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PHASE is a first principles molecular dynamics simulation program for explain-
ing and predicting various properties of semiconductors and metals through 
electron-state calculations based on quantum dynamics.  Its code was developed by 
the Revolutionary Simulation Software project sponsored by the Ministry of Educa-
tion, Culture, Sports, Science and Technology (MEXT), and Fujitsu has been partici-
pating in the development.  As part of the recent trend toward large-scale computing, 
the need for simulating tens of thousands of atoms has been increasing, and to this 
end, there is a need for high-speed massively parallel processing on tens of thou-
sands of central processing units (CPUs) simultaneously.  This, in turn, requires that 
simulation programs be converted to massively parallel code to support such highly 
parallel operations.  In this paper, we describe the method that we used to massive-
ly parallelize the PHASE code; it is a method for achieving massive parallelization 
of a two-dimensional decomposition of kernel sections having high computational 
load in large-scale problems.  We show that the amount of data transferred between 
CPUs (processes) here is small compared with the computational complexity, indi-
cating that the performance for massively parallel processing should be high.

1. Introduction
First principles molecular dynamics is a 

simulation method that attempts to explain and 
predict various properties of semiconductors and 
metals by numerically solving electron states 
based on quantum dynamics.  PHASE1) is repre-
sentative of code for performing such simulations.  
It has been developed under the Multiscale 
Simulation System for Function Analysis of 
Nanomaterials project in the Revolutionary 
Simulation Software project sponsored by the 
Ministry of Education, Culture, Sports, Science 
and Technology (MEXT).2)  Fujitsu partici-
pates in these projects, and one of the authors 
(T. Yamasaki) was one of the PHASE code 
developers.

Calculations by first principles molecular 
dynamics are performed directly according to 
quantum dynamics without using approximations 

based on classical dynamics.  This means that 
the computational complexity increases dramati-
cally as the scale of the problem being simulated 
increases: specifically, by the third power of the 
number of atoms.  As a result, simulating tens of 
thousands of atoms, as is now desired, calls for 
a computer having high-speed computational 
abilities.  Current simulation programs, however, 
typically handle only a few hundred atoms.

At the same time, high-speed scientific 
computers that are now being conceived will link 
many scalar central processing units (CPUs) on 
the order of tens of thousands of units and allot 
a computational load and data to each CPU with 
the aim of achieving massively parallel comput-
ing that, on the whole, can process large-scale 
problems at high speed.  This, in turn, will 
require that simulation programs themselves be 
modified to a format suitable for massively paral-
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lel processing.
In this paper, we first outline PHASE 

processing and describe the current paralleliza-
tion method and a problem it has in high-speed 
execution.  We then describe a massive paral-
lelization method that we have developed to 
overcome this problem.  Next, we describe a 
method that we apply before direct massive 
parallelization of the PHASE program to extract 
sections having a particularly large computation-
al load in a large-scale problem and to prepare 
and massively parallelize three types of kernel 
code that models those sections.  We also describe 
a method for transposing and transferring data 
between sections of kernel code in order to link 
high-computational-load kernel codes in PHASE.  
Finally, we evaluate data transfer complexity 
and computational complexity per process and 
show that data transfer between processes can 
be made sufficiently small compared with the 
computational complexity, which indicates that 
the scalability of the degree of parallelism should 
be high.

2. Outline of PHASE processing
The pseudopotential method used by the 

PHASE program groups together the atomic 
nucleus and core electrons, treating them as 
a frozen ion core, and solves only the state of 
valence electrons.  This approach enables the 
prediction of many material properties.  This 
method is called “pseudopotential” because the 
potential is treated on condition that the wave 
function agrees with the true wave function 
outside the bonding radius and changes smoothly 
in the vicinity of an atomic nucleus.  Suppressing 
large fluctuations in the proximity of an atomic 
nucleus in this way makes it easy to expand wave 
function Ψ(r) as plane wave functions exp(−iG·r), 
where G is the wavenumber in momentum space 
and r is a real space vector (the number of 
required wavenumbers G may be small).  The 
pseudopotential consists of non-local terms 

having different scattering powersnote 1) corre-
sponding to each of the components of the wave 
function, such as the s, p, and d orbitals,note 2) 
and local terms having the same scattering 
power.  Here, band (i) and the k-point are used 
as subscripts to distinguish the wave functions 
of individual valence electrons.  Bands repre-
sent different energy levels of wave functions, 
while a k-point, as a quantum-state index reflect-
ing the fact that crystals have translational 
symmetry,note 3) gives a distribution to a band.  
The result of multiplying this k-point index by 
Planck’s constantnote 4) and dividing by 2π yields 
the “crystal momentum”.  In semiconductors and 
insulators, electron occupied bands and unoccu-
pied bands are determined without regard to 
k-points, and in large-scale systems, band distri-
bution is small, which means that the electron 
state can be sufficiently reproduced with a small 
number of sampling k-points.

