
394 FUJITSU Sci. Tech. J., 42,3,p.394-401(July 2006)

Utilizing SDAS to Implement Financial
Solutions

V Hiroshi Ojima V Seigo Kuroda
(Manuscript received April 18, 2006)

Fujitsu’s customers in the financial industry have restructured and expanded their
systems. Now, these customers not only need the reliability and quality they enjoyed
in the past but also need this reliability and quality much more quickly. Especially
these days, it is necessary to use the latest technology and development methods to
keep up with the constant changes in the business environment and IT techniques. To
achieve this, the previously used development methods are becoming inadequate,
and it is now necessary to establish and develop financial solutions that adopt SDAS.
In this paper, we first explain the requirements of the solution architecture for the
leasing industry and the design concept of a solution for lease system construction
that covers both the business side and system side. Next, we introduce an approach
that covers the design concepts on the system side. By repeatedly using solutions
that adopt SDAS, we have achieved high-quality, short-term system development.

1. Introduction
Customers in the financial industry have

increasingly sought to rebuild their huge, critical
mainframe systems and construct new systems
in an open environment. Further, these custom-
ers desire swifter development than ever, without
risking the reliability and quality that have al-
ready been established. Financial solutions
designed to fulfill these needs blend the develop-
ment technologies provided by SDAS with working
expertise and project management concepts.

In 1999, lease system construction solu-
tions based on SDAS, which builds on AA/
BRMODELLING,note 1) were developed to target

the leasing business segment of the financial in-
dustry in Japan. On the basis of these solutions,
critical systems for numerous leading leasing
firms have been reconstructed in recycling short-
term development processes. Lease system
construction solutions are classified into two broad
types — business or system — according to their
design philosophy.

This paper identifies what is required of a
system of industry-specific solutions and defines
the two kinds of design philosophies mentioned
above. It then looks at the concepts for imple-
menting the system design philosophy of
frameworks; namely, the organization and stan-
dardization of application structures, concealment
of platforms, approach to achieving enhanced per-
formance, approach to achieving Web system
implementation through recycling, and benefits
of recycling industry-specific solutions.

note 1) Abbreviation of Application Architecture/
Business Rules Modeling. A technique that
defines the notation and semantics of design
documentation (modeling) on the basis of
development methodology, focusing on data-
oriented modeling techniques. The formats
defined by Application Architecture/Business
Rules Modeling are supported by the SDAS
integrated CASE tool, AA/BRMODELLER.

395FUJITSU Sci. Tech. J., 42,3,(July 2006)

H. Ojima et al.: Utilizing SDAS to Implement Financial Solutions

2. Requirements for industry-
specific solutions and design
philosophy of lease system
construction solutions
This section outlines what is required of a

system of industry-specific solutions and introduc-
es the two types of design philosophy pertaining
to lease system construction solutions.

2.1 Requirements for system of industry-
specific solutions
Any system of industry-specific solutions

should fulfill the following requirements:
1) Creation of business models based on indus-

try-specific expertise
Business models visualize the workflow of

business practice in system implementation and
define the basic data structure of the business data
required.
2) Creation of SDAS standard frameworks aug-

mented with industry-unique characteristics
Each framework delineates a development

environment that encompasses a set of compo-
nents (e.g., communications control, screen
control, and business specifications) of those func-
tions that are operable in that environment.
3) Standardization of development techniques,

environments, and tools
Development techniques, from requirements

definition to testing, are standardized to iron out
skill gaps among developers.
4) Creation of development standards, project

management standards, and tools
Documents are organized and standardized to

ensure a uniform quality of documentation.
Further, the workflow of documentation and
review management is visualized by the use of tools.

Once industry-specific solutions are devel-
oped and deployed, there are two important
requirements. First, they must be put to cyclic
use in the subsequent implementation of projects,
with cutting-edge technologies and development
techniques occasionally factored in. Second, for
enhanced development productivity and quality,

information derived from their use must be fed
back to help build a development organization that
has know-how about creating and blending
components on the basis of a knowledge of
frameworks.

