
323FUJITSU Sci. Tech. J., 42,3,p.323-332(July 2006)

Improvement of Software Quality and
Productivity Using Development Tools

V Hideo Abotani V Tomoki Shiratori V Kouji Sasaki
V Masaki Tonomura

(Manuscript received March 24, 2006)

Information systems, which successively meet the requirements of on-site manage-
ment and staff, have become enormous and complicated after many years of
modification. To make IT investments efficient, it is essential to reuse current soft-
ware assets effectively, quickly develop systems, and reduce testing costs. To help
customers achieve these goals, Fujitsu provides a systematic development environ-
ment called the System Development Architecture & Support facilities (SDAS). This
environment covers the entire lifecycle of application development. This paper
introduces some systematic development tools for SDAS-based Web application
development. Specifically, it introduces Interstage Apworks, which is an integrated
development environment based on open standards; the SIMPLIA series of testing
support tools; the PROSPECS reverse engineering tool; and the NetCOBOL multi-
platform COBOL compiler.

1. Introduction
In recent years, in order to rapidly solve the

problems of top management and on-site staff, it
has become necessary to apply modifications to
enormously large and complicated information
systems. Also, it is becoming necessary to reduce
the volume of development and test work-hours,
by assessing methods of implementing additional
features on the new optimized systems and the
extent of modification that are required.

Moreover, tools are needed that increase soft-
ware quality and productivity, for example, by
enabling effective reuse of current resources,
speeding up system development through small-
scale projects, and increasing efficiency in
document maintenance to keep up with the fast-
er pace of development.

While J2EE-compliant Web applications and
the frameworks that offer them are drawing at-
tention due to the acceleration of open systems, a
tide of industry standards is also pouring into the

area of development tools, as can be seen in the
use of open sources represented by Eclipse.1)

In this changing environment surrounding
development tools, and taking into account the
whole life-cycle of development from the design,
implementation, testing, and maintenance of an
application, providing a systematized range of
products supporting a development language and
multiple platforms will lead to the improvement
of software quality and productivity.

This paper introduces the systematized
development tool used in the Web application
development by SDAS by introducing the follow-
ing core products.
1) Integrated development environment Inter-

stage Apworks
2) SIMPLIA series of testing support tools
3) Reverse engineering tool PROSPECS
4) NetCOBOL for various platforms

Note that the products introduced in this
paper are all Japanese versions.

324 FUJITSU Sci. Tech. J., 42,3,(July 2006)

H. Abotani et al.: Improvement of Software Quality and Productivity Using Development Tools

2. Interstage Apworks
Due to the shortening of the development

period and the growing complexity of systems in
recent years, demand for improved productivity
using an integrated development environment has
grown further. There are two main methods of
improving productivity using an integrated devel-
opment environment.
1) Automatic generation of routine processes

For code that executes routine processes, code
with assured testing quality can be reused to
reduce the volume of development and test work-
hours. By automatically generating codes with
an integrated development environment, produc-
tivity can be improved. The most effective way of
use is to standardize the application structure
using a framework and automatically generate
standardized code based on the structure.
2) Reducing development steps

It is preferable not to spend time and effort
on repeatedly executed operations such as build-
ing and debugging. A basic requirement for an
integrated development environment is to be able
to shorten the total work-time by enabling such
operations to be executed with fewer steps.

There is also a demand to shorten the period
for learning the integrated development environ-
ment itself in order to improve productivity. In
recent years, the open-source Eclipse is rapidly
gaining recognition as a development environment
and has already established its position as an
industry standard. To shorten the learning
period, there is a strong demand to adopt these
industry standards and provide users with the
operability they are accustomed to. Also, by adopt-
ing industry standards, companies become more
attractive to third-party software houses.

What is currently required of an integrated
development environment is to improve produc-
tivity and provide industry standard operability.
This section introduces how these requirements
are fulfilled in the case of Interstage Apworks,2)

which is the integrated development environment
of SDAS. Note that this paper has been written

based on Interstage Apworks V7.0.

2.1 Integrated development environment:
Interstage Apworks
Interstage Apworks (hereafter called

Apworks) is an integrated development environ-
ment that adopts the industry standard Eclipse
(Figure 1).

Based on Eclipse, Apworks provides features
for developing J2EE-compliant applications such
as Web applications and Enterprise JavaBeans
(EJB) as well as Java client applications such as
applets (Figure 2).

