
114 FUJITSU Sci. Tech. J., 44,2,p.114-120(April 2008)

Quality-by-Design Approach to Developing 
Servers

V Yasunori Fujioka     V Mutsuhiro Tanaka

(Manuscript received July 10, 2007)

Given the shorter product life cycles in recent years, the ability to promptly develop 
and produce high-reliability products is now the key to success in business.  Fujitsu 
has significantly reduced the development span of its core products (servers).  As a 
result, releasing products within a fixed time limit has become increasingly difficult 
using traditional development methods.  Moreover, any problem that may occur at 
the evaluation or mass-production stage has a critical impact on product assurance.  
Under these circumstances, we have been working on improving product assurance 
based on the “quality-by-design” approach.  This activity helps us look at problems 
involving LSI remakes necessitated by design errors as one of the major factors 
causing scheduling delays at the development stage.  This paper describes Fujitsu’s 
activities for improving server product assurance to achieve zero LSI remakes rela-
tive to proprietary LSI circuits for servers, and discusses the simulation techniques 
involved.

1. Introduction
The verification work in hardware devel-

opment generally consists of four main phases: 
design review, simulation (SIML), design verifi-
cation test, and validation test, as shown in 
Figure 1.  Manufactured products are actually 
used for design verification test and valida-
tion test.  Any hardware design change made in 
either of these verification phases costs a great 
deal of money for LSI correction.  It also takes 
much time to redesign, re-verify, and reproduce 
the LSI upon return due to failure in evaluation, 
which adversely affects shipment time.  Various 
improvements have been made to design methods 
for assuring the design quality of servers before 
the LSI manufacturing process.  These include 
simplifying formal verifications and third-party 
reviews using hardware description language 
(HDL), and checking actual equipment operations 
using high-speed, large-scale SIML equipment.

Due to these improvements, design failures 

that may occur in actual equipment verification 
have declined year by year, except for LSI correc-
tion.  There are still problems to solve regarding 
timing and configuration dependence prior to the 
actual equipment verification process, particular-
ly for the memory-controlling LSI.  Accordingly, 
the critical point is identifying problems in the 
memory-controlling LSI before the LSI manufac-
turing process in order to assure product quality, 
cost, and delivery.

Given these circumstances, this paper 
reviews the quality assurance of hardware 
products being newly developed from the stand-
points of product assurance and actual equipment 
evaluation.  The basic items to be reviewed entail: 

“Why is the quality-by-design approach 
implemented?”

“Why are problems left undetected?” 
“Where should we detect the problems?” 
“How should we identify the problems?”
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2. Issues in quality assurance
The memory-controlling LSI mainly provides 

a traffic control function to quickly process 
requests from multiple CPUs and I/O processors.  
It has a very complex and large-scale logical 
configuration to support this function.  Therefore, 
it must be developed by a number of engineers, 
often resulting in a misuse of interface specifica-
tions, ungenerated conditional expressions, and 
other mistakes.  Moreover, the waterfall model 
in which a specification study, detailed design, 
and logic entry are conducted sequentially in 
a long-term flow is adopted for development.  
Thus, a problem detected after logic entry may 
resurface at more than one location in the devel-
opment process.

Timing errors may also occur due to the 
separation of work for Logical-block SIML and 
component LSI SIML.

Patterns should basically be checked in 
Logical-block SIML, but three-dimensional 
complex patterns consisting of internal state, 
external state, and input patterns are physically 

and temporally difficult to check.  Drawings and 
specifications are used to check these patterns.

The current high-speed, large-scale SIMLs 
are intended to identify the problems above so 
that no failure occurs in the actual equipment.  
However, such SIML takes much more time than 
the actual equipment.  One minute operation 
for the actual equipment corresponds to 14 days 
of operation for SIML.  In terms of speed, using 
SIML to check operation is not practical given 
the very complex logic of an LSI and the time 
(more than an hour) needed for the actual equip-
ment.  In light of these facts, major possible 
issues include:
1) Developing an accelerated SIML that 

includes actual equipment operations as a 
technique to detect problems

2) Preventing bugs from increasing via 
quick feedback to developers to improve 
quality-by-design

3. Existing SIML
SIML has the same environment configura-
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Figure 1 
Flow of developing general hardware products.
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tion as the actual equipment in a simulator as 
shown in Figure 2, and is equipped with CPUs, 
I/O processors, a memory unit, and the target 
memory-controlling LSI, with each unit using 
HDL.

In preparation, the test program to be used 
in the actual equipment is preloaded in the 
memory unit.  Then a start trigger is applied to 
the test program to start simulation verification.

