
114 FUJITSU Sci. Tech. J., 44,2,p.114-120(April 2008)

Quality-by-Design Approach to Developing
Servers

V Yasunori Fujioka V Mutsuhiro Tanaka

(Manuscript received July 10, 2007)

Given the shorter product life cycles in recent years, the ability to promptly develop
and produce high-reliability products is now the key to success in business. Fujitsu
has significantly reduced the development span of its core products (servers). As a
result, releasing products within a fixed time limit has become increasingly difficult
using traditional development methods. Moreover, any problem that may occur at
the evaluation or mass-production stage has a critical impact on product assurance.
Under these circumstances, we have been working on improving product assurance
based on the “quality-by-design” approach. This activity helps us look at problems
involving LSI remakes necessitated by design errors as one of the major factors
causing scheduling delays at the development stage. This paper describes Fujitsu’s
activities for improving server product assurance to achieve zero LSI remakes rela-
tive to proprietary LSI circuits for servers, and discusses the simulation techniques
involved.

1. Introduction
The verification work in hardware devel-

opment generally consists of four main phases:
design review, simulation (SIML), design verifi-
cation test, and validation test, as shown in
Figure 1. Manufactured products are actually
used for design verification test and valida-
tion test. Any hardware design change made in
either of these verification phases costs a great
deal of money for LSI correction. It also takes
much time to redesign, re-verify, and reproduce
the LSI upon return due to failure in evaluation,
which adversely affects shipment time. Various
improvements have been made to design methods
for assuring the design quality of servers before
the LSI manufacturing process. These include
simplifying formal verifications and third-party
reviews using hardware description language
(HDL), and checking actual equipment operations
using high-speed, large-scale SIML equipment.

Due to these improvements, design failures

that may occur in actual equipment verification
have declined year by year, except for LSI correc-
tion. There are still problems to solve regarding
timing and configuration dependence prior to the
actual equipment verification process, particular-
ly for the memory-controlling LSI. Accordingly,
the critical point is identifying problems in the
memory-controlling LSI before the LSI manufac-
turing process in order to assure product quality,
cost, and delivery.

Given these circumstances, this paper
reviews the quality assurance of hardware
products being newly developed from the stand-
points of product assurance and actual equipment
evaluation. The basic items to be reviewed entail:

“Why is the quality-by-design approach
implemented?”

“Why are problems left undetected?”
“Where should we detect the problems?”
“How should we identify the problems?”

115FUJITSU Sci. Tech. J., 44,2,(April 2008)

Y. Fujioka et al.: Quality-by-Design Approach to Developing Servers

2. Issues in quality assurance
The memory-controlling LSI mainly provides

a traffic control function to quickly process
requests from multiple CPUs and I/O processors.
It has a very complex and large-scale logical
configuration to support this function. Therefore,
it must be developed by a number of engineers,
often resulting in a misuse of interface specifica-
tions, ungenerated conditional expressions, and
other mistakes. Moreover, the waterfall model
in which a specification study, detailed design,
and logic entry are conducted sequentially in
a long-term flow is adopted for development.
Thus, a problem detected after logic entry may
resurface at more than one location in the devel-
opment process.

Timing errors may also occur due to the
separation of work for Logical-block SIML and
component LSI SIML.

Patterns should basically be checked in
Logical-block SIML, but three-dimensional
complex patterns consisting of internal state,
external state, and input patterns are physically

and temporally difficult to check. Drawings and
specifications are used to check these patterns.

The current high-speed, large-scale SIMLs
are intended to identify the problems above so
that no failure occurs in the actual equipment.
However, such SIML takes much more time than
the actual equipment. One minute operation
for the actual equipment corresponds to 14 days
of operation for SIML. In terms of speed, using
SIML to check operation is not practical given
the very complex logic of an LSI and the time
(more than an hour) needed for the actual equip-
ment. In light of these facts, major possible
issues include:
1) Developing an accelerated SIML that

includes actual equipment operations as a
technique to detect problems

2) Preventing bugs from increasing via
quick feedback to developers to improve
quality-by-design