In terms of the development lifecycle,
Apworks has the following features for each phase
of development.
• Unified Modeling Language (UML) modeling

tool for requirements analysis and design
• HTML/JavaServer Pages (JSP) editor,

Graphical User Interface (GUI) builder, and
electronic form designer for visual editing

• Debugging features of J2EE applications
optimized for Interstage Application Server
and deployment features for the operation
environment

• Development features of COBOL applica-
tions (COBOL editor, COBOL debugger)

Figure 1
Interstage Apworks.

325FUJITSU Sci. Tech. J., 42,3,(July 2006)

H. Abotani et al.: Improvement of Software Quality and Productivity Using Development Tools

Among the various features provided by
Apworks, features related to automatic genera-
tion and reduction of task moves are introduced
here.
1) Wizards

Eclipse comes with a wizard that creates
Java packages and class templates. Apworks also
provides other wizards that automatically gener-
ate the following.
• Templates of Web applications and EJB
• Templates of applets
• HTML files and JSP files
• Various definition files used in J2EE

applications
These wizards also support the SDAS frame-

work (Interstage Application Framework Suite),
and using this framework further improves the
productivity of development.
2) Template

A template is code registered in advance to
perform a certain process. With the insertion of a
template, code can be embedded at a given posi-

tion within the source file. By making and using
templates of a process that is often executed, the
user saves time and work for code description, and
the time needed for coding and preventing simple
input errors will also be shortened. Eclipse comes
with an if statement and a for statement, which
are templates that enable easy input of Java syn-
tax. In addition, Apworks provides templates of
processes that are frequently used in business, for
example, the reference process of EJB and the
routine process of COBOL. Users can also regis-
ter original templates.
3) Efficient debugging

Apworks comes with an application server
for debugging. The installation and various set-
tings of this application server are set up
automatically during the installation of Apworks.
Although the deployment of application assets will
become necessary when executing Web applica-
tions and EJB, debugging will be performed
automatically by the debugger. There is no need
for the user to perform any troublesome tasks, and

J2EE application Java client application COBOL
application

Web application Web service Applet JavaBeansEJB

Designing Programming Debugging Maintenance

Interstage Apworks

UML modeling tool

Eclipse

Java development
tool

Deployment

J2EE development functions
Java client development
functions
- Wizards
- HTML/JSP editor
- GUI builder
COBOL development
functions

J2EE debugging functions
The following are included
for local debugging:
- Application server
- Framework
COBOL debugging
functions

Java wizards
Java editor

Java debugger

Eclipse platform

Figure 2
Key features of Interstage Apworks.

326 FUJITSU Sci. Tech. J., 42,3,(July 2006)

H. Abotani et al.: Improvement of Software Quality and Productivity Using Development Tools

Web applications and EJB can be debugged just
by clicking the debugging button.

Based on the industry standard Eclipse,
Apworks enhances the features for improving the
efficiency of business application development and
aims to provide value as an integrated develop-
ment environment that matches the requirements
at the development site.

2.2 Support for latest open standard
Currently, the Eclipse 3.x series is becoming

the predominant version of Eclipse. The next
version of Apworks is also planned to be based on
the Eclipse 3.x series. By supporting the latest
industry standards and ensuring sufficient test-
ing quality, we intend to offer various features to
improve productivity and enhance the product so
it becomes an integrated development environ-
ment that can be used comfortably by users.

3. SIMPLIA series
Since its mainframe times, SDAS has been

providing a group of development support tools
called the SIMPLIA series3) by creating and
generalizing several tools that are required in
development projects. This section introduces an
automated testing tool, particularly from the view-
point of how it improves efficiency in testing tasks.

This section assumes that a Java Servlet/JSP
screen Web application based on the Model-View-
Controller (MVC) model is being developed
(Figure 3). The tools used for each block of the

application are described below.
1) Testing the contents of each block: the Unit

test
Two products are offered for testing the parts

where programming was performed in the
Controller block and Model block.

SIMPLIA/JF Kiyacker provides supporting
features for creating coding rules, checking the
rules of the Java source, and reviewing bugs and
performance. Although in general, most of the
common tools in the market simply offer check-
ing functions, when they are used in a project, the
method of keeping development staff informed of
the rules becomes a matter of concern. Users of
SIMPLIA/JF Kiyacker can customize the rules
that the tool provides as standard and output
customized rules as an HTML file. By distribut-
ing the rules, development staff can be kept up to
date.