2.2 Design philosophy of lease system
construction solutions
Lease system construction solutions are

classified into two broad types — business or sys-
tem — according to their design philosophy:
1) Business design philosophy: modeling the

leasing business
The leasing business deals in a wide assort-

ment of items and is open to complex changes in
the status of the deals during the lease periods,
for example, modifications to contract terms and
cancellations. Because the terms of payment for
items and fixed assets and the terms of lease
collection are also subject to change in
synchronization with the changing status of deals,
a firmly organized system collaboration of
various individual functions needs to be formed.
To fulfill these complex requirements, the basic
workflow of the leasing business, from commodi-
ty trading to paperwork handling, can be
represented in fully integrated models (business,
data, and logic models) to identify customer
requirements and define the areas of addition and
modification that are required.
2) System design philosophy: separation of busi-

ness specifications and controls
The functional roles, from applications down

to platforms, are broken down into 10 layers to
separate the business specifications and comput-
er controls. These layers are classified by the two
major blocks of applications and platforms and the
intervening software components (Figure 1).

The development of an application that
builds on a leasing business model would encour-
age higher ratios of business and data component
recycling. This would facilitate addition and
modification to business and data components
over an organized/standardized interface, even if

396 FUJITSU Sci. Tech. J., 42,3,(July 2006)

H. Ojima et al.: Utilizing SDAS to Implement Financial Solutions

there are no existing components. The interfaces
between the applications and platforms (hardware
and middleware) concealed and separated by
components also promise additional increases in
the ratios of business and data component
recycling.

3. Organization and
standardization of application
structures
By recycling an application structure

compatible with a given application under devel-
opment over an organized/standardized interface,
we can reduce design and construction lead-times
and therefore prevent degradation of the quality
of control logic. Further, the level of description
of design documents can be enhanced by organiz-
ing and standardizing them in an organized/
standardized application structure.

Applications fall into three broad groups:
online programs, batch programs, and subpro-
grams. Among these, online and batch programs
have their program structures organized into 22
standardized skeletonsnote 2) (e.g., simple editing,
distribution, summary, matching, database table
editing, and form editing) according to their modes
of processing.

These skeletons have components for trans-
action control, DB access control, error processing,
log processing, message processing, and recovery
processing assembled into them.

Online program skeletons come with an ad-
ditional repertoire of components (screen control,
event control, item control, and message control).
For subprograms, components such as business,
data, and common components are provided as
skeletons to be created over a standard interface.

To ensure efficient online/batch/subprogram
skeleton utilization, the standards of program
blocking and each set of skeleton specifications
are defined at the start of system structure de-
sign (SS) phase and then described in design
documents. By using these design documents,
programmers can economize on the program-
writing period and still maintain control of the
processing quality.

To realize such application structures, an
SDAS integrated CASE tool called AA/
BRMODELLER is used to provide the function
implementations of skeletons and control compo-

Layer 9

Layer 8

Layer 7

Layer 6

Layer 5

Layer 4

Layer 3

Layer 2

Layer 1

Layer 0

User interface

Business applications

Data components

Business components

Skeleton components

Control components

Middleware

Basic software

Hardware

Network

Screen definition (GUI), definition of forms

Check update definition, definition of program specifications

Record definition, code definition, domain definition,...

Business functions, business terminology

Skeleton (online/batch)

DB access control, transaction control, print control,...

PC server

Application

Software components

Platform
Solaris Windows 2000 Windows XP

Oracle / Interstage / Systemwalker...

UNIX server PC client

LAN / WAN

Figure 1
Separation of business specifications and computer control.

note 2) Prototypes tailored to the individual sets of
business specifications, which are used to
identify business patterns with reference to
the business workflow.

