
293FUJITSU Sci. Tech. J., 43,3,p.293-300(July 2007)

Features for Continuous Business Services
throughout Application Lifecycles

V Shinya Echigo

(Manuscript received January 11, 2007)

One way to achieve a high-reliability, high-performance system is to implement
non-stop operation. This is very important because business chances are lost
during system downtime. Until now, maintenance and enhancements of business
applications could only be done by stopping an entire system, so these activities
are obstacles to non-stop operation. Therefore, a key problem for non-stop system
implementation is how business applications can be upgraded without stopping an
entire system. This paper describes a dynamic application replacement technology
for overcoming this problem.

1.	 Introduction
Mission-critical systems need high reliability

and high performance to provide end users with
stable business operations.

Many mission-critical systems are expected
to operate without stopping. However, this is
difficult to achieve because many of the hardware
and software components of a system cannot
work continuously. Usually, system administra-
tors prepare maintenance periods during which
systems are shut down. However, even if these
maintenance periods are short, system shutdowns
should be avoided because they lead to lost
business opportunities.

Fujitsu’s Interstage middleware provides
solutions for implementing non-stop (24-hour/
7-day) operation. It incorporates Fujitsu’s
long-term experience in supporting many
mission-critical systems in Japan.

This paper describes approaches and
technologies for achieving non-stop system
operation even when tasks such as applying
application program patches, resolving problems,
and upgrading services are performed. These

are core technologies that support a non-stop
system, for example, by enabling non-stop session
recovery. This paper also describes some appli-
cations of these core technologies.

2.	 Considerations when
implementing a non-stop
system
Non-stop operat ion is essent ia l f or

constructing highly stable systems such as
mission-critical systems that cannot be shut down
without causing a huge business disadvantage.
Therefore, the shutdown time of such systems
must be minimized, even during system
maintenance.

Figure 1 shows the following three major
obstacles to achieving non-stop operation:
1)	 Hardware and software problems

When unpredictable problems occur with
hardware and software, the problems should be
resolved immediately. When the hardware has a
problem, it must be replaced. When the software
has a problem, the system administrator must
classify the cause of the problem, and if there

294 FUJITSU Sci. Tech. J., 43,3,(July 2007)

S. Echigo: Features for Continuous Business Services throughout Application Lifecycles

is a problem in the middleware, a patch must
be applied. However, until these actions are
completed, the system cannot respond to business
requests.
2)	 Business application hang-ups

Business application programs hang up
due to insufficient resources, program bugs,
and other causes. When a hang-up occurs, the
system cannot respond to business requests and
the business applications’ programs must be
restarted after the cause of the hang-up has been
cleared.
3) 	 Application program enhancements

When application developers notice a bug
or add a new service in an application program
that implements business logic, the application
program will be changed. In these cases, the
application program may need to be stopped.

Fujitsu’s Interstage middleware provides
software solutions for realizing non-stop systems.

For example, regarding the second obstacle
of business application hang-ups, Interstage
provides solutions for anticipating troubles by
way of alarm notifications and solutions for
reducing the down time of business applications
by auto-restarting their programs.

Similarly, regarding the third obstacle of
application program enhancements, Interstage
provides the solutions introduced in the next
section.

This paper also describes how these
solutions can be applied to overcome the first
obstacle of hardware and software problems.

3.	 Solutions for application
program modifications and
enhancements
As mentioned in Section 2, application

program modifications and enhancements are
issues that must be resolved when implementing

Figure 1
Obstacles to non-stop operation.

Stop receiving business requests to system.

End user End user End user

StopStopStop

Non-stop system Non-stop system Non-stop system

1. Hardware and software
 problems

2. Business application
 hang-ups

Application
program

Application
program

Application
program

3. Application program
 enhancements

Application program

Deploy and
re-deploy
Deploy and
re-deploy

295FUJITSU Sci. Tech. J., 43,3,(July 2007)

S. Echigo: Features for Continuous Business Services throughout Application Lifecycles

a non-stop system.
There are two type of solutions for making

application program modifications and enhance-
ments without stopping a system:
•	 Solutions using load balancers
•	 Solutions using Interstage functions

Both types have merits and demerits and
the system administrator must choose the best
solution for the system architecture and require-
ments. Table 1 summarizes the characteristics
of five solutions, and the following sections
explain them in detail.