The parallelization of the original PHASE 
code is done solely on the basis of bands and 
sampling k-points, but in large-scale systems 
like semiconductors and insulators, the effect 
of parallelizing in the k-point direction is limit-
ed.  This method also suffers from an insufficient 
number of bands when performing paralleliza-

note 1) Scattering power is the effect that core 
electrons near the atomic nucleus have on 
the outer orbitals of valence electrons.

note 2) Individual electrons enter the s, p, and d 
orbitals in that order from the atomic nucle-
us outward.

note 3) A crystal lattice possesses periodicity in that 
the lattice state does not change for spatial 
movement through the lattice by a distance 
equal to the lattice constant.  This gives rise 
to momentum being conserved in electrons, 
which becomes crystal momentum corre-
sponding to k-points.  Crystal momentum 
gives width (distribution) to band energy 
levels.

note 4) Planck’s constant is a universal constant of 
the natural world that converts the wave 
nature of a single electron into a physi-
cal quantity.  Multiplying frequency by 
Planck’s constant gives energy and multiply-
ing wave number by Planck’s constant gives 
momentum.
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tion on the level of tens of thousands of CPUs 
(processes), which prevents sufficient parallelism 
from being obtained.  Furthermore, if we were to 
try parallel decomposition in only the band direc-
tion, the number of bands per process would be 
small, making it difficult to obtain acceptable 
computational performance on a scalar comput-
er.  There is also a method of one-dimensional 
parallelization in the wavenumber direction, but 
this generates inter-process data transfer propor-
tional to the square of the total number of band 
elements, resulting in a large transfer load when 
the degree of parallelization is high.  In light of 
the above, we used two-dimensional paralleliza-
tion in the band (i) direction and wavenumber (G) 
direction on a plane wave basis.

3. Extraction of high-load 
sections in PHASE and 
massive parallelization
When dealing with large-scale problems 

in PHASE, there are three types of code called 
“kernel sections” in which the computational 
workload (complexity) is greatest: 
1) pseudopotential and wave function product 
2) Gram-Schmidt orthogonalization 
3) three-dimensional fast Fourier 

transformation (FFT) 
The pseudopotential and wave function 

product constitutes a section that calculates 
how individual valence electrons are affected 
using the non-local terms of pseudopotential.  
A wave function that evolves over time using 
the pseudopotential and wave function product 
must be made to satisfy the orthogonalization 
conditions by Gram-Schmidt orthogonalization.  
Three-dimensional FFT converts the represen-
tation of a wave function in wavenumber space 
to a representation in real space and vice versa.  
This transformation must be performed when 
calculating the effect of local potential on an 
electron or when configuring charge density from 
valence electrons.  The processing of these three 
sections in the original code of PHASE is shown 

in Figure 1.
In recent research, we prepared code 

modeled on these kernel sections and massive-
ly parallelized it.  The massive parallelization 
method is described below and the numerical 
formulas show computational algorithms.
1) Pseudopotential and wave function product

In PHASE, core electrons near each atomic 
nucleus are embedded on the potential side as a 
pseudopotential, and only the wave functions of 
valence electrons on the outside of that potential 
are solved.  This high-load section in PHASE that 
takes the product of non-local pseudopotential 
and the wave functions of valence electrons can 
be expressed as follows.

| Ψ
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n
 D

n
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 >< β
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 | Ψ
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Here, Dn | βn >< βn | is the pseudopotential 
produced by each atom, Ψ is the wave function 
of an electron, n is a subscript identifying the 
pseudopotential orbit as well as a subscript 
identifying each atom, and i is a subscript denot-
ing the wave function (band).  This computation 
can be divided into 1st and 2nd computation 
sections having a computational complexity 

Figure 1 
Outline of original PHASE code. 
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proportional to the third power of the number of 
atoms.

Pseudopotential product—1st computation 
section:
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Pseudopotential product—2nd computation 
section:
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Here, G is the wave number in momentum 
space.  We note here that a minor term associated 
with reference energy is generated with reference 
to pseudopotential β , but we omit it in the above 
computations for the sake of simplicity.  