397FUJITSU Sci. Tech. J., 42,3,(July 2006)

H. Ojima et al.: Utilizing SDAS to Implement Financial Solutions

nents so as to separate the business specifications
and computer controls and conceal them.

4. Concealment of platforms
Hardware and software are renewed at such

a swift pace in the modern development environ-
ment that in order to use applications over many
generations, they must be kept ready to accom-
modate changes as they occur. To achieve this,
the platform interface must be concealed from
applications.

Although application structures are orga-
nized and standardized to conceal platforms from
the view of skeletons and control components, the
developers of batch program tests still need to be
platform-conscious because the shells that control
execution use different operating systems (e.g.,
Windows or Solaris).

As a solution to this problem, file assign-
ments and program runs are coded using Job
Control Language (JCL) as in the mainframe era.

For example, “Sort” can be used to designate a
sort utility and “Delete” can be used to signify a
process for deleting a file. OS-dependent contexts,
for example, branches, are allowed to expand
automatically to achieve the concealment of
platforms (Figure 2).

In addition to the concealment of platforms
as an automatic development function of the shell
script (hereafter called a job) that controls execu-
tion, the following factors have also been taken
into account:
1) Allowance for rerunning jobs.
2) Automatic judgment of return codes gener-

ated by commands such as programs and
utilities.

3) Ability to automatically delete unnecessary
files at the end of a job.

4) Readiness of jobs used in unit testing to pass
as operational jobs.
Once jobs are completed, the next step is to

register them with a scheduler so they can be

Job information entry Net information entry Group information entry

CSV job
information

C-shell generation Batch file generation Registration control
statement generation

CSV net
information

CSV group
information

C-shell (UNIX)
#!/bin/csh
 :
 :

Batch file (NT)
@echo off
 :
 :

Systemwalker
Registration control
statement
NET
jobname XXXX
 :

Let Excel enter operational job information registration in its entirety

Figure 2
Registration of operation jobs without considering platform.

398 FUJITSU Sci. Tech. J., 42,3,(July 2006)

H. Ojima et al.: Utilizing SDAS to Implement Financial Solutions

launched in sequence. However, taking operation
into consideration, procedures such as library
management and change management are neces-
sary. Therefore, because individual developers
cannot directly operate the scheduler, an easy-to-
use tool for entering scheduler information is
provided.

When entering job net information, cells
(preceding and succeeding job names) are linked
with lines and connected to provide a visual defi-
nition of the job relationships. This definition is
extracted and generated as a text and then regis-
tered with a scheduler.

The tool’s scheduler registration functions
enable the following:
1) Managing job relationship information in a

library,
2) enabling data entry without using a server

(scheduler),
3) allowing job relationships to be coded in a

visual format, and
4) checking information (such as job loops)

before it is registered with the scheduler.
This tool is presently used in conjunction with

the scheduler Systemwalker OperationMGR.

5. Approach to achieving
enhanced performance
Performance glitches account for one aspect

of degraded quality. They are often uncovered in
a system test (ST) phase in which large volumes
of data are used. Because it is difficult to review
applications at this stage, performance glitches
should be identified in their early stages of
occurrence.
1) Evaluate all SQL statements

Performance glitches are primarily traceable
to SQL statements: one of the most likely causes
being real access to data (or access to physical
pages). For example, a process that used to take
10s of minutes before might take only several
seconds after tuning because the tuning eliminat-
ed many physical accesses. To avoid performance
glitches resulting from SQL statements, direct

calls to SQL from business applications have been
totally prohibited, with database accesses being
implemented using the access components provid-
ed. Skilled managers have created and managed
access components and evaluated all the SQL
statements that have been filed by the applica-
tions developers.
2) Collect response throughput information

