
139FUJITSU Sci. Tech. J., 43,1,p.139-150(January 2007)

Innovation in Software Development Process
by Introducing Toyota Production System

V Koichi Furugaki V Tooru Takagi V Akinori Sakata
V Daisuke Okayama

(Manuscript received June 1, 2006)

Fujitsu Software Technologies (formerly Fujitsu Prime Software Technologies [PST])
has been conducting activities since 2003 to improve productivity using the Toyota
Production System (TPS). An agile development process and a store management
method were introduced to implement the basic concepts of TPS in the IT software
field. We included the basic concepts of TPS (elimination of muda [waste], heijunka
[leveled production], and jidoka [automatic detection of abnormal conditions]) and
visual management in the agile development process and store management method
as practical techniques. PST introduced this agile development process to its soft-
ware development process and the store management method to support its
maintenance process. As a result, PST achieved significant improvements in both
processes and in its organizational climate. This paper introduces the TPS concepts
employed in the agile development process, describes how heijunka is used in the
store management method, and examines the effects of implementing agile develop-
ment and store management at PST.

1. Introduction
Fujitsu Software Technologies (formerly

Fujitsu Prime Software Technologies [PST]),
following the burst of the IT bubble in 2000,
introduced the Unified Modeling Language (UML)
and intensified its project management to improve
the productivity of software development. These
efforts improved productivity, but not enough to
overcome IT deflation. To break through this
situation, the Toyota Production System (TPS),1)

which has already proven its effectiveness in
hardware manufacturing, was introduced experi-
mentally to the software development processes.
This means that the concepts of TPS such as the
elimination of muda (waste), heijunka (leveled
production), jidoka (automatic detection of
abnormal conditions), and visual management are
practiced in the software development processes.
To implement these concepts, the agile develop-
ment process (hereafter called agile development)

and the store management method, which employ
TPS, have both been introduced. This paper
describes agile development and store manage-
ment and the effects of their introduction.

2. Agile development and
process improvement
In general, agile development is regarded as

the extreme opposite of waterfall development. In
waterfall development, each process (e.g., plan-
ning, analysis, design, implementation, and
testing) is performed only once and in sequence.
In agile development, a series of these processes
is repeated in what is known as repetition devel-
opment (Figure 1).

Compared to the repetition style of agile
development, waterfall development has the
following drawbacks.
1) Waterfall development assumes that no

changes will be made halfway through

140 FUJITSU Sci. Tech. J., 43,1,(January 2007)

K. Furugaki et al.: Innovation in Software Development Process by Introducing Toyota Production System

the planning; therefore, the additional
person-hours required for track back will be
significant if any changes are made.

2) Bugs are detected at the review of each
process end and during the test of lower
processes. If any bugs are detected, the
additional person-hours required for track
back will be substantial.

3) If the quality of design and implementation
are not good, the person-hours needed for
testing (debugging) will increase.

4) Operable software cannot be obtained until
the final process is completed.
Agile development has the following advan-

tages to offset the issues inherent in waterfall
development.
1) Analysis, design, implementation, and

testing are repeatedly performed in
smaller units; therefore, it is more tolerant
of changes and additions to the planning
(requirements).

2) To complete the required implementation and
testing requirements, operable software can
always be obtained, even if the scope of the
implemented features is small.

3) By repeating the regression tests every time
a small unit is implemented, failures can be

detected at an early stage.
Unlike other industrial products, a software

product is not continuously manufactured. Also,
in waterfall development, the series of processes
is performed only once during the development
period. Therefore, in many cases, lessons that
were learned from the successes and failures that
occurred during development will not be applied
to the next project. Consequently, it is hard to
execute the plan-do-check-act (PDCA) cycle.

On the other hand, with agile development,
a series of software elements are developed
repeatedly by almost the same people using the
same material and in the same environment.
Therefore, the lessons learned from the develop-
ment processes will likely be used in the following
development processes.

As a result, there are opportunities for the
PDCA cycle to be executed. This is the true
advantage of agile development.

