
398 FUJITSU Sci. Tech. J., 43,4,p.398-411(October 2007)

Software Applications Validation
Environment: SAVE

V Sreeranga P. Rajan V Indradeep Ghosh V Oksana Tkachuk
V Mukul R. Prasad V Praveen K. Murthy V Ryusuke Masuoka
V Tadahiro Uehara V Kazuki Munakata V Kenji Oki V Hirotaka Hara

(Manuscript received April 2, 2007)

The most vexing problem facing the software industry today is ensuring that com‑
plex heterogeneous client‑server applications are defect‑free. Fixing software
defects in the field typically costs many times that prior to deployment. Custom‑
ers becoming increasingly wary of security, privacy, and software safety may stop
conducting business online. Current software validation techniques are largely
inadequate. Conventional testing techniques are manually intensive, with unknown
or poor functional (specification) coverage requiring the user to insert assertions
in the source code. While formal verification techniques such as model check‑
ing offer 100% functional coverage, they cannot handle more than a few thousand
lines of code. Members of Trusted Systems Innovation Group (TSIG) at Fujitsu
Laboratories of America (FLA) have been working for more than a decade on devel‑
oping novel techniques for model reduction, and the specification and validation of
requirements. This paper describes software applications validation environment
(SAVE), resulting from a close collaboration between TSIG and Software Innovation
Laboratories (SIL) at Fujitsu Laboratories Ltd. SAVE weaves innovative techniques
to provide an effective solution for validating the requirements for large heteroge‑
neous software.

1. Introduction
Software failures are having a greater

impact on consumers as technology rapidly
becomes ubiquitous in affecting all aspects of our
daily lives. Web applications are being deployed
at an urgent pace to catch up with consumer
demand for services online. The combination
of software complexity and “speed‑to‑market”
has put a tremendous strain on software quali‑
ty. Software application providers have become
vulnerable to losing business due to their resourc‑
es being stretched thin in terms of software
assurance. Conventional validation techniques
centered on testing have become prohibitively
expensive or simply unable to detect security
and safety problems lurking deep within the
code. Formal verification techniques developed

in academia and industrial research laboratories
have not proven effective beyond a few thousand
lines of code.

There are two main reasons why current
software validation techniques are inadequate
in addressing the growing problem of software
quality and assurance. A set of global require‑
ments that a code base must satisfy can be
obtained from the specification documents of
the application being implemented by the code
base. First, conventional testing entails insert‑
ing a number of assertions into the code base. It
must be manually ensured that this set of asser‑
tions implies the set of global requirements to
be satisfied by implementation. This can be an
error‑prone process. Moreover, generating test
suites for individual modules comprising the

399FUJITSU Sci. Tech. J., 43,4,(October 2007)

S. P. Rajan et al.: Software Applications Validation Environment: SAVE

implementation, checking for assertion failures,
and conducting diagnosis have become increas‑
ingly expensive and error prone along with a
rapidly growing software code base of heteroge‑
neous programming languages. Although the
structural coverage of test suites can be calculat‑
ed, the coverage of global requirements cannot be
precisely computed. Secondly, advanced formal
verification techniques such as model check‑
ing have two vexing problems: the inability to
handle a few thousand lines of Java code, and the
need for specialized arcane languages for stating
requirements.

Software applications validation environ‑
ment (SAVE) was developed to address both
of the above problems that plague software
validation. With SAVE, global requirements
can be validated without having to manually
insert assertions in the source code and writing
expensive test suites. Secondly, SAVE employs
powerful model generation and reduction
techniques, as well as a user‑friendly require‑
ments specification language to facilitate model
checking. These model generation and reduction
techniques have enabled us to use SAVE on large
software code bases consisting of a million lines
of Java code.

2. Background
SAVE is the result of research conducted at

the Trusted Systems Innovation Group (TSIG) of
Fujitsu Laboratories of America (FLA) in collabo‑
ration with Software Innovation Laboratories of
Fujitsu Laboratories Ltd., to address the valida‑
tion of large heterogeneous software code bases.
The primary goal of this work is to provide a
framework that helps detect shallow and deep
defects with a high degree of automation and
usability prior to application deployment in the
field. SAVE is being actively applied to validate
large commercial Web applications. This paper
focuses on the architecture of SAVE and the
innovative techniques that provide the founda‑
tional basis for the various steps taken within
SAVE. It also cites several Web application case
studies to illustrate SAVE application.