We prepared kernel code for these compu-
tation sections modeled in the above way and 
performed parallelization by two-dimensional 
decomposition of that code in the band (i) 
direction and wavenumber (G) direction.  We 
incorporated coefficient D into β and reduced both 
of the above 1st and 2nd computation sections to 
matrix products.  Moreover, to promote reuse of 
cache memory on scalar computers, we formed 
blocks of loops.  The flow diagram for the massive-
ly parallel code of this pseudopotential product is 
shown in Figure 2.  Performing parallelization 
by two-dimensional decomposition in this way 
enables a sufficiently large block size to be accom-
modated in each direction thereby maintaining 
computational efficiency.  A new requirement 
here is an aggregate transfer (MPI_allreduce 
transfer) among processes in the wavenumber 
direction between the 1st and 2nd computation 
sections.
2) Gram-Schmidt orthogonalization

This section follows the pseudopotential 
product section described above, and like that 
section, it has a computational complexity propor-
tional to the third power of the number of atoms.  
It is also divided into 1st and 2nd computation 
sections, but here they are repeated by turns.  
That is, all of the following is repeated for i from 
1 to N, where N is the total number of bands.

Gram-Schmidt orthogonalization—1st 
computation section:

< Ψ′
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Gram-Schmidt orthogonalization—2nd 
computation section:
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Expressing the above for each G component, 
we get:
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In the original PHASE program, this 
Gram-Schmidt orthogonalization section was 
parallelized only in the wavenumber direction, 
and because this was different from the paral-
lelization direction (band direction) of other 
sections, an inter-process data transpose trans-
fer was applied before and after Gram-Schmidt 
orthogonalization.  Here, however, to eliminate 
the need for this transpose transfer and obtain 
high parallelism, we applied a two-dimensional 
data distribution the same as in the other 
sections like the pseudopotential product and 
performed two-dimensional parallelization in 
the wavenumber (G) and band (i) directions.  As 
in the pseudopotential product described above, 
loops are divided into blocks, with i in the above 

Figure 2 
Massively parallel code of pseudopotential product.
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expressions being the inner loop and j being the 
outer loop.

The flow diagram for the massively parallel 
code of this Gram-Schmidt orthogonalization is 
shown in Figure 3 and the way data is distrib-
uted to the processes is shown in Figure 4.  To 
improve the utilization rate of each CPU here, 
multiple blocks are cyclically placed in a single 
process in the band direction.
3) Three-dimensional FFT

In PHASE, when calculating, for example, 
the product of local potential and electron wave 
function, the wave function is transformed from 
wavenumber space to real space, and the calcu-
lation is performed by using the FFT.  As a 
result, a three-dimensional FFT and its inverse 
function will be repeated any number of times.  
Denoting the total number of wavenumbers as 
N, this section requires a computational complex-
ity proportional to (number of bands × N logN), 
making it the section with the third highest load 
in PHASE.  Moreover, in a manner similar to 
the pseudopotential product and Gram-Schmidt 
orthogonalization sections, this section can 
perform parallelization in both the band direction 
and wavenumber direction or in the band direc-
tion and real-space-coordinates direction.

After parallelizing this three-dimensional 
FFT section in the band direction and x, y, z 
wavenumber directions (Gx, Gy, Gz directions), 
we performed parallelization by two-dimensional 
decomposition even within the wavenumber 
direction, the same as in the method present-
ed by Eleftheriou.3)  In short, when performing 
a one-dimensional FFT in the x direction, for 
example, two-dimensional parallelization will be 
performed in the y and z wavenumber directions.

Here, when shifting from one-dimensional 
FFT in the x direction to one-dimensional FFT in 
the y direction, a transpose transfer of x-direction 
data and y-direction data for each process 
(y-direction transpose transfer) is necessary.  
Likewise, when shifting from one-dimensional 
FFT in the y direction to one-dimensional FFT in 
the z direction, a transpose transfer of y-direction 
data and z-direction data for each process 
(z-direction transpose transfer) is necessary.

4. Kernel-linking transfer section
In the previous section, we described the 

parallelization methods for the three kernel 
sections in PHASE, but each of these sections 
features a different way of ordering data 

Figure 3 
Massively parallel code of Gram-Schmidt 
orthogonalization.