The test program is coded using instruc-
tion code (e.g., load, store, operation instructions) 
compliant with the hardware architecture in 
the same way as the OS.  To actually test the 
memory-controlling LSI, the following problems 
should be solved: 
1) CPU cache wall

When the test program issues instruc-
tion fetch or operand access to apply load to the 
memory-controlling LSI, the CPU cache memory 
processes the subsequent access operations from 
memory via the memory-controlling LSI.  To 
access the memory-controlling LSI, the CPU 
cache function must be invalidated.  This involves 
executing multiple instructions, however, and 
makes it difficult to increase access load on the 
memory-controlling LSI. 
2) Overhead caused by instruction fetch

The CPU hardware issues instruction fetch 
to memory as needed because CPU operation 
requires instructions.  Fetch processing keeps 
other accesses waiting or synchronizes the access 

order, thus making it difficult to increase load on 
the memory-controlling LSI and create a wide 
variety of access patterns.
3) Overhead involved in the test program flow

A test generally consists of environ-
ment setting (setup), execution (test), and 
decision (check).  Because the test program 
performs environment setting and decision, the 
memory-controlling LSI remains nearly idle.

4. Developing dedicated LSI 
tester
To solve the SIML problems described in the 

previous section, a dedicated LSI tester has been 
developed (Figure 3).  This tester achieves a very 
attentive evaluation that enables direct access 
to the memory-controlling LSI by removing the 
CPU cache wall and overheads. 

As the control method, the LSI testers 
are initially allocated to each interface of the 
memory-controlling LSI for the CPUs, I/O proces-
sors, and service processor.  Then test cards 
describing the access procedure are added for 
each LSI tester to ensure independent operation 
of the LSI testers.  This method helps remove the 
“CPU cache wall”.  The test cards also eliminate 
the need for instruction fetch operation in execut-
ing a test so that instruction fetch is used as one 
of the test categories.

The LSI tester uses four major techniques 
to avoid the overhead involved in the test flow, 
and thus enables diverse access operations and 
timing patterns.

While common testers are considered to 
merely check functions, the LSI tester is intend-
ed to generate various timing patterns while 
running because it includes actual equipment 
operation.

4.1 Integration between test program and 
hardware logic
Typical test programs often include 

trap points to check for conflicting operations 
by comparing data or taking other actions.  

CPU I/O processorCPU I/O processorCPU I/O processorCPU

Memory-controlling LSI

Simulator space

Memory unit

I/O processor Service
processor

Figure 2 
Summary of simulation.
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Hardware logic locally uses a logical conflict 
checker as the RAS function.  The LSI tester 
has a logical conflict checker that operates the 
same way as normal hardware logic and uses 
the trap concept of the test program to perform 
check operations associated with the test card.  
This mechanism allows us to check for regular 
interface conflicts and data failures, as well 
as specific timing patterns.  Should the LSI 
tester receive an unexpected response from the 
memory-controlling LSI, it basically regards 
the response as an error and outputs an error 
message, unlike normal logic that ignores it.  
Traps are cyclopaedically set based on restric-
tions on the interface specifications.

4.2 Mechanism to change timing
For a circuit with relatively small logic, all 

timing variations can be generated in a test.  
Conversely, for a circuit with very complex logical 
conditions, the key is how many systematic 
timing patterns can be generated, along with the 
combined use of Logical-block SIML. 

To generate as many timing patterns as 

possible, the LSI tester has a dam in the output 
interface to the memory-controlling LSI for 
providing a waver control function as shown in 
Figure 3.  This function can be used to fluctuate 
the load.  For example, it can output accumu-
lated requests in one burst, optionally extend 
or reduce the request intervals, and divide and 
mix multiple requests as required.  The dam can 
also respond to the memory-controlling LSI more 
rapidly than the actual equipment. 

4.3 Simple logic structure
Because the LSI tester operates based on 

hardware logic just like the memory-controlling 
LSI, it may generate bugs.  To reduce the number 
of logical bugs in the LSI tester to lower than 
that in the memory-controlling LSI, the tester 
employs very simple hardware logic.  It uses 
an instruction code with which to pass instruc-
tions directly to the memory-controlling LSI, 
instead of using hardware architecture instruc-
tion code.  Decoding and emulation logic, in 
particular, have been deleted.  The tester also 
performs a data-pattern coverage tradeoff.  
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Figure 3 
Outline of LSI tester.
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Accordingly, the logical gate scale of the LSI 
tester is so compact that many LSI testers can 
be installed in a limited simulator space.  The 
LSI testers can be allocated to all interfaces of 
the memory-controlling LSI, which allows SIML 
to generate timing variations in the maximum 
configuration. 