Figure 1 shows a typical Web application
consisting of three tiers. These layers embody
different functional aspects of the application, are
typically implemented in many different languag‑
es, and also distributed as “open” client‑server
applications. To deal with this complexity, SAVE
provides the following three stages for automated
validation of Web applications:
1) Environment generation

HTTP

F
ire

w
al

l

F
ire

w
al

lPresentation
or Web tier
servlets/JSP

Business tier
[EJB, Java]

Component protocol

Database
access

Database tier

HTML

Figure 1
Three-tier Web application architecture.

400 FUJITSU Sci. Tech. J., 43,4,(October 2007)

S. P. Rajan et al.: Software Applications Validation Environment: SAVE

2) Requirements categorization and automatic
monitor generation

3) Model checking
Environment generation is the first step in

preparing a software application for automatic
validation. The environment interacting with
the software application is usually too large for
validation or may be unknown due to the “open”
or reactive nature of a distributed client‑server
application. Using environment generation, a
small set of behaviors representing a subset of
typical and atypical scenarios is generated and
integrated to “close” the software module. This
“closed” software module is then ready to be run
as a stand‑alone application for the use of valida‑
tion techniques.

In the second step of requirements catego‑
rization and automatic monitor generation,
depending on the nature of the Web applica‑
tion and set of requirements to be validated,
requirements are matched with domain‑specific
templates and instantiated. The domain‑specific
templates are created as a priori. Every
domain‑specific requirement template has a
corresponding monitor for checking the valid‑
ity of the requirement when model checking is
performed. These generic monitors are instan‑
tiated with specific program objects and events
leading to a set of monitors particular to the
software application being validated.

In the third step, model checking analyz‑
es the state transition system corresponding to
the software implementation. It detects wheth‑
er a requirement stated as a property using a
mathematical expression is true in a given state.
If a property violation is found, the violating
trace (called a counterexample) is recorded and
presented to the user for inspection.

There are many aspects of a Web applica‑
tion, in particular the presentation layer or Web
tier that cannot be validated by model checking
alone. In this case, we provide a novel method of
automatically generating test cases that guaran‑
tee 100% coverage with respect to the Web tier

requirements.

3. SAVE: Architecture and tool
flow
Figure 2 shows the architecture and

process of performing validation in SAVE as
explained in the following subsections. By using
SAVE we can rapidly uncover bugs hidden in the
Web tier, business control logic, business data
flow, and concurrent database access routines.

3.1 Environment generator
Environment generation1) is a technique

used in modular approaches2) that restricts
analysis to a selected part of a program (called
a module), while representing the module’s
context of execution (called environment) at a
higher level of abstraction. The environment
has two aspects: drivers that hold a thread of
control, and stubs that do not. Given a module
as a collection of Java classes, the environment
generation techniques first automatically discov‑
er the interface between the module and its
environment, and then generate code for drivers
and stubs. Figure 3 shows a common scenario
where drivers make calls to the module, which
in turn calls the stubs. In general, references
between the module and its environment may be
arbitrary; that is, stubs may have callbacks.

The environment generation tools support
the modeling of various interactions between
a module and its environment. In the domain
of Web applications, the Java part of a given
Web application, excluding libraries, is treated
as a module. The drivers are modeled to reflect
actions of a user interacting with the applica‑
tion through a browser. Libraries and non‑Java
artifacts are modeled as stubs. Regular expres‑
sions are used to describe common user scenarios
for driver generation, while static analysis and
domain‑specific knowledge (such as deployment
descriptor files) are used for stub development.
Upon being generated, drivers and stubs are
combined with the original application code to

401FUJITSU Sci. Tech. J., 43,4,(October 2007)

S. P. Rajan et al.: Software Applications Validation Environment: SAVE

Manual user input

Automatic tool input/output

 Environment
generator

Web
application

Use cases/
Web spec.