Figure 4 
Data distribution method in Gram-Schmidt 
orthogonalization.
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(wave functions).  There is therefore a need for 
inter-process data transfer that transposes data 
between these three kernel sections.  In the 
following, we describe the transfer methods in 
the wavenumber and band directions in the case 
of massive parallelization.
1) Reordering transfer in the wavenumber 

direction
Except for the section related to 

three-dimensional FFT, an upper limit (cutoff 
value) is set in relation to absolute values of 
wavenumbers in the PHASE kernel sections.  
Therefore, data is reordered and calculated 
in the order of wavenumber absolute values.  
Specifically, in the pseudopotential product 
section and Gram-Schmidt orthogonalization 
section, wave function data Ψi(G) is arranged 
in order of wavenumber absolute value (G2 = 
Gx2 + Gy2 + Gz2), while in the three-dimensional 
FFT section, they are arranged in the order of 
x, y, z (Gx, Gy, Gz).  Therefore, a data transpose 
transfer in the wavenumber direction must be 
performed before and after the three-dimensional 
FFT section.  Given that the number of process-
es in the wavenumber direction at the time of 
massive parallelization is far greater than the 
number of wavenumber elements associated with 
each process, each wavenumber element is trans-
ferred directly to its target process by means of 
an index.
2) Reordering transfer in the band direction

Before entering Gram-Schmidt orthogonali-
zation in PHASE, convergence can be accelerated 
by reordering wave functions that must be 
orthogonalized in the order of eigenvalues (intrin-
sic energies) for the band in question.  There is 
therefore a need here for data transpose transfer 
in the band direction.  In the massive paral-
lelization methods presented here, the number of 
processes allotted in the band direction is small 
compared with the number of band elements 
associated with each process.  We therefore use a 
method that groups together the data to be trans-
ferred to each process beforehand and transfers 

that data once for each process.  The flow diagram 
for the data transfer code in the band direction is 
shown in Figure 5.

In the above, transposing tens of thousands 
of wave functions in the order of eigenval-
ues requires that index values be created and 
assigned beforehand by a sorting process that 
transposes eigenvalues in ascending order.  Here, 
to carry out this sorting process in parallel, we 
use a method that combines the “distribution 
counting sort” method applicable to parallel 
execution and the “simple insertion sort” method.  
In other words, data distribution to each process 
is performed by the distribution counting sort 
while intra-process sorting of data allocated to 
each process is performed by the simple insertion 
sort.  Finally, all the data is merged.

5. Computational complexity and 
transfer complexity in massive 
parallelization
Among the massively parallelized PHASE 

kernel sections described above, the sections 
with the highest loads in terms of both 
computational complexity and transfer complex-
ity are the pseudopotential product section and 

Figure 5 
Data transfer code in band direction.
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Gram-Schmidt orthogonalization section.  The 
total computational complexity and total trans-
fer complexity per process of these two sections 
plus the three-dimensional FFT section can be 
approximated as follows, where Ne denotes the 
total number of bands, Nf the total number of 
wavenumbers, Ni the number of processes in the 
band direction, and Nk the number of processes 
in the wavenumber direction.  Here, we consid-
er that the total number of pseudopotentials is 
nearly equivalent to the total number of bands 
Ne.
1) Pseudopotential and wave function product

Computational complexity: 
16 × (Ne)2 × Nf / (Ni × Nk)
Transfer complexity: 
16 × (Ne)2 / Ni (bytes) (Allreduce transfer)

2) Gram-Schmidt orthogonalization
Computational complexity: 
8 × (Ne)2 × Nf / (Ni × Nk)
Transfer complexity: 
8 × (Ne)2 / Ni (bytes) (Allreduce transfer)

3) Three-dimensional FFT  
Computational complexity: 
5 × Ne × Nf × logNf / (Ni × Nk)
Transfer complexity: 
16 × Ne × Nf / (Ni × Nk) (bytes) (transpose 
transfer)
Here, parameter values for a scale of 

10 000 atoms are of the order of Ne = 50 000 and 
Nf = 1 000 000 (supposed number of processes: 
Ni = 4, Nk = 10 000).  In Gram-Schmidt orthog-
onalization, there is a process that performs 
orthogonalization within one block as preprocess-
ing, and no parallel execution is performed in the 
band direction here.  It is therefore desirable that 
the ratio of processes in the wavenumber direc-
tion be increased to improve the utilization rate of 
each CPU.  In other words, increasing the number 
of band blocks associated with one CPU (one 
process) is equivalent to making one block’s worth 
of preprocessing less noticeable.  This is why the 
number of processes in the band direction Ni is 
made small here.  The computational complexi-

ty per process of this preprocessing section is 8 × 
Nblk × Nf × Ne/Nk and the transfer complexity is 
8 × (Nblk − 1) × Ne, where Nblk is the block size.  
Placing multiple band blocks in one process helps 
to minimize the computational complexity and 
transfer complexity of this preprocessing section 
compared with later processing.