3.1	 Solutions using load balancers
In large-scale systems, load balancers such

as Fujitsu’s IPCOM1) network server are usually
installed. Load balancers can improve an entire
system’s throughput by managing several servers
in parallel.

By using load balancers, a system admini-
strator can change the load balancing policy
of a system’s servers to temporarily stop the
dispatch of business requests to a server so it can
be safely maintained. During the maintenance,
the remaining servers can continue processing
business requests so the system does not stop
(Figure 2).

These solutions can be applied for hardware
and software problems (e.g., hard-disk problems
and middleware program bugs) because they can
isolate problem parts. With these solutions, the
system administrator separates the target server,
safely fixes the hardware and software, and then

builds the server back into the system.
However, these solutions are only applicable

to systems that employ load balancers, and they
require the system administrator to perform
tasks such as changing the policy of the load
balancers. These disadvantages make these
solutions difficult to apply in general.

Moreover, when maintenance is performed
using these solutions, the number of servers
is reduced, so the system administrator must
ensure that the remaining servers have sufficient
capacity to cope with the extra load.

3.2	 Solutions using Interstage functions
Interstage Application Server, which is the

foundation product of Interstage, provides three
functions for non-stop application maintenance
that are similar to those of load balancers:
1) 	 The HotDeploy function
2) 	 The Class Auto-reload function
3) 	 A function for active changing of server

applications

3.2.1	 HotDeploy function
Interstage Application Server provides the

Interstage Java Server (hereafter called the
IJServer), which is a platform for executing Java 2
Platform, Enterprise Edition2) (hereafter called
J2EE) applications. The IJServer provides
several functions for achieving a non-stop system.
One of them, the HotDeploy function, allows
J2EE applications to be dynamically added
(deployed), changed (redeployed), and deleted

 Solution

Using a load balancing product

HotDeploy function

Class Auto-reload function

Active changing of a server
application

Coordination with Session
Recovery function

 Target

Any application

J2EE application only

J2EE application only

Transaction application only

J2EE application only

 Situation

Any: From server hardware problems to small
modifications to application programs

Large modification and enhancement at service level

Small modifications

For transaction applications

No effect on continuous business processing for end
users

Table 1
Summary of five solutions for application program enhancement.

296 FUJITSU Sci. Tech. J., 43,3,(July 2007)

S. Echigo: Features for Continuous Business Services throughout Application Lifecycles

(undeployed) without stopping the IJServer.
The HotDeploy function deploys, redeploys,

and undeploys J2EE applications by using files
with ear, war, and jar extensions. These are
J2EE archive files that contain the class files and
configuration files (called deployment descriptors)
of J2EE applications and are used as units of
J2EE applications to be delivered. Because
these archive files (hereafter called applica-
tion modules) are created in units of business
services, the HotDeploy function allows business
services to be dynamically added, changed, and
deleted.

The HotDeploy function is achieved using
the Java class loader mechanism. By using
separate class loaders, several generations
(before modification and after modification) of
the same J2EE application implementation can
be managed on the same process. The business
requests received after executing the HotDeploy
function are dispatched to the new J2EE applica-

tion implementation as shown in Figure 3. Old
implementations in memory are automatically
discarded by the Java garbage collection function.

The HotDeploy function is designed to
minimize the losses incurred when reception of
business requests is temporarily stopped. For
example, to reduce the usage of system resources,
several ear files are usually deployed on a single
IJServer to process several different services.
However, the effect of the HotDeploy function
is limited to the target application module, so
the other J2EE applications continue proces-
sing business requests without interruption.
Additionally, the HotDeploy function prevents
business requests from being lost as follows:
1) 	 Reception of new business requests is

temporarily stopped while the HotDeploy
function is executed (1 and 2 in Figure 3).

2) 	 Before replacing the new J2EE applica-
tion implementations, the IJServer waits
until all the received requests have been

Stop dispatching requests
by changing the load balancing policy.

Server

Application program

Application
program

Application
program

Server

Server

Server

Deploy and
re-deploy

Stop

Load balancing

Load balancing policy

Continue dispatching requests
to other servers so entire system
does not stop.

End users

Figure 2
Solution using load balancing product.