Req. monitor
generator

Application
model

Validate or
error trace

Model
based test
generator

Model
checker

Requirements

JWebUnit
test cases

Figure 2
SAVE architecture and tool flow.

Module Module

StubsCode base

Drivers

Environment
generation

Figure 3
Environment generation.

402 FUJITSU Sci. Tech. J., 43,4,(October 2007)

S. P. Rajan et al.: Software Applications Validation Environment: SAVE

create a self‑executable Java program, ready for
model checking.

3.2 Requirements monitor generator
The SAVE framework provides the user

with a library of parameterized properties called
requirements categories. This library is designed
to encompass most requirements that would
typically need to be checked in the context of
E‑commerce applications. The idea of restrict‑
ing requirement specifications to a library of
commonly used temporal logic formulas made
available to the user was proposed in3) among
other works. This concept is developed further in
several respects within SAVE and its application
customized for E‑commerce applications. In order
to model check a given requirement, the user
simply chooses a property template that models
said requirement from the template library, as
shown on the SAVE screen shot in Figure 4,
and then provides the parameters necessary to
specialize the template to the given requirement.

The SAVE framework automatically instan‑
tiates a monitor implementing this property
and uses a third‑party formal model check‑
er to model‑check it. For example, in order to

model check the requirement “the shopping
cart must be emptied after checkout in every
shopping session,” the user would simply choose
the response property template, “b follows a”
and supply the events cart is emptied and
checkout for parameters b and a, respectively.
The SAVE framework automatically performs
instantiation of the monitor for a specific proper‑
ty and subsequent model checking. In fact, even
the task of specifying parameters for templates
is considerably eased by providing the user with
a library of principal events for the application
at hand, as shown on the SAVE screen shot in
Figure 5. The user has the option of choosing
from among these events or supplying an origi‑
nal one. SAVE generates the library of events
through static analysis of the application source
code during the environment generation phase.

3.2.1 Model checker
The model checker we use in SAVE is called

Java Pathfinder (JPF).4) In JPF, requirements
can be specified as assertions embedded in the
code or as global monitors (called listeners in JPF
terminology) that the user must create for each
property by using the listener framework provid‑

Figure 4
Requirements categories in SAVE.

Figure 5
Universal event list and mapping to code.

403FUJITSU Sci. Tech. J., 43,4,(October 2007)

S. P. Rajan et al.: Software Applications Validation Environment: SAVE

ed with JPF. JPF was originally developed at
NASA and has now been released into the public
domain. JPF is an explicit state model checker
built on top of a customized virtual machine that
can run a Java program along all possible paths,
checking for runtime errors, deadlocks, and race
conditions. Though model checking is a power‑
ful technique, there are two major complications
that arise when model checking Java Web appli‑
cations. First, the state transition system must
be self‑executable, ready to run on a single JVM,
and written in pure Java. Web applications, on
the other hand, are open distributed systems
usually comprised of artifacts written in many
languages (e.g., Java, JavaScript, HTML, XML).
Secondly, for infinite domains, the state transition
system for real software is infinite. In order to be
tractable, model checking must be combined with
powerful reduction techniques such as partial
order reduction,5),6) data abstraction,7) slicing,8)
and modular approaches.

3.2.2 Symbolic execution
Symbolic execution is a powerful model

checking technique built into SAVE. In this
technique the inputs are symbolic instead of
being concrete values. A symbolic decision
procedure engine is then used to check wheth‑
er a certain requirement is satisfied.9) Symbolic
execution provides precise path analysis and
characterizations of all possible executions up to
a certain bound. It is better suited to programs
involving many arithmetic operations and
properties, and can provide complete coverage
of the system on which it runs. As the number
of conditionals increase across long paths in
a program, however, the path conditions can
become too complicated to be eventually solved
by the decision procedure in a reasonable period
of time. Hence, environment generation should
be used to also localize the application of symbol‑
ic execution.