From the above, the ratio of transfer 
complexity to computational complexity in the 
pseudopotential product section and Gram-Schmidt 
orthogonalization section is given by

(transfer complexity) / (computational complexity) 

= Nk / Nf.

This is the reciprocal of the number of 
wavenumber elements per process.  In PHASE, 
the number of wavenumber elements is normal-
ly several hundred times the number of atoms.  
Thus, for an assumed number of processes on 
the order of Ni = 4 and Nk = 10 000, the ratio 
of transfer complexity to computational complex-
ity can be made sufficiently small (about 1/100) 
and the transfer time can be kept short compared 
with the computational time.  At the same time, 
both computational and transfer complexities in 
the three-dimensional FFT section are very small 
compared with the above two sections.

In addition, the total transfer complexity 
of the two transfer sections that link the above 
three kernel sections is given by

16 × Ne × Nf / (Ni × Nk) (bytes).

This is sufficiently small compared with the 
total transfer complexity of the pseudopotential 
product and Gram-Schmidt orthogonalization 
sections (about 1/500), so it is not expected to 
cause a significant drop in total computational 
performance.

Assuming that we use the Recursive Halving 
method4) in the MPI_allreduce transfer in the 
pseudopotential product and Gram-Schmidt 
orthogonalization sections, which have the largest 
transfer load, and given that the data transfer 
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performance is uniform at 4 GB/s and computa-
tional performance is 100 Gflops (1011 operations 
per second) per process, the ratio of transfer time 
to computational time is given by

(transfer time) / (computational time) 

= 2 × (Nk / Nf) × (100/4).

This result tells us that the transfer time 
can be kept small compared with the computa-
tional time by two-dimensional decomposition.

The estimated execution time broken down 
by calculation and communication sections 
when performing one-dimensional decomposi-
tion in just the wavenumber direction is shown in 
Figure 6.  In addition, Figure 7 shows a graph 
of estimated scalability (speed-up factor) versus 
number of processes with respect to execution 
time with eight processes when parallelizing 
by one-dimensional decomposition in only the 
wavenumber direction and by two-dimensional 
decomposition as proposed here.  Since the 

transfer load for the allreduce transfer, which 
has the biggest transfer load, can be reduced to 
the reciprocal of the number of parallel bands 
by two-dimensional decomposition, its trans-
fer efficiency is better than that obtained by 
one-dimensional decomposition.  This graph 
shows how significantly better performance can 
be obtained by using two-dimensional paralleliza-
tion instead of one-dimensional parallelization, 
especially for parallel execution on the level of 
tens of thousands of processes.

6. Conclusion
To demonstrate the feasibility of massive-

ly parallelizing the first principles molecular 
dynamics simulation program PHASE for tens of 
thousands of CPUs, we extracted three high-load 
sections in the calculation of large-scale problems, 
prepared kernel code modeling these sections, 
and converted that kernel code for massive paral-
lelization.  We also described a data transpose 
transfer section for linking these three sections of 
kernel code and prepared code for this purpose.

Furthermore, upon investigating the compu-
tational complexity and transfer complexity with 
regard to this kernel linking code, we found that 
the data transfer complexity between CPUs could 

Figure 6 
Breakdown of estimated execution time by 
one-dimensional decomposition in wavenumber direction.

Figure 7 
Estimated scalability by two-dimensional decomposition 
in wavenumber and band directions.
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be kept small compared with the computation-
al complexity for parallel execution by tens of 
thousands of CPUs and that massive paralleliza-
tion could be achieved for tens of thousands of 
processes (CPUs).

In future research, we plan to carry out 
performance evaluations on real machines using 
the kernel linking code described here.  In this 
paper, we made estimations for large-scale 
parallelization by assuming the same network 
configuration as for a low degree paralleliza-
tion, but we expect that a large-scale network 
capable of high-speed processing can be achieved 
for group communications in the manner 
of MPI_allreduce transfer, which has found 
widespread use in actual applications.

This research was performed as part of the 
Petascale System Interconnect project of MEXT, 
Japan.
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