4.4 Data consistency in competing blocks
When multiple testers in a system competi-

tively use the same address to check for data 
conflicts in the test, a talking interface must be 
configured between the testers to control data 
update timing.  In this case, talking imposes 
an overhead, resulting in the synchronization 
of testers in a large-scale configuration and 
concerns about less-varied timing patterns.

As an improvement plan, a competing 
address area is assigned to each tester per byte 
as shown in Figure 4.  In this area, one block 
consists of 64 bytes.  Each tester can only update 
or reference the byte offsets assigned to the 
tester.  The testers maintain independence in 

checking for data conflicts without being synchro-
nized with other testers, even in identical address 
competition.

5. Results of SIML using LSI 
tester 
Memory-controlling LSI SIML was conduct-

ed using the techniques described in the previous 
section.  As a result, the SIML detection rate 
for overall failures was dramatically improved 
compared with existing models.  In particular, the 
problem of timing failure caused by prolonged 
running in the actual equipment tests was drasti-
cally reduced.  This result demonstrated that 
enhanced timing variation in SIML had worked. 

Some failures that may be detected in actual 
equipment tests still occurred, however.  The RAS 
function could not be extracted satisfactorily in 
SIML.  The clock control and test functions were 
also difficult to improve using only the evaluation 
techniques that we employed this time.  We have 
therefore been working to enhance the evaluation 
techniques for such hard-to-improve functions.

OFFSET Byte0 Byte1 Byte2 Byte3 Byte4 Byte5 Byte6

Access per byte can maintain the independence of each LSI tester.

Byte7 Byte8 Byte9 ByteA ByteB ByteC ByteD ByteE ByteF

CPU0 CPU1 CPU2 CPU3 CPU4 CPU5 CPU6 CPU7 CPU8 CPU9 CPU10 CPU11 CPU12 CPU13 CPU14 CPU15

IOP0 IOP1 IOP2 IOP3 IOP4 IOP5 IOP6 IOP7 SVP – – – – – – –

CPU0 CPU1 CPU2 CPU3 CPU4 CPU5 CPU6 CPU7 CPU8 CPU9 CPU10 CPU11 CPU12 CPU13 CPU14 CPU15

IOP0 IOP1 IOP2 IOP3 IOP4 IOP5 IOP6 IOP7 SVP – – – – – – –

Address n

Competing address area

Address n + X10

Address n + X20

Address n + X30

Memory space

Access to addresses n to n + X1F of CPU5 is corrected to n + X5
(and uniquely determined by each LSI tester).

Figure 4 
Data consistency.
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6. Future issues
The SIML evaluation techniques have been 

improved on a daily basis along with the innova-
tions made in SIML technology, including the 
measures implemented this time.  However, 
our major future issue is to identify and target 
the points that should be evaluated; that is, 
to develop a technique to extract evaluation 
points.  Current techniques for the extraction of 
LSI logic evaluation include formal verification, 
V-shaped evaluation with the waterfall model, 
and matrix review using the points listed from 
previous experience.  Although the technique of 
the completeness test with the route between 
conditional judgments may be used in software 
development, this is not possible in hardware 
development.  Because hardware involves many 
conditional judgments and most logical modules 
always operate through linkage with other 

modules, the variations in timing patterns to be 
extracted will become astronomical figures.

To prevent bugs from increasing, the 
round-trip development model is more effec-
tive than the existing waterfall V-shaped model 
where tests are executed for finished products.  
In the round-trip model, production and testing 
alternate in small units with results accumulat-
ed in the logic entry phase, thus stabilizing the 
quality of each minimum component.  Building a 
test environment at the design stage and making 
adjustments with other processes such as LSI 
implementation are the keys to making the most 
of the round-trip model.  These key points should 
inevitably be developed.  Since implementation of 
the round-trip model affects the overall develop-
ment process, we will initiate studies toward its 
realization (Figure 5).
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V-shaped process model.
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7. Conclusion
This paper described our activities for assur-

ing the quality of server hardware products.  As 
a new challenge of having the quality assurance 
unit participate in development, we encouraged 
participation of that unit in design verification 
tests. 

Under ordinary circumstances, the develop-

ment unit is responsible for evaluation.  However, 
due to recent reductions in the span of develop-
ment or other reasons, front-loading evaluation 
at the development stage has replaced actual 
equipment evaluation.  In the future, the devel-
opment span will be made even shorter, and our 
activities for quality assurance will prove more 
significant.
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