3.3 Automatic model-based test case
generation
In applying environment generation

followed by model checking to E‑commerce appli‑
cations, the Web and database tiers are typically
substituted with drivers and stubs, respective‑
ly. Thus, requirements directly related to the
Web tier (composed of HTML/Javascript/JSP)
or database tier (composed of JDBC/database)
cannot be validated. In order to address this
issue, we have developed a novel technique for
automatically generating test cases correspond‑
ing to requirements related to these tiers.

It is clearly evident that constructing effec‑
tive tests is no trivial matter. Existing work on
testing Web applications tends to require testers
who have expert knowledge about low‑level
details of the implementation. In addition,
propositional abstraction — using propositions
in abstracting an application — is still commonly
used.

Instead, we use the specification model of
a Web application written in a language called
WAVE10),11) developed by the database group at
UC San Diego to describe how screen transi‑
tions occur and how such transitions are linked
to the database. We apply model checking to the
WAVE specification based on the requirements,
and automatically generate JWebUnit test cases
corresponding to the requirements. These test
cases can be run directly on the original appli‑
cation. Figure 6 shows examples of a WAVE
specification, requirement, and the corresponding
JWebUnit test case generated.

Before describing our approach for testing
Web applications, we first introduce the notion of
Web test cases. A Web test case is a specialized
program that performs user inputs and naviga‑
tion on actual Web sites, and makes assertions
along the way. A Web test case is considered
to pass when it represents valid execution of
the Web site, with all assertions being true.
Otherwise, it is considered to fail. In our experi‑
ments, Web test cases are in the form of Java

404 FUJITSU Sci. Tech. J., 43,4,(October 2007)

S. P. Rajan et al.: Software Applications Validation Environment: SAVE

programs using JWebUnit libraries.
In briefly describing our verification‑based

testing approach, we first note that the imple‑
menter of the application is likely to be other
than the tester, who now produces a high‑level
specification model of the application and desir‑
able properties to be verified. This immediately
presents a couple of potential problems:
1) There is no guarantee that the specification

model (written by the tester) is faithful with
respect to implementation (written by the
implementer).

2) There might be flaws in the specification of
the Web application.

 In addition to the original problem,
3) There might be errors in the implementation.

In this approach, we develop the specifica‑
tion and refine it. The specification is developed
in a variety of ways. The tester can examine

the implementation and manually create WAVE
models. We could also create models in other
similar formalisms like Scenery12) (which uses
hierarchical message sequence charts)13) as
shown in Figure 7, or by using unified modeling
language (UML).14) Automated code analysis
tools can be used to reverse engineer the code
base to produce UML‑type models. Server logs
and network traffic analysis can be used to
construct scenarios and use cases of how Web
pages are typically traversed.15) Once the specifi‑
cation model has thus been developed, a property
is verified through model checking of the specifi‑
cation model using standard techniques and the
counterexamples obtained (until none exists),
and then mapped to a Web test case. The Web
test case is executed on the implementation.
If it fails, problem 1) above is identified; if it
passes, problem 2) above is identified. In either

WAVE Specification of Petstore JWebUnit Test Case Generated

Figure 6
Examples of WAVE specification, requirement/property specification, and generated
JWebUnit test case/monitor.

405FUJITSU Sci. Tech. J., 43,4,(October 2007)

S. P. Rajan et al.: Software Applications Validation Environment: SAVE

case, the tester properly modifies the specifica‑
tion as necessary. This process is repeated on
all available properties and counterexamples.
No previous work has successfully or credibly
provided such a synergistic methodology. Our
test generation methodology produces tests based
on both user‑defined properties (such as “shopping
cart must be empty after checkout”) and a
comprehensive scenario analysis of the specifica‑
tion model. Assertions based on properties to be
checked are automatically generated and insert‑
ed in test monitor code that implements the Web
test case.

4. Case studies
We now present an external case study and

the internal trials we conducted to evaluate the
effectiveness of the SAVE tool. The first example
is a public domain application bundled with the
Java release. The second case study is a set of
internal trials.

4.1 Java Pet Store
We applied SAVE to validate a widely used

industrial Web E‑commerce application called
Java Pet Store.16) We applied all three features
available in SAVE to validate different types of

requirements. Some examples of requirements
are:
1) Shopping cart becomes empty after order

confirmation: validated by environment
generation and model checking.