3. Existing SIML
SIML has the same environment configura-

Design review/drawing
check process

Fully configured product

R
es

ea
rc

h

A
na

ly
ze

D
es

ig
n

S
im

ul
at

io
n

Lo
gi

ca
l-b

lo
ck

 S
IM

L

C
om

po
ne

nt
 L

S
I S

IM
L

S
ys

te
m

 L
S

I S
IM

L

LS
I d

ev
el

op
m

en
t

D
es

ig
n

ve
rif

ic
at

io
n

te
st

us
in

g
m

an
uf

ac
tu

re
d

pr
od

uc
t

V
al

id
at

io
n

te
st

 u
si

ng
m

an
uf

ac
tu

re
d

pr
od

uc
t

M
as

s
pr

od
uc

tio
n

S
hi

pm
en

t

q

w e r

Figure 1
Flow of developing general hardware products.

116 FUJITSU Sci. Tech. J., 44,2,(April 2008)

Y. Fujioka et al.: Quality-by-Design Approach to Developing Servers

tion as the actual equipment in a simulator as
shown in Figure 2, and is equipped with CPUs,
I/O processors, a memory unit, and the target
memory-controlling LSI, with each unit using
HDL.

In preparation, the test program to be used
in the actual equipment is preloaded in the
memory unit. Then a start trigger is applied to
the test program to start simulation verification.

The test program is coded using instruc-
tion code (e.g., load, store, operation instructions)
compliant with the hardware architecture in
the same way as the OS. To actually test the
memory-controlling LSI, the following problems
should be solved:
1) CPU cache wall

When the test program issues instruc-
tion fetch or operand access to apply load to the
memory-controlling LSI, the CPU cache memory
processes the subsequent access operations from
memory via the memory-controlling LSI. To
access the memory-controlling LSI, the CPU
cache function must be invalidated. This involves
executing multiple instructions, however, and
makes it difficult to increase access load on the
memory-controlling LSI.
2) Overhead caused by instruction fetch

The CPU hardware issues instruction fetch
to memory as needed because CPU operation
requires instructions. Fetch processing keeps
other accesses waiting or synchronizes the access

order, thus making it difficult to increase load on
the memory-controlling LSI and create a wide
variety of access patterns.
3) Overhead involved in the test program flow

A test generally consists of environ-
ment setting (setup), execution (test), and
decision (check). Because the test program
performs environment setting and decision, the
memory-controlling LSI remains nearly idle.

4. Developing dedicated LSI
tester
To solve the SIML problems described in the

previous section, a dedicated LSI tester has been
developed (Figure 3). This tester achieves a very
attentive evaluation that enables direct access
to the memory-controlling LSI by removing the
CPU cache wall and overheads.

As the control method, the LSI testers
are initially allocated to each interface of the
memory-controlling LSI for the CPUs, I/O proces-
sors, and service processor. Then test cards
describing the access procedure are added for
each LSI tester to ensure independent operation
of the LSI testers. This method helps remove the
“CPU cache wall”. The test cards also eliminate
the need for instruction fetch operation in execut-
ing a test so that instruction fetch is used as one
of the test categories.

The LSI tester uses four major techniques
to avoid the overhead involved in the test flow,
and thus enables diverse access operations and
timing patterns.

While common testers are considered to
merely check functions, the LSI tester is intend-
ed to generate various timing patterns while
running because it includes actual equipment
operation.

4.1 Integration between test program and
hardware logic
Typical test programs often include

trap points to check for conflicting operations
by comparing data or taking other actions.

CPU I/O processorCPU I/O processorCPU I/O processorCPU

Memory-controlling LSI

Simulator space

Memory unit

I/O processor Service
processor

Figure 2
Summary of simulation.

117FUJITSU Sci. Tech. J., 44,2,(April 2008)

Y. Fujioka et al.: Quality-by-Design Approach to Developing Servers

Hardware logic locally uses a logical conflict
checker as the RAS function. The LSI tester
has a logical conflict checker that operates the
same way as normal hardware logic and uses
the trap concept of the test program to perform
check operations associated with the test card.
This mechanism allows us to check for regular
interface conflicts and data failures, as well
as specific timing patterns. Should the LSI
tester receive an unexpected response from the
memory-controlling LSI, it basically regards
the response as an error and outputs an error
message, unlike normal logic that ignores it.
Traps are cyclopaedically set based on restric-
tions on the interface specifications.