3. Agile development and
concept of TPS
Agile development includes many of the TPS

concepts. The following are some examples.
1) Pull system

The concept of the pull system is embodied
in the acceptance test of agile development. The
acceptance test tests whether the software meets
the customer’s requirements. This test drives the
implementation, which is very different from the
situation in traditional development, in which the
incoming specifications from the upper processes
drive the implementation.
2) Just-In-Time

The Just-In-Time concept prioritizes the
customer’s needs and implements the prioritized
functions sequentially. Also, this is described as
You Aren’t Going to Need It (YAGNI).
3) Visual management

In agile development, “mirroring,” which is
a practice of Extreme Programming (XP), embodies
the visual management technique, which makes
a project’s status self-explanatory using analog

Scope Scope

Time Time

(a) Waterfall development (b) Agile development

Planning

Planning

Analysis

A
na

ly
si

s

Design

Implementation

Im
pl

em
en

ta
tio

n

Test

Te
st

D
es

ig
n

Figure 1
Comparison of waterfall and agile development.

141FUJITSU Sci. Tech. J., 43,1,(January 2007)

K. Furugaki et al.: Innovation in Software Development Process by Introducing Toyota Production System

media and encourages much faster feedback in
the action level.
4) Heijunka/multi-skill development

Multi-skill development, which gives each
worker multiple work skills, and heijunka, which
reduces each worker’s working hours, are the
principles of agile development.

4. Agile development
In agile development, the development

period is divided into units called iterations. An
iteration is a period in which processes are
executed to develop the scope of a function.

The first iteration starts at the beginning of
development. At this point, the prioritized
customer requirements are clearly indicated to the
development team, which implements them
according to their priority. Also, the end date is
decided when the iteration starts. The time
period is typically from one week to a month.
Even if the requirements have not all been imple-
mented, the end date is given priority. Any
requirements that have not been implemented
(lower priority) are postponed. If all the require-
ments have been implemented before the end date,
new customer requirements can be worked on.
Therefore, although all of the functions might not
be implemented as originally estimated, the
provision of outcome will not be delayed. There-
fore, the delivery date is given priority over the
function scope. Once the iteration is terminated,
even if all of the customer requirements have not
been implemented, the high-priority functions will
have been implemented, and operable software
can be output.

As soon as the first iteration is terminated,
the second iteration begins. At this time, as with
the initial iteration, the prioritized customer
requirements and the operable software from the
initial iteration will be entered. This iteration is
often set to the same length as the initial itera-
tion. Repeating the same time period is an
effective way for the team to learn the develop-
ment rhythm within the time frame. When the

second iteration is terminated, the operable
software is output in the same way as in the first
iteration. This software has the functions that
were implemented during the second iteration as
well as the initial function scope.

As each iteration is executed, the software
is developed and the implemented scope is
extended.

Also, the software can be released to the
customer whenever an iteration is complete.

Figure 2 shows the development procedure
within an iteration. The customer requirements
entered when the iteration starts are sorted in a
simple, single function called a story. It is prefer-
able if the customer creates a story on their own;
however, in many cases, a role called the
okyakusama (customer) proxy is set within the
development team. The customer proxy consists
of one or more team members who represent the
customer’s interests. The members who best un-
derstand the customer’s position undertake this
role, and the requirements of stories always have
top priority.

The created stories are divided into units
called tasks at a staff meeting called a planning
meeting (or planning game). A story is a function
unit from the customer’s viewpoint, and a task is
an implementation unit from the developer’s view-
point. In other words, the planning meeting can
be described as the design task. This planning
meeting is held when the iteration starts.

Tasks that have been divided at the planning
meeting are assigned to the developers at the
stand-up meetings (brief all-staff meetings) that
are held every morning. The tasks are often
assigned according to the developers’ own choices
rather than as instructed by the manager or
supervisor. The developers are required to un-
derstand the entire development picture and
determine what should be done and take action
on their own initiative.