2) If the order exceeds $500, then the status
becomes pending: validated by symbolic
execution.

3) It is not possible to check out if the cart is
empty: validated by test case generation
based on model checking.
Next, we explain finding defects in the Java

Pet Store application. We applied our environ‑
ment generation tools to the Java Pet Store
application in the following way. The applica‑
tion code was treated as a module, calls to library
methods (e.g., J2EE and JDBC libraries) were
stubbed out, and the drivers were generated to
simulate user interactions with the application
(e.g., clicking on available buttons or entering
information in a text box). If necessary, the tools
are capable of automatically generating drivers
that perform all possible sequences of button
clicks and user inputs. But since such drivers
are impractical, user specifications that describe
likely interaction scenarios can be used to gener‑
ate more practical drivers. The users only need

Figure 7
Scenery screen shot.

406 FUJITSU Sci. Tech. J., 43,4,(October 2007)

S. P. Rajan et al.: Software Applications Validation Environment: SAVE

to specify the sequences of events performed.
Our environment generation tools automatically
generate appropriate event values such as user
input data. Figures 8 and 9 depict the structure
of the original petstore application and its model
after the environment generation step.

The stubbed Java Pet Store application, in
combination with the generated driver, consti‑
tutes a model of the Java Pet Store application.
This model is then model‑checked. The gener‑
ated Java Pet Store model was given to the JPF
model checker and the global monitors were
invoked. The model checker in SAVE reported

a security violation of the requirement for the
user to create an account with a second sign‑in
password matching the first. Figures 10 and 11
show the output visualization for diagnosis. In
addition, we found two other defects in the Web
and database tiers using test case generation
based on model checking: 1) a user can create an
account with an empty profile and still proceed
with E‑commerce transactions, and 2) reusing
a user name while creating a new user account
crashes the system.

Business logic: Java

public interface ShoppingCartLocal extends
EJBLocalObject {

public void addItem(String itemID);
public void setLocale(Locale locale);
public Collection getItems ();
public void deleteItem(String itemID);
public void updateItemQuantity(String itemID , int

newQty);
public Double getSubTotal ();
public Integer getCount ();
..
cart.processed ();

}

EJB/Web/
Application

Server/
Database

Server/Database:
JSP/JDBC/EJBJ2EE

UI/Web browser:
HTML/Javascript/Java

UI libraries

Figure 8
Original petstore application.

public interface ShoppingCartLocal extends
EJBLocalObject {

public void addItem(String itemID);
public void setLocale(Locale locale);
public Collection getItems ();
public void deleteItem(String itemID);

public void updateItemQuantity(String itemID , int
newQty);

public Double getSubTotal ();
public Integer getCount ();
..
cart.processed ();

}

javax.servlet .*

javax.ejb .*

javax.sql .*

createUser ;
(createAccount |

updateAccount) ;
(purchase | remove |

update) ;
order; signOut

Use Cases/Scenarios

Drivers

Application code

Stubs

Figure 9
Petstore model.

407FUJITSU Sci. Tech. J., 43,4,(October 2007)

S. P. Rajan et al.: Software Applications Validation Environment: SAVE

4.2 Internal trials
SAVE has been utilized to detect defects

in large software code bases written in Java for
Web‑based applications used by Fujitsu custom‑
ers. The applications may consist of Java applets
that communicate asynchronously with a server
and various IO device controllers like print‑
ers and image readers. The applications are
multi‑threaded in nature and therefore very
suitable for model checking to look for bugs
arising from deadlocks and races that occur due
to improper synchronization among different
threads.

The f irst step in the model checking
process is environment generation as shown in
Figure 12. The application under verification is
converted into a self‑contained executable Java
model. This conversion, currently semiautomatic
in nature, is done using the techniques described
earlier. The environment generator tool in SAVE
can provide much assistance to the verifica‑

tion engineer in creating the drivers and stubs
necessary, but might require some manual inter‑
vention to complete the process.