automatically
A scheme for automatically collecting perfor-

mance information has been constructed into
skeletons to automatically collect and build per-
formance information from the integration testing
stage onwards. Under this scheme, performance
information is iteratively fed back to the business
developers in each test cycle to support per-
formance enhancement. Final system tests/
operational tests subsequently performed on the
cumulative performance information have con-
firmed that this scheme enhances performance.
3) Collect Oracle trace information about

specific transactions
Because a server online application has each

process communicating simultaneously with mul-
tiple clients, trace information about a selected
transaction is not collectable until the ongoing
process is terminated. Even if trace information
about a transaction is collected, transactions from
multiple clients would be intermixed in the trace
information, making it difficult to analyze a par-
ticular range of trace information. This difficulty
can be avoided by collecting information about a
given transaction when no other process is being
executed or collecting information using a dedi-
cated environment.

As a solution, if a reference to information
(e.g., a login ID or program ID) in a transaction
control component identifies a target transaction,
trace collection start and end instructions are
issued to collect transaction-specific Oracle trace
information. As a result, problem SQL statements
can be identified faster, thereby trimming the
survey time.

399FUJITSU Sci. Tech. J., 42,3,(July 2006)

H. Ojima et al.: Utilizing SDAS to Implement Financial Solutions

6. Approach to achieving Web
system implementation
through recycling
Lease system construction solutions have

evolved from client-server system solutions into
Web system implementations with the support of
the growing popularity of the Internet. This
section introduces key aspects of the approach to
enabling Web system implementation of lease
system construction solutions established on a cli-
ent-server system basis so they can be recycled
more easily.

The most important goal is to maximize re-
cycling of the application servers of lease system
construction solutions solely by constructing
frameworks on the Web server. The second is to
restrict business application developers to a
single language.

While Web systems are operable on either a
Servlet or operability-oriented Applet basis, we
constructed a Servlet lease framework for the sake

of the development lead-time and business re-
quirements (Figure 3).

With the Servlet framework, business appli-
cation developers simply create HTML as a screen
design and attribute information about screen
I/O record definitions related to the Web server.
When the designs and information are input to
the tool, it automatically generates JavaServer
Pages (JSP) for each screen. The newly
developed Servlet framework controls the
screen-processing operations (e.g., basic attribute
checking, I/O item editing, length checking, and
common code pull-down), which eliminates the
need to code their business logic.

Dynamic information I/O is accomplished by
specifying the information required for the
Servlet framework from an application.

Consequently, because the Servlet lease
framework comes with a complete set of imple-
mented screen controls, it removes the need for
business application developers to develop them

Figure 3
Lease framework of Servlet version.

C
lie

n
t-

se
rv

er
 m

et
h

o
d

W
eb

 s
ys

te
m

 m
et

h
o

d

Client
Business applications

PowerCOBOL COBOL ORACLE

Skeleton

Screen
control
component

Business
specifications

Client
communi-
cations
control
component

Server
communications
control
component

Interstage
client

Automatically
generated

JSP

Screen
data

New framework built as Web server AP server constructed through reuse

Web server

AP server

Business applications

Business
applications
CALL

Browser

Action control

Message editing
Screen control

Ta
g

ed
iti

ng

Interstage Application
Framework Suite

Online control

Interstage
Application Server

Skeleton

Business
specifications

DB access
component Database

COBOL ORACLE

Server
communications
control
component

AP server Business applications

CALL
CALL

Online control

Interstage
Application Server

Skeleton

Skeleton

Business
specifications

Business
specifications

DB access
component Database

400 FUJITSU Sci. Tech. J., 42,3,(July 2006)

H. Ojima et al.: Utilizing SDAS to Implement Financial Solutions

in Java or any other language (Figure 4).
At present, an Applet lease framework is

being constructed based on a similar design
philosophy.

7. Benefits of reusing industry-
specific solutions
This section introduces the benefits of using

established industry-specific solutions in the im-
plementation of a lease project.