4.2 Mechanism to change timing
For a circuit with relatively small logic, all

timing variations can be generated in a test.
Conversely, for a circuit with very complex logical
conditions, the key is how many systematic
timing patterns can be generated, along with the
combined use of Logical-block SIML.

To generate as many timing patterns as

possible, the LSI tester has a dam in the output
interface to the memory-controlling LSI for
providing a waver control function as shown in
Figure 3. This function can be used to fluctuate
the load. For example, it can output accumu-
lated requests in one burst, optionally extend
or reduce the request intervals, and divide and
mix multiple requests as required. The dam can
also respond to the memory-controlling LSI more
rapidly than the actual equipment.

4.3 Simple logic structure
Because the LSI tester operates based on

hardware logic just like the memory-controlling
LSI, it may generate bugs. To reduce the number
of logical bugs in the LSI tester to lower than
that in the memory-controlling LSI, the tester
employs very simple hardware logic. It uses
an instruction code with which to pass instruc-
tions directly to the memory-controlling LSI,
instead of using hardware architecture instruc-
tion code. Decoding and emulation logic, in
particular, have been deleted. The tester also
performs a data-pattern coverage tradeoff.

Block diagram of LSI tester for CPU

Test card

Receiving section

Response/Resource
management

Pipeline

Mini cache

P
rio

rit
y

R
eq

ue
st

 p
oo

l

W
av

er

M
em

or
y-

co
nt

ro
lli

ng
 L

S
I i

nt
er

fa
ce

Fluctuating
request load

Figure 3
Outline of LSI tester.

118 FUJITSU Sci. Tech. J., 44,2,(April 2008)

Y. Fujioka et al.: Quality-by-Design Approach to Developing Servers

Accordingly, the logical gate scale of the LSI
tester is so compact that many LSI testers can
be installed in a limited simulator space. The
LSI testers can be allocated to all interfaces of
the memory-controlling LSI, which allows SIML
to generate timing variations in the maximum
configuration.

4.4 Data consistency in competing blocks
When multiple testers in a system competi-

tively use the same address to check for data
conflicts in the test, a talking interface must be
configured between the testers to control data
update timing. In this case, talking imposes
an overhead, resulting in the synchronization
of testers in a large-scale configuration and
concerns about less-varied timing patterns.

As an improvement plan, a competing
address area is assigned to each tester per byte
as shown in Figure 4. In this area, one block
consists of 64 bytes. Each tester can only update
or reference the byte offsets assigned to the
tester. The testers maintain independence in

checking for data conflicts without being synchro-
nized with other testers, even in identical address
competition.

5. Results of SIML using LSI
tester
Memory-controlling LSI SIML was conduct-

ed using the techniques described in the previous
section. As a result, the SIML detection rate
for overall failures was dramatically improved
compared with existing models. In particular, the
problem of timing failure caused by prolonged
running in the actual equipment tests was drasti-
cally reduced. This result demonstrated that
enhanced timing variation in SIML had worked.

Some failures that may be detected in actual
equipment tests still occurred, however. The RAS
function could not be extracted satisfactorily in
SIML. The clock control and test functions were
also difficult to improve using only the evaluation
techniques that we employed this time. We have
therefore been working to enhance the evaluation
techniques for such hard-to-improve functions.

OFFSET Byte0 Byte1 Byte2 Byte3 Byte4 Byte5 Byte6

Access per byte can maintain the independence of each LSI tester.

Byte7 Byte8 Byte9 ByteA ByteB ByteC ByteD ByteE ByteF

CPU0 CPU1 CPU2 CPU3 CPU4 CPU5 CPU6 CPU7 CPU8 CPU9 CPU10 CPU11 CPU12 CPU13 CPU14 CPU15

IOP0 IOP1 IOP2 IOP3 IOP4 IOP5 IOP6 IOP7 SVP – – – – – – –

CPU0 CPU1 CPU2 CPU3 CPU4 CPU5 CPU6 CPU7 CPU8 CPU9 CPU10 CPU11 CPU12 CPU13 CPU14 CPU15

IOP0 IOP1 IOP2 IOP3 IOP4 IOP5 IOP6 IOP7 SVP – – – – – – –

Address n

Competing address area

Address n + X10

Address n + X20

Address n + X30

Memory space

Access to addresses n to n + X1F of CPU5 is corrected to n + X5
(and uniquely determined by each LSI tester).