Following creation of the model, a bug was
first introduced to verify whether JPF could
catch the bug in the model. Initially this was
not possible due to vastly increased state space
in the model. This was tackled using three
approaches. First, the system was initialized
in a sequential manner to reduce any increase
in state space in the uninteresting initializa‑
tion phase. Once initialization was complete,
the different concurrent threads were allowed to
run in parallel. Although such modification is
currently done manually, this technique may be
incorporated automatically in the environment
generation phase. Secondly, certain variables
shared among different threads were marked
as being unimportant from the standpoint of
JPF and excluded from its analysis, by simply
modifying the input properties file that holds

Figure 10
Output visualization of Error Trace.

Figure 11
Visualization of all states and paths explored by model
checking.

408 FUJITSU Sci. Tech. J., 43,4,(October 2007)

S. P. Rajan et al.: Software Applications Validation Environment: SAVE

the parameters used by JPF during its execution
run. This helped reduce the unnecessary branch‑
ing that would occur if JPF tried to detect race
conditions among these variables. This exclusion
of variables must be done carefully since it may
mask races that are actual bugs in the program.
One approach is to exclude variables in the class‑
es or methods that need not be verified at that
time. Thirdly, a depth‑first search was employed
instead of a breadth‑first search to keep memory
requirements under control as only one path
was checked and discarded at a time. Again this
required minor modifications in the properties
file of JPF.

It took about 3.5 hours of CPU time to
complete the model checking of a typical Fujitsu
Web application. There were some surprises
during the detection of bugs in that paths to the
defective states exposed by the model checker
were unexpected scenarios. This illustrated that,
unlike testing, model checking can indeed uncov‑
er unexpected program behavior. By using the
technique above in addition to the injected error,
JPF could also detect a deadlock situation in the
application model.

5. Conclusions
SAVE is a powerful framework that encap‑

sulates the most advanced techniques in software
validation. With this framework one need not
insert assertions in the application code base, but
can simply check whether a set of global require‑
ments is valid in a software application with
a high degree of automation. If the validation
fails, SAVE provides a visualization of the bug
trace and can therefore help diagnose and trace
the cause efficiently. We currently have about
25 requirements (properties) that Web applica‑
tions must satisfy. These 25 requirements are
generic across a variety of Web applications that
include the aspects of navigation, business logic,
security, and databases.

SAVE has been applied to several large open
source and commercial applications, and success‑
fully uncovered both previously known as well as
new security and safety‑critical defects. Some of
these defects were hidden deeply in the execution
of applications where it would have been almost
impossible for conventional testing techniques to
find. Our goal for the future is to make SAVE an
indispensable tool for software development and
testing teams seeking to avoid costly software
failures in the field.

Applets

Web browser

Applets

Driver from use case scenarios

Server stub

IO device controller

Device Device

asynchronous

asynchronous

asynchronous

asynchronous

Server

IO device controller stubs

Self-contained executable model

Figure 12
Environment generation for Web applications.

409FUJITSU Sci. Tech. J., 43,4,(October 2007)

S. P. Rajan et al.: Software Applications Validation Environment: SAVE

References
1) O. Tkachuk et al.: Application of Automated

Environment Generation to Commercial
Software. International Symposium on Software
Testing & Analysis, 2006.

2) B. Hailpern et al.: Modular verification of concur‑
rent programs. Proceedings of the 9th ACM
SIGPLAN‑SIGACT Symposium on Principles of
Programming Languages, Albuquerque, Mexico,
1982, p.322‑336.

3) M. B. Dwyer, G. S. Avrunin, and J. C. Corbett:
Patterns in Property Speci f icat ions f or
Finite‑state Verif ication. International
Conference on Software Engineering, 1999.

4) W. Visser, K. Havelund, G. Brat, S. Park, and F.
Lerda: Model Checking Programs. Automated
Software Engineering Journal, 10, 2, 2003.

5) G. Holzmann et al.: An Improvement in Formal
Verification. FORTE 94, 1994.

6) P. Godefroid: Partial‑Order Methods for
the Verif ication of Concurrent Systems.
Lecture Notes in Computer Science, 1032,
Springer‑Verlag, 1996.

7) C. Flanagan et al.: Predicate Abstraction for
Software Verification. Proceedings of the
29th ACM SIGPLAN‑SIGACT Symposium on
Principles of Programming Languages, 2002.