297FUJITSU Sci. Tech. J., 43,3,(July 2007)

S. Echigo: Features for Continuous Business Services throughout Application Lifecycles

completely processed (3).
3) 	 Reception of new business requests is

restarted (4)
An application program developer can

manage the timing of the HotDeploy function.
For example, a simple batch command can be
created that executes the HotDeploy function
at midnight. This allows scheduled service
modifications.

3.2.2	 Class Auto-reload function
The Class Auto-reload function is another

of the functions of the IJServer platform for
J2EE applications. This function is used when
replacing class files (executable files on the
Java Virtual Machine) of J2EE application
implementations. The IJServer detects the
replacement of class files automatically. When
this function is used, replacement becomes easier
because the application program developer does
not need to recreate the ear files or execute
commands and only needs to copy the new files
to a suitable directory. Therefore, this function is
more effective when a modification is limited to

just a few class files, which is common during the
application development phase.

Like the HotDeploy function, the Class
Auto-reload function is implemented based on
the Java class loader mechanism. The applica-
tion program developer copies the class files to
the server machine (1 in Figure 4). Then, the
IJServer periodically checks if any class files
have been replaced (2) and manages the infor-
mation of the class files so the replacements
are automatically detected when the HotDeploy
function needs to execute a command. When a
replacement is detected, the class loaders are
automatically replaced after stopping the accep-
tance of requests (3). After the class loaders
have been replaced, reception of new requests is
restarted (4).

3.2.3 	 Function for actively changing a server
application

There is one more function for dynamically
performing application program enhancements.
In addition to the J2EE platform, Interstage
Application Server also supports platforms on

 Deploy new application program
(e.g., execute deploy command).

Application program

 Process all received requests
using old application program.

Server

IJServer

Stop

Old class loader

New class loader

Old application program

New application program

Deploy, re-deploy,
and undeploy.

 Stop receiving requests.

End user

 Start receiving requests
 again.

New requests are
dispatched to new
application program.

* To dynamically remove the application program from the process, undeploy is available.

Figure 3
HotDeploy function.

298 FUJITSU Sci. Tech. J., 43,3,(July 2007)

S. Echigo: Features for Continuous Business Services throughout Application Lifecycles

which server application programs written in
C and COBOL are managed. In Interstage
Application Server, such application programs
are called transaction applications. Interstage
Application Server introduces the WorkUnit,
which is a function for managing several appli-
cation programs as a unit of business services in
a one-shot, synchronous manner. Transaction
applications are one of the application programs
that WorkUnits can manage.

Active changing of server applications
enables application programs and the operational
environment definitions (WorkUnit definitions)
of transaction applications to be dynamically
changed.

This function uses a request queue, which
is also provided by Interstage Application Server.
The business requests from the end users are
queued before they are dispatched to the appro-
priate application process. During active
changing of server applications, reception of
requests from the queue is temporarily stopped.

3.3	 More stable solutions for dynamic
application program modifications and
enhancements
Interstage Application Server also provides a

Session Recovery function for J2EE applications.
This function makes dynamic modifications and
enhancements of application programs more
stable.

The Session Recovery function saves Servlet
session information, which is conversational
information between a Web browser and Web
application, on another server called the session
registry server. The Servlet session information
is then carried over to the other IJServer
processes to continue business processing, and
the end users of the Web application are unaware
of the carry over. The Session Recovery function
therefore can be used to prepare for problems
with the IJServer such as, for example:
1) 	 An IJServer process or server machine going

down due to an unpredictable cause, or
2) 	 An IJServer process being stopped for

maintenance.
The Session Recovery function is achieved

 Copy new class files to suitable
 directory.

Application program

 Periodically check whether class
 files have been replaced.

Server

IJServer

Stop

Old class loader

New class loader

Old application program

New application program

 Stop receiving requests.

End user

 Start receiving requests
 again.

New requests are
dispatched to new
application program.

Figure 4
Class Auto-reload function.

299FUJITSU Sci. Tech. J., 43,3,(July 2007)

S. Echigo: Features for Continuous Business Services throughout Application Lifecycles

by using a session registry server that stores the
Java objects of the Servlet session information
and facilitates their transfer between IJServers.
If an IJServer receives a business request from
an end user but does not have the corresponding
session information of the request, the IJServer
tries to recover the session information from
the session registry server. If successful, the
IJServer carries over the session and continues
processing the business request.