Also, when the pair programming phase is
executed, the pairs will be decided at the stand-up
meeting on that day. Ideally, the pairs are

142 FUJITSU Sci. Tech. J., 43,1,(January 2007)

K. Furugaki et al.: Innovation in Software Development Process by Introducing Toyota Production System

switched every day. Pair switching encourages
the spread of knowledge and therefore can
provide a higher learning effect within the
development team.

Also, by making the program code and
components available to the whole team instead
of allocating it to specific persons, “unbalanced
intelligence” about the software development can
be prevented.

The test program is created at the same time
as the code is developed by the pairs.

The developed program is tested by this test
program, and the tasks are completed. When all
of the tasks that compose a story are completed,
the completion of the story is tested by the accep-
tance test, which is a test program created by the
customer or customer proxy.

From another viewpoint, this is a test
procedure in which the criteria for completion are
clear. The story is completed by passing the
acceptance test. Within an iteration, procedures
from the implementation of the tasks to the

completion of the story by the acceptance test are
repeated daily.

At the end of an iteration, a meeting called
the kaiko (retrospect) is held, in which all the
developers participate.

In the kaiko, all of the details relevant to the
iteration are reviewed, for example, the coding,
testing, and meetings and even the air ventila-
tion, lighting, and telephone manners of team
members are reviewed.

Then, the staff do the following.
1) Review the activities that will continue in the

next iteration
2) Discuss any problems that occurred, find

their solutions, and confirm their implemen-
tation in the next iteration

3) Reach an agreement about new efforts that
must be made in the next iteration.
Bringing the resulting feedback from this

kaiko meeting into the development process drives
future improvement.

Iteration (about 2 weeks)
Feedback to processes

Pair programming

Pair programming

Pair programming

Pair programming

Code

Test

Code

Test

Code

Test

Code

Test

S
ta

nd
-u

p
m

ee
tin

g

P
la

nn
in

g
m

ee
tin

g
Task

Task

Task

Task

S
to

ry

Okyakusama
(customer)

proxy

All developers All developers All developers

Daily repetition

Daily checking at stand-up meeting

Story
master

R
et

ro
sp

ec
t

C
om

pl
et

io
n

of
 s

to
ry

A
cc

ep
ta

nc
e

te
st

Figure 2
Agile development procedure.

143FUJITSU Sci. Tech. J., 43,1,(January 2007)

K. Furugaki et al.: Innovation in Software Development Process by Introducing Toyota Production System

5. Implementation of agile
development
The following is an example implementation2)

of agile development.
In this example, a prototype system was

developed for the manufacturing industry with a
development period of about two months. The
system is an infrastructure Web application that
uses server-side Java (servlets). There were nine
members in the development team.

The following lists the amount of
software-development experience and
object-oriented development experience (in that
order) in years for each member.
Member X: Tracker and customer proxy: 9 and 8
Member Y: Manager and coach: 5 and 3
Member Z: Coach: 3 and 2
Member A: Developer: 3 and 1
Member B: Developer: 3 and 1
Member C: Developer: 0 and 0 (new employee)
Member D: Developer: 2 and 1
Member E: Developer: 4 and 1
Member F: Developer: 14 and 7

Members E and F joined the project at the
end of July. Also, none of the staff had previous
experience of agile development. The introduced
practices of XP were as follows.
1) Iteration (iterative development)

At the beginning, a five-day iteration was
used as a trial and then a two-week itera-
tion was set three times.

2) Kaiko (retrospect)
3) Visual management (mirroring)

Story cards, task cards, and a burndown
chart (graph of number of backlogs) were
posted on a wall so the developers could check
the progress in real-time.

4) Pair programming
5) Co-ownership of source code
6) Coding criteria
7) Stand-up meetings
8) Continuous consolidation
9) Unit testing
10) Acceptance testing

11) Customer proxy
12) Refactoring

Test-driven developments were not
performed because, since this was the first agile
development for the staff members, certain
technical risks had to be avoided.

6. Evaluation of agile
development
The evaluation of the agile development

conducted in the example implementation
described in the previous section is detailed
below.

The viewpoints of this evaluation are produc-
tivity, quality, cost, delivery date, and the opinions
from developers.