8) A Survey of Program Slicing Techniques. Journal

of Programming Languages, 3, 3, p.121‑189
(1995).

9) C. S. Pasareanu et al.: Verification of Java
Programs using Symbolic Execution and
Invariant Generation. Proceedings of the 11th
International SPIN Workshop on Model Checking
of Software, 2004.

10) A. Deutsch et al.: Specification and Verification of
Data‑driven Web Services. PODS 2004.

11) A. Deutsch et al.: A system for specification and
verification of interactive, data‑driven web appli‑
cations. SIGMOD Conference 2006.

12) P. K. Murthy et al.: High Level Hardware
Validation using Hierarchical Message Sequence
Charts. IEEE International High Level Design
Validation and Test Workshop, 2004.

13) ITU Recommendation Z.120, Message Sequence
Charts. Telecommunication Standardization
Sector, Geneva, 1996.

14) OMG Unified Modeling Language Specification.
Version 2.0, 2006.

15) P. Tonella et al.: Dynamic Model Extraction
and Statistical Analysis of Web Applications.
Proceedings of the Fourth International
Workshop on Web Site Evolution, 2002.

16) Java Pet Store.
 http://java.sun.com/j2ee/1.4/download.

html#samples

http://java.sun.com/j2ee/1.4/download.html#samples

410 FUJITSU Sci. Tech. J., 43,4,(October 2007)

S. P. Rajan et al.: Software Applications Validation Environment: SAVE

Indradeep Ghosh, Fujitsu Laboratories
of America, Inc.
Dr. Ghosh received the Bachelor
of Technology degree in Computer
Science and Engineering from the
Ind ian Ins t i t u te o f Techno logy,
Kharagpur, India, in 1993, and the
M.A. and Ph.D. degrees in Electrical
Engineering from Princeton University,
Princeton, New Jersey, in 1995 and
1998, respectively. In 1998 he joined

Fujitsu Laboratories of America, Sunnyvale, California where
he is currently a research staff member in the Trusted Systems
Innovation Group. He has authored or co-authored more that
40 technical articles in international journals and conferences,
and holds five US patents. He co-authored a paper that won
the Honorable Mention Award at the International Conference
on VLSI Design (1998). He has given numerous presentations
at international conferences and workshops. At Fujitsu he has
been involved in the design, verification, and testing of hardware
and software systems. He is a member of ACM and senior
member of the IEEE.

Mukul R. Prasad, Fujitsu Laboratories
of America, Inc.
Dr. Prasad received the Bachelor
of Technology degree in Electrical
Engineering from the Indian Institute of
Technology, Delhi, India, in 1995, and
Ph.D. degree in Electrical Engineering
and Computer Sciences from the
University of California at Berkeley,
California, in 2001. Since 2001 he
has been with Fujitsu Laboratories

of America in Sunnyvale, California where he is currently a
research staff member in the Trusted Systems Innovation
Group. He has authored more than 20 technical articles in in-
ternational journals and conferences, holds three US patents,
and won a Best Paper Award at the Design Automation & Test
in Europe (DATE) Conference in 2002. His research encom-
passes all aspects of the validation of hardware and software
systems. Dr. Prasad is a member of ACM and IEEE.

P r a v e e n K . M u r t h y , F u j i t s u
Laboratories of America, Inc.
Dr. Murthy received the Bachelor
o f Sc ience degree in E lec t r ica l
Engineering from the Georgia Institute
of Technology, Atlanta, in 1989, and
M.S. and Ph.D. degrees in Electrical
Engineering and Computer Science
from the University of California at
Berkeley, in 1993 and 1996, respec-
tively. He then joined Cadence Design

Systems, where he worked on dataflow compiler optimization
algorithms. After Cadence, he joined in the startup of Angeles
Design Systems, where he was lead architect of System
Canvas (a system level design tool based on dataflow), as
well as discrete-event simulators and an optimization engine
for DSP and telecommunications systems. In 2001 he joined
Fujitsu Laboratories of America, Sunnyvale, California where
he is currently a research staff member in the Trusted Systems
Innovation Group. He has authored two books and more than
two-dozen technical articles in international journals and for
conferences. At Fujitsu he headed the Scenery project and was
involved in the verification and testing of hardware and software
systems. He is a member of ACM and senior member of the
IEEE.