Figure 4
Data consistency.

119FUJITSU Sci. Tech. J., 44,2,(April 2008)

Y. Fujioka et al.: Quality-by-Design Approach to Developing Servers

6. Future issues
The SIML evaluation techniques have been

improved on a daily basis along with the innova-
tions made in SIML technology, including the
measures implemented this time. However,
our major future issue is to identify and target
the points that should be evaluated; that is,
to develop a technique to extract evaluation
points. Current techniques for the extraction of
LSI logic evaluation include formal verification,
V-shaped evaluation with the waterfall model,
and matrix review using the points listed from
previous experience. Although the technique of
the completeness test with the route between
conditional judgments may be used in software
development, this is not possible in hardware
development. Because hardware involves many
conditional judgments and most logical modules
always operate through linkage with other

modules, the variations in timing patterns to be
extracted will become astronomical figures.

To prevent bugs from increasing, the
round-trip development model is more effec-
tive than the existing waterfall V-shaped model
where tests are executed for finished products.
In the round-trip model, production and testing
alternate in small units with results accumulat-
ed in the logic entry phase, thus stabilizing the
quality of each minimum component. Building a
test environment at the design stage and making
adjustments with other processes such as LSI
implementation are the keys to making the most
of the round-trip model. These key points should
inevitably be developed. Since implementation of
the round-trip model affects the overall develop-
ment process, we will initiate studies toward its
realization (Figure 5).

Logic A

System LSI
SIML

Component LSI
SIML

Logical-block SIML

Drawing check

V-shaped process model (waterfall model) V-shaped process model (round-trip model)

Failures are accumulated in logic entry.

50

Logic
A

Logic
B

Logic
C

Logic
D

Time

Quality-by-design is not improved
until failures are exposed.

Auto feedback is performed for exposed
failures and quality is improved.

Time

Logic
E

Logic
F

Logic
A

BD: Basic design
FD: Function design
DD: Detailed design

Logic
B

Logic
C

Logic
D

Logic
E

Logic
F

40

30

20

10

0

50

40

30

20

10

0

Failures are reduced in logic entry.

Input error
Specification error

Input error
Specification error

BD

FD

DD

Logic entry

System LSI
SIML

Component LSI
SIML

Logical-block SIML
Drawing check

BD

FD

DD +
Logic entry

B C D E F

Figure 5
V-shaped process model.

120 FUJITSU Sci. Tech. J., 44,2,(April 2008)

Y. Fujioka et al.: Quality-by-Design Approach to Developing Servers

7. Conclusion
This paper described our activities for assur-

ing the quality of server hardware products. As
a new challenge of having the quality assurance
unit participate in development, we encouraged
participation of that unit in design verification
tests.

Under ordinary circumstances, the develop-

ment unit is responsible for evaluation. However,
due to recent reductions in the span of develop-
ment or other reasons, front-loading evaluation
at the development stage has replaced actual
equipment evaluation. In the future, the devel-
opment span will be made even shorter, and our
activities for quality assurance will prove more
significant.

Yasunori Fujioka, Fujitsu Ltd.
Mr. Fujioka graduated from Mitoyo
Technical High School in Kagawa
Prefecture in 1968. He joined Fujitsu
Ltd., Kawasaki, Japan in 1970, where
he has been engaged in quality assur-
ance activities for Fujitsu mainframe
servers, UNIX servers, and storage
system products.

Mutsuhiro Tanaka, Fujitsu Ltd.
Mr. Tanaka graduated from Shimizu
Technical High School in Shizuoka
Prefecture in 1983. He joined Fujitsu
Ltd., Kawasaki, Japan in 1984, where
he has been engaged in mass produc-
tion and quality assurance activities for
Fujitsu mainframe server products.

