of the Petascale System Interconnect
Project of the Ministry of Education,

Culture, Sports, Science and Technology (MEXT) in Japan from
2005 to 2007.

Takahiro Yamasaki
Fujitsu Laboratories Ltd.
Dr. Yamasaki received the Ph.D. de-
gree in Solid State Physics from Osaka
University, Osaka, Japan in 1989. He
joined Fujitsu Laboratories Ltd., Atsugi,
Japan in 1989 and has been engaged
in research and development of semi-
conductor devices. He has been partic-
ipating in the Revolutionary Simulation
Software project of the Ministry of

Education, Culture, Sports, Science and Technology (MEXT) in
Japan from 2005. He is a member of the Physical Society of
Japan.

Shin-ichi Ichikawa
Fujitsu Ltd.
Mr. Ichikawa received the B.S. de-
gree in Physics from Tokyo University
of Education, Tokyo, Japan and the
M.S. degree in Nuclear Physics from
Tohoku University, Sendai, Japan in
1977 and 1979, respectively. He joined
Fujitsu Ltd., Japan in 1979 and has
been engaged in the application of
high-performance computers to scien-

tific and technical research. He is a member of the Information
Processing Society of Japan.

http://www.ciss.iis.u-tokyo.ac.jp/rss21/en/theme/multi/material/index.html
http://www.ciss.iis.u-tokyo.ac.jp/rss21/en/result/download/index.php