R y u s u k e M a s u o k a , F u j i t s u
Laboratories of America, Inc.
Mr. Masuoka is director of the Trusted
Systems Innovation Group at Fujitsu
Laborator ies of America, Inc. at
College Park, Maryland, USA. He is
also an adjunct professor of UMIAC,
University of Maryland, USA. Since
joining Fujitsu Laboratories Ltd. in
1988, he has researched neural
networks, simulated annealing, and

agent systems. Results from all these research areas have
led to products from Fujitsu. After joining Fujitsu Laboratories
of America, Inc. in March 2001, he was engaged in research
on pervasive/ubiquitous computing, Semantic Web, and bioin-
formatics, from which task computing is derived. He has now
extended his research to trusted computing, software/security
validation, and system level design.

S r e e r a n g a P. R a j a n , F u j i t s u
Laboratories of America, Inc.
Dr. Rajan is a senior research staff
member leading the software valida-
tion project conducted by the Trusted
Systems Innovation Group (FLA). He
joined FLA in 1996 from the Com-
puter Science Laboratory at Stanford
Research Institute International (SRI).
Since then, he has worked on develop-
ing compilers and pioneering advanced

software verification techniques at FLA. Dr. Rajan has numer-
ous publications, patents, and awards. He currently serves as
the founding Editor-in-Chief of ACM Transactions on Storage.

Oksana Tkachuk, Fujitsu Laboratories
of America, Inc.
Ms. Tkachuk joined FLA in 2005 and
works on environment generation
techniques for commercial software.
As part of her work at NASA Ames
Research Center (during summer
2001, 2002, and 2003) and for her
doctoral thesis (at Kansas State
University in 2007), she developed
automated environment generation

techniques that support both synthesis from user specifications
and extraction of environment models from implementations us-
ing static analysis techniques.

411FUJITSU Sci. Tech. J., 43,4,(October 2007)

S. P. Rajan et al.: Software Applications Validation Environment: SAVE

Kenji Oki, Fujitsu Laboratories Ltd.
Mr. Oki received the B.E. degree in
Information Science and Engineering,
and M.E. degree in Computer Science
from Tokyo Institute of Technology,
Tokyo, Japan in 2004 and 2006, re-
spectively. In 2006 he joined Fujitsu
Laboratories Ltd., Kanagawa, Japan
where he has been engaged in re-
search on software engineering.

Hirotaka Hara, Fujitsu Laboratories
Ltd.
Dr. Hara is the director of Software
Innovation Laboratories (SIL) at Fujitsu
Laboratories Ltd., Kawasaki, Japan.
He received the B.S. degree in Infor-
mation Science in 1984 and a Ph.D. in
Information Engineering in 1992 from
the University of Tokyo, Tokyo, Japan.
He joined Fujitsu Laboratories Ltd.,
Kawasaki, Japan in 1984 and has been

engaged in research and development of artificial intelligence
and distributed enterprise systems. He is a member of the
IEEE. He received the IPSJ Convention Award and the JSAI.

Tadahiro Uehara, Fujitsu Laboratories
Ltd.
Mr. Uehara received the B.E. degree
in Control Engineering and M.E. de-
gree in Intelligent Science from Tokyo
Institute of Technology, Tokyo, Japan in
1993 and 1995, respectively. He joined
Fujitsu Laboratories Ltd, Kanagawa,
Japan in 1995, where he has been
engaged in research on software
engineering, especially object-oriented

technologies and testing technologies for business applications.

Kazuki Munakata, Fujitsu Laboratories
Ltd.
Mr. Munakata received the M.E. degree
in Information Science from Japan
Advanced Institute of Science and
Technology, Ishikawa, Japan in 2001.
In 2005 he joined Fujitsu Laboratories
Ltd., Kanagawa, Japan where he has
been engaged in research on software
engineering, particularly software veri-
fication and requirement engineering.