As shown in Figure 5, by combining the
Session Recovery function with load balancers,
dynamic application program modifications and
enhancements can be achieved with the IJServer,
and processing of business requests can be
continued without discarding the sessions created
before the application programs are replaced.
The Session Recovery function stores sessions

to the session registry server (1 in Figure 5).
When a server needs to be maintained, the
system administrator stops dispatching business
requests to the server by changing the load
balancing policy (2 and 3). Even if the IJServer
is stopped temporarily to replace an application
program, another IJServer process running
on another server machine can carry over the
created session and continue processing the
business request (4). The end user is unaware of
the application replacement (5).

Furthermore, even if the Session Recovery
function is used only on a single server, the
effects of an IJServer shutdown are minimized.
The session registry server keeps a backup of the
created session information before the IJServer
is stopped. When the IJServer is restarted
and receives a request from an end user that is

Figure 5
Coordination with Session Recovery function.

 Back up sessions to
 session registry server.

 Stop dispatching requests
by changing load balancing policy.

Server

Application program

Server

Server

Deploy

Session 1

Session Recovery function

Session 1

Stop

Load balancing

Load balancing policy

 Continue dispatching requests
to other servers so entire system
does not stop.

End users

 End users are not aware of
 application replacement because
 their sessions are still accessible.

IJServer

IJServer

Session
registry
server

 Request to receive
backed up session from
session registry server.

300 FUJITSU Sci. Tech. J., 43,3,(July 2007)

S. Echigo: Features for Continuous Business Services throughout Application Lifecycles

related to a previous session, the IJServer recov-
ers the session information from the session
registry server.

However, for Interstage products, the use of
other solutions such as the HotDeploy function
is recommended in this case because the Session
Recovery function requires a longer application
stop time than other solutions. To reduce losses
for the end users, Interstage Application Server
should support a request queuing mechanism to
avoid the need to stop reception of new requests
during shutdown. Such a mechanism could also
be made available for dynamic application
program modifications and enhancements
using the HotDeploy and Auto-reload functions.
Developing such a mechanism is one of our
future plans.

4.	 Future plans for dynamic
application program
modifications and
enhancements
To make Interstage Application Server’s

dynamic application program modifications and
enhancements more useful and reliable, it will
have to be improved in three ways:
1) 	 When business services are added using

the HotDeploy function, the entire system
configuration should be checked to see if
tuning is necessary. Therefore, the new
function must be designed to simultane-
ously tune the system configurations of the
Web servers and the database servers that
cooperate with J2EE applications.

2) 	 The Class Auto-reload function detects
the replacement of class files; therefore,
the replacement timing is managed by
Interstage Application Server. However,
we must provide a command that enables
application program developers to specify
the replacement timing. By using such a
command, developers could synchronize an
entire system by using the Class Auto-reload
function to replace J2EE application

implementations.
3) 	 The HotDeploy f unct ion and Class

Auto-reload function temporarily stop recep-
tion of business requests. During this time,
an error is returned to the clients. If a
queuing mechanism such as a transaction
application is introduced, the requests are
queued so the clients do not receive an error.

5.	 Conclusion
Interstage Application Server provides

three software-based solutions for performing
dynamic application program modifications and
enhancements, which are essential for achieving
non-stop system operation. This paper described
how the Session Recovery function of Interstage
Application Server enables more stable dyna-
mic application program modifications and
enhancements. System administrators can select
functions that provide the best solution for the
robustness of their system by considering the
characteristics of the functions, the system archi-
tecture, and the system requirements.

Interstage Application Server provides
robust, high-availability technologies for business
application programs running on mission-critical
systems. By using Interstage Application Server,
customers can greatly improve the reliability of
the services they provide.

References
1)	 Fujitsu: Magazine FUJITSU 2006-7 (VOL.57,

NO.4).
	 http://jp. fu j i t su.com/about/magazine/

backnumber/vol57-4e.html
2) 	 Sun Microsystems: JSR 58: JavaTM 2 Platform,

Enterprise Edition 1.3 Specification.
	 http://jcp.org/en/jsr/detail?id=58

Shinya Echigo, Fujitsu Ltd.
Mr. Echigo received the B.S. and M.S.
degrees in Particle Physics from Kobe
University, Kobe, Japan in 1996 and
1998, respectively. He joined Fujitsu
Ltd., Kawasaki, Japan in 1998, where
he has been engaged in development
of middleware software.