6.1 Productivity
The productivity in each iteration and the

productivity in the entire development are indi-
cated below using a productivity index.note)

Iteration 0: 0.760
Iteration 1: 0.949
Iteration 2: 0.911
Iteration 3: 1.962
Average throughout: 1.268
The productivity at the beginning of the

development was 24% lower than PST’s standard
productivity; however, it was improved at the last
stage and indicated a 26.8% increase throughout
the agile development. The reasons for this
productivity improvement are examined below.
1) The functions were implemented according
to their priority so that unnecessary functions
were not implemented. Also, stories were divided
into tasks and then developed one by one
(single-flow production) so that waste (i.e., untest-
ed programs) was eliminated. In addition, because
of the existence of the customer proxy, no inter-
mediate output such as unrequested documents
was created.

note) A comparison of the number of source code
lines written by each member per month
against a standard PST value

144 FUJITSU Sci. Tech. J., 43,1,(January 2007)

K. Furugaki et al.: Innovation in Software Development Process by Introducing Toyota Production System

2) Because of the pair programming, the
necessary information was always available for
the developers. Also, by co-owning the source code,
any developer could modify any program. This
prevented lags due to modifications by other
developers, which tends to occur during traditional
development.
3) The daily progress was checked in the stand-up
meeting every morning, which enabled the team
to provide a timely response to latency and
optimize the task schedule.
4) The kaiko meeting held for each iteration
implemented the PDCA cycle within the develop-
ment process. This meeting enabled the
development team to share their problems and
give feedback for the next iteration.

The above practices are considered to
improve productivity.

6.2 Quality
Agile development is not like waterfall

development, which is divided into processes such
as planning, analysis, designing, implementation,
and testing, and therefore the quality cannot be
verified by tracking down the occurrence of bugs
at each process. However, developers are finding
that agile development promotes high quality.
1) With the pair programming, developers can

ask questions or discuss their concerns at any
time. Also, the program can be reviewed at any
time, which dramatically suppresses the creation
of bugs compared to the traditional method.
2) The automated regression tests reveal bugs
within a day. Also, the program code is immedi-
ately tested with the test program that is created
at the same time and then debugged.

6.3 Cost
Figure 3 shows the overtime hours of the

developers in each iteration.
As the iteration precedes, the difference in

overtime hours between developers decreases,
which means heijunka is taking place.

The heijunka of the working hours is affect-
ed by the degree of multi-skill development of the
developers. If any developer can work on any job,
the work hours can also be leveled. Figure 4
shows the commitments of each developer to the
programs as measured using the commitment log
of the Concurrent Versions System (CVS), which
is a configuration management tool. As can be
seen, each developer had multiple commitments,
which indicates that multi-skill development was
occurring.

In the traditional method, each developer is
in charge of a component or a program, which,

4

3

2

1

0

A
B
C
D
E
F

Iteration 3Iteration 2Iteration 1Iteration 0

E and F joined
at the end of July

A
ve

ra
ge

 o
ve

rt
im

e
(h

ou
rs

)

A
B
C
D
E
F

100

80

60

40

20

0

C
V

S
 c

om
m

itm
en

t r
at

io
 (

%
)

Developed programs

Figure 3
Developer’s overtime hours in each iteration.

Figure 4
CVS commitment ratios of developers.

145FUJITSU Sci. Tech. J., 43,1,(January 2007)

K. Furugaki et al.: Innovation in Software Development Process by Introducing Toyota Production System

consequently, has the idiosyncrasies of the
developer.

Co-ownership of the source code and pair
programming help implement multi-skill
development. No one is appointed to work on a
specific program: each day, the developers work
on a different program and with a different
partner so that the experienced developers pass
on their knowledge. This mechanism facilitates
multi-skill development.

In this agile development, compared to the
previous waterfall development of a similar
system, the cost rate was reduced by 16% (cost
reduction).

6.4 Delivery date
Figure 5 shows the transition of the num-

ber of customer requirements and implemented
requirements in this agile development.