From a business standpoint, lease system
construction solutions are recycled to implement
“fit/gap analysis”note 3) based on models of the leas-
ing business. Through this analysis, requirements
are identified and customer needs are translated
into specifications to achieve an overall reduction
of mistakes and omissions.

From a system standpoint, application struc-
tures are organized and standardized and then

concealed by the platforms so that business and
data components can be easily recycled in
conjunction with the solutions. When using
industry-specific solutions, it is also important to
maintain a permanent staff of technicians hav-
ing know-how of leased system construction
solutions, including expertise in their recycling.
Component usage and continued staff presence
are considered extremely instrumental in trim-
ming development lead-times and assuring
enhanced quality.

This paper focused on the issues of system
frameworks, but a comprehensive scheme of
project implementation — inclusive of progress
management, quality control, error recovery, spec-
ification change management, problem and task
management, and configuration management —
is a vital requirement for trimming development
lead-times and enhancing quality.

In one of our leasing projects, by recycling
lease system construction solutions, we reduced
the development lead-time by 30 to 50% in rela-
tion to development scale (Figure 5).

note 3) This analysis compares the functions provid-
ed by the ERP package and resolves mistakes
and omissions based on a lease business
model.

Process

Development
process

Tools used

Development
standard/

techniques

Component AA Development Method

AA/BRMODELLING

Excel AA/BRMODELLER SIMPLIA/TF-MDPORT

SIMPLIA/TF-LINDA

AP server application

Web server application

Screen layout
[HTML]

Process
overview

Item editing
specifications

Record
definition

Screen definition
[JSP]

Integration Automatic JSP generation

Business
specifications

Control
specifications

Execution
 module

Generation Integration Automatic generation

UI SS PS.PG PT

Figure 4
JSP automatic generation of Servlet version.

401FUJITSU Sci. Tech. J., 42,3,(July 2006)

H. Ojima et al.: Utilizing SDAS to Implement Financial Solutions

Hiroshi Ojima, Fujitsu Ltd.
Mr. Ojima received the B.S. degree in
Mathematical Sciences from Osaka
Prefecture University, Osaka, Japan in
1981. Later that year he joined Fujitsu
Ltd., Tokyo, Japan, where he has been
engaged in the development of finan-
cial systems.

Deploy lease system
construction solutions

C/S system

30%

50%

... 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

Web system

Web support

Host-
centralized

 system

Application of AA/BRMODELLING, AA/BRMODELLER

Company A

Company B

Company C

Company D

Company E

Establish lease system
construction solutions Deploy lease system

construction solutions

Open-LIS

LIS-21

Web support

New SDAS-implemented
Web applications support

Figure 5
Expansion of lease system construction solution.

8. Conclusions
This paper introduced how the recycling of

leasing business solutions designed to serve the
financial industry has led to shorter development
lead-times and enhanced quality. For a project to
successfully yield these benefits, development
technology alone is insufficient. Facilitating prob-
lem determination and remedial action is a major
impetus to trimming lead-times and enhancing
quality, and this can be achieved by efficiently
controlling the execution of a project through rules
and tools that visualize the workflow.

A comprehensive financial services portfolio
is needed to keep pace with the growing diversity
of interdisciplinary merchandise and business
lines in the financial industry. This need can be
met by developing industry-specific solutions that
address the need to transform financial business
models in the wake of a broadening range of chan-
nels and openly collaborate with other industry
segments.

Fujitsu has been working in Japan to refur-
bish its package of next-generation financial

solutions that address the changing Japanese
financial business climate, focusing on the com-
ponent implementation of services, collaboration
between channels and services that builds on
Service-Oriented Architecture (SOA), and stan-
dardized interfaces.

Seigo Kuroda, Fujitsu Ltd.
Mr. Kuroda graduated from Hyogo
Prefectural Aioi Industrial Senior High
School, Aioi, Japan in 1979. Later that
year he joined Fujitsu Ltd., Tokyo,
Japan, where he has been engaged in
the development of lease systems since
1987.