Fifty percent of the customer requirements

were clear since the beginning of the development,
and the remainder were received sporadically
during the development. Also, many requirements
disappeared from the list. New requirements
from the customer were implemented in the
order they were received, and all the requirements
were implemented by the release date. The
average time between the arrival of a requirement
and its implementation was one week. In fact,
on average it took as little as one week to
implement a requirement after it was received.

This rapid rate of implementation was
achieved due to the practices of customer proxy,
iteration, and stories. The requirements were pri-
oritized, the implementation of single-flow
production shortened the delivery date, and the
regression tests were performed in an environment
of continuous integration. Including refactoring,
we think we have formed a development process
that ensures quality and also allows additional

Release date

Iteration 0 Iteration 1 Iteration 2 Iteration 3

Occurred stories

Extinct stories

Digestion point

Cumulated stories

Burndown chart

Cumulated
requirements

Digested requirements
(Back log)

Implemented
requirements

Delivery
date

Extinction of
requirement

Occurrence of
requirements

Month/Date

P
oi

nt

180

170

160

150

140

130

120

110

100

90

80

70

60

50

40

30

20

10

0

-10

-20

7/5 7/12 8/9 8/23 8/277/26

Figure 5
Transition of customer requirements and implemented requirements.

146 FUJITSU Sci. Tech. J., 43,1,(January 2007)

K. Furugaki et al.: Innovation in Software Development Process by Introducing Toyota Production System

requirements to be implemented.

6.5 Opinions from the development
members
The following are some of the opinions of the

development members in the agile development
project.
1) “In the past, when I became overloaded, I was

under pressure and did not want to come to
work. However, this time, even if I was over-
loaded, I did not feel under pressure.”

2) “It was easy to see the quantity of work per
day at the task allocations in the stand-up
meetings.”

3) “It was good to have a coach. We could ask
the coach questions at any time.”

4) “The atmosphere of the entire team has been
good, and the members’ motivation remained
high until the end of the development.”

5) “The pair programming system prevented the
work from becoming stuck.”

6) “During the pair programming, we worked
while talking about things we knew or did
not know. So eventually we learned new
things.”

7) “Due to the pair programming, the skills of
the team quickly improved.”

8) “The pair programming reduced mistakes
and facilitated efficient work.”
These quotes show that the developers kept

their motivation high and were able to work with
a stable mental state during the entire develop-
ment period.

7. Expansion of agile
development
This example of agile development described

in the previous section was a relatively small
development for a prototype system. It was
performed on an XP basis and was suitable for
what is generally considered the proper range of
XP (i.e., for software that is not life-critical and
with a team of less than 20 people).

There are many issues to be solved, for

example, the implementation method and the
verification of quality, before agile development
can be applied to large-scale projects involving
more than about 20 people and the
development of mission-critical systems. However,
there seems to be many procedures in agile
development that can also be effective in
waterfall development, for example, visual
management; the iteration/retrospection meeting
(kaiko), which implements the PDCA cycle
within the development process; and the use of
pair programming, which levels the loads and
abilities of the developers. In the future, the
implementation of agile development practices
will be expanded step-by-step into traditional
development processes such as waterfall
development.

8. Process improvement by store
management method
Agile development is intended for software

development processes; however, the store
management method is intended for much larger
processes. The store management method
improves a process by implementing the TPS
concept of leveled production. In this section, we
describe this method using the work model shown
in Figure 6 as an example.

This work model has three types of opera-
tion works that require randomly generated work
hours and abilities (a, b, and c) and a person in
charge of each operation to process the work
sequentially.

Generally speaking, regarding the work
generated in the operation processes, workers are
assigned to each operation and perform the work.
However, when work is done in this style, the work
capability and the workload depend on the
operations, which reduces the overall perfor-
mance. The store management method improves
the overall performance by gathering the instruc-
tion management for the work and minimizing/
heijunka the workload differences and work
capabilities between workers. Figure 7 shows

147FUJITSU Sci. Tech. J., 43,1,(January 2007)

K. Furugaki et al.: Innovation in Software Development Process by Introducing Toyota Production System

the heijunka improvement that was achieved in
this example.

The following heijunka practices were
implemented.
1) Work execution using the store pull system
2) Single-queue workload management
3) Visual management of workload and auto-

nomic heijunka control
These practices are described below.

1) Work execution using the store pull system
As shown in Figure 8, the work generated

in the operations were managed in work instruc-
tion boxes called Store-IN boxes. The workers
chose one work item and then started working on
it.

It is important that the workers focus on one
work item at a time (single-flow production).
Otherwise, they will waste time switching
between work items and might, as a result, be
unable to complete them within the allocated
amount of time, leading to a reduction in overall
lead-time.
2) Single-queuing workload management

As shown in Figure 9, when work items were
generated, instead of assigning them in equal
amounts to each worker, they were managed
using a single queue of Store-IN boxes and
processed in sequential order. When randomly
generated work was processed, this method greatly

Closing
time

W
or

k
ho

ur
s

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

b

b

b

b

b

b

b

b

b

b

c

a

b

c

Heijunka

Poor distribution of
work capabilities and
workloads between
workers is eliminated.

D
iff

er
en

ce

Person in
charge of
A

Person in
charge of
B

Person in
charge of
C

Person in
charge of
A

Person in
charge of
B

Person in
charge of
C

c

c

<Generation of work> <Completion of work>

a

a

a

a

a a

a

a a a

b

b

c

b

b

b
b

c

In charge of
operation A

In charge of
operation B

In charge of
operation C

: Operation work A

: Operation work B

: Operation work C

Figure 6
Work model for store management.

Figure 7
Heijunka improvement by store management.

148 FUJITSU Sci. Tech. J., 43,1,(January 2007)

K. Furugaki et al.: Innovation in Software Development Process by Introducing Toyota Production System

In charge of
operation A

In charge of
operation B

In charge of
operation C

Store-IN

Store-OUT

a

a a b c

a a a b b c

Figure 8
Work execution using store pull system.

reduced the work lead-time compared to the
equally-assigned work method.
3) Visual management of workload and auto-

nomic heijunka control
As shown in Figure 10, the Store-IN status

was displayed in an easy-to-visualize way on
boards and other media (visual management) so
workers could see what work was pending for each
operation. By checking the load status of the
queued work on the boards, workers could deter-
mine whether any additional workers were
required or whether certain workers should be
switched to different workers. Heijunka was
implemented by the workers acting independently

to maintain the balance between the workload and
work capability. By solving the issues generated
in the course of implementing these practices
one-by-one, the operation process was improved.

9. Effects of introducing store
management method
PST’s software maintenance support busi-

ness is not suited to agile development. However,
PST improved the operation of this business by
introducing the store management method. The
problems affecting the traditional operation of this
business and the advantages of the store manage-
ment method are described below.

The problems were as follows.
1) The workload tended to be concentrated at
the end of the week and in the late afternoon.
Therefore, workers frequently had to work over-
time and on holidays.
2) Because of the workers’ differing abilities,
some workers had an especially high workload.

Implementing the store management meth-
od had the following effects.
1) Visual management of the workload status
enabled the team members to always understand
the distribution status of the workload and to
level the workload independently. Since the store

Work lead time

Shortened

a a a

a

a a a a a

a a

Equally assigned work

Single-queue work

Person 1

Person 1

Person 2

Person 2

Work
instruction

Work
instruction

Figure 9
Shortened lead time by single-queue workload
management.

Operation A

Operation B

Operation C

In charge of
operation A

In charge of
operation B

In charge of
operation C

Store-IN

Store-OUT

Closing time

a

a a

b

b b

b

c

c

b b

b

b

a a a a a a a a

a

Figure 10
Visual management of workload and autonomic heijunka
control.

149FUJITSU Sci. Tech. J., 43,1,(January 2007)

K. Furugaki et al.: Innovation in Software Development Process by Introducing Toyota Production System

management method was introduced, none of the
current team of workers has had to work during a
holiday.
2) The difference in overtime hours was reduced
to about 30% by leveling the workload between
workers.
3) The teamwork capability was enhanced by
about 20%.

Before the store management method was
introduced, there were no methods to measure the
quantity of work in the software maintenance
support operation; therefore, it was not possible
to understand the work capability quantitatively.
However, after the introduction of the store
management method, all of the work has been
recorded on work cards so the work capability can
be understood and evaluated by analyzing and
aggregating these work cards. This is another big
advantage of the store management method.

Figure 11 shows the number of work cards
that were written during a five-month period
after the store management method was imple-
mented in the operation management division of
PST. The figure gives a quantitative indication of
how the work capability improved.

By introducing the store management meth-
od, productivity was improved by about 80% in 4
months.

10. Conclusion
When implementing the TPS concept using

agile development and the store management
method, we found it is useful to return to the
fundamental principle of “manufacturing” in the
software field and to improve our software
development process.

The concept of TPS was introduced to some
of the divisions experimentally in 2003, and by
the end of 2004, it had been introduced to every
PST division. PST’s profits stopped declining in
September 2004, and the company has been on a
gradual recovery since then.

Acknowledgement
We are very grateful to Mr. Junichi Matsui

of Consultsourcing Co., Ltd. for his help in intro-
ducing the store management method to PST’s
software development process.

References
1) T. Ohno: Toyota Production System: Beyond

Large-scale Production. (in Japanese), Diamond,
1978.

2) A. Sakata: Agile Practice. Is agile management
the Toyota Production System? — Attempt of
Software Multi-Skill Development. (in Japanese),
Developers Summit 2005 (presentation materi-
al), 2005.

N
um

be
r o

f c
ar

ds
/p

er
so

ns
 p

er
 d

ay

4

3

2

1

0
March April May June July

Month

1.96 2.13 2.27

3.14
3.62

Figure 11
Quantification of improvement based on number of work
cards.

150 FUJITSU Sci. Tech. J., 43,1,(January 2007)

K. Furugaki et al.: Innovation in Software Development Process by Introducing Toyota Production System

Tooru Takagi, Fujitsu Software Technol-
ogies Ltd.
Mr. Takagi received the B.S. degree in
Engineering from Ritsumeikan Univer-
sity, Kyoto, Japan in 1985. He joined
Fujitsu Aichi Engineering Ltd. (currently
Fujitsu Software Technologies Ltd.),
Aichi, Japan in 1985, where he has
been engaged in research and
development of OS subsystems. He
was also engaged in development of

Web systems from 2000 to 2003 as an SE. He promotes
software development based on the Toyota Production System.

Koichi Furugaki, Fujitsu Ltd.
Mr. Furugaki received the B.S. and M.S.
degrees in Chemical Engineering from
Tokyo Institute of Technology, Tokyo,
Japan in 1974 and 1976, respectively.
He joined Fujitsu Ltd., Kanagawa,
Japan in 1976, where he has been
engaged in development of mainframe
operating systems.

Daisuke Okayama, Fujitsu Software
Technologies Ltd.
Mr. Okayama received the B.S. degree
in Engineering from Yamanashi Univer-
sity, Yamanashi, Japan in 2002. He
joined Fujitsu Prime Software Technol-
ogy Ltd. (currently Fujitsu Software
Technologies Ltd.), Aichi, Japan in
2002, where he was engaged in devel-
opment of Web systems as developer
from 2002 to 2003. He was then

engaged in development of a financial accounting system until
2004. He promotes software development based on the Toyota
Production System.

Akinori Sakata, Fujitsu Software Tech-
nologies Ltd.
Mr. Sakata received the B.S. degree in
Engineering from Yamanashi University,
Yamanashi, Japan in 1989. He joined
Fujitsu Aichi Engineering Ltd. (currently
Fujitsu Software Technologies Ltd.),
Aichi, Japan in 1989, where he has
been engaged in research and devel-
opment of mainframe operating
systems. He was also engaged in

development of Web systems as a developer from 2000 to 2003.
He promotes software development based on the Toyota
Production System.