SIMPLIA/JF JudgePruefer offers a feature
to automate the testing of Java programs by
automatically generating drivers (calling
programs created to operate the program that will
be tested) and stubs (replacement programs that
replace the uncompleted program called by the
program to be tested). This is also possible with
Junit,4) which is an open-source framework for
unit tests; however, its linkage with test specifi-
cations is poor, so additional thought is needed to
improve it in applications. This tool can create
test specification sheets and generates drivers and
stubs. It also automatically executes and deter-
mines the results of tests based on this test
specification, which makes it easy to review test
details and manage test results, and enables
support to be in line with the development style.

Linkage of the above testing tool with Eclipse
is being enhanced continuously so it can be ap-
plied using recent development styles based on
Eclipse.
2) Testing by connecting blocks: the integration

test
SIMPLIA/JF JudgePruefer is applied in the

server-side test that integrates the Controller

Web application

Controls View and
Model (Servlet)

Handles business
logic (Java/EJB)

Handles display
output (JSP)

Controller

Model

Request

Display
screen

Client

DB
View

Figure 3
MVC model.

327FUJITSU Sci. Tech. J., 42,3,(July 2006)

H. Abotani et al.: Improvement of Software Quality and Productivity Using Development Tools

block and Model block. SIMPLIA/TF-WebTest is
provided as a testing support tool for situations
when all MVC blocks are integrated. This tool
can automate a regression test from the Internet
Explorer screen. An automated testing tool for
Web applications that supports testing from the
integration test specification sheet will also be
developed starting in July 2006.

Details of SIMPLIA/JF JudgePruefer and the
automated testing tool for Web applications are
introduced below.

3.1 SIMPLIA/JF JudgePruefer
SIMPLIA/JF JudgePruefer has the following

functions for automating unit tests and server-
side tests.
1) Execution function

This function automatically generates driv-
ers and stubs and automatically executes tests
from test cases created by the user. The user can
create a test case by setting arguments, the
return value of a method, or the status of a file or
DB before and after the test.
2) Verification function

After executing a test, this function compares
the test results with the return value of the meth-
od and the status of the parameter, file, or DB
that was set when creating the test case and then
determines whether the test succeeded.

In the unit test, this tool generates drivers
and stubs automatically, so there is no need for
the user to create them. In addition, by verifying
statement coverage, test cases that are lacking
from the white-box viewpoint can be added. In
the integration test, the automatic generation
function of the driver of this tool, together with a
function that automatically sets up the DB
status before the test and the automatic verifica-
tion function of the DB status after the test,
enables automatic execution of server-side tests
whose results depend on the DB status, which
used to be a difficult task.

As explained above, the user can execute
tests automatically simply by creating test cases.

This enables the user to focus on creating test
cases, which helps improve the quality of testing.

SIMPLIA/JF JudgePruefer was applied to a
3-month project, starting from the user interface
designing process and ending in the system
testing process. In this example, a nearly 100%
statement coverage was realized for unit tests,
excluding exception processing, and degradation
(function setback) was prevented by automating
regression tests during the specification changes
after the integration test.

3.2 Automated testing tool for Web
application
Except for loading tests, it is difficult to sup-

port the testing of tasks on the screen using tools,
and testing tasks are mostly executed manually
as in the past. Other companies offer products
for automating regression tests from the client.
However, these products do not improve efficien-
cy in the initial test and are effective only after
the second regression test. In addition, these prod-
ucts do not provide supporting features for
creating test specification sheets and require test
cases to be extracted manually, making the qual-
ity of testing dependent on personal rules. To solve
this problem, a tool for automating Web applica-
tion tests from the client is being developed.

It is necessary to consider the business
specifications of a function test in an integration
test. However, in most cases, business specifica-
tions are described in sentences, and because there
are a huge variety of document formats, analysis
is difficult to do with tools. However, with the
screen transition diagram and screen item
definition, it is relatively easy to extract informa-
tion about screen transitions and items from the
tools they were written with or from files, and it
is also easy to generate screen transition patterns
that become test cases. This tool generates a test
case of a screen transition test from a screen tran-
sition diagram and screen item definition saved
in the format of Rational XDE, which is a UML
modeling tool from IBM, and can create a test

328 FUJITSU Sci. Tech. J., 42,3,(July 2006)

H. Abotani et al.: Improvement of Software Quality and Productivity Using Development Tools

specification sheet in Microsoft Excel format
(Figure 4).

The test case generates the test specification
from test viewpoints, based on the information in
the screen item definition within the path from
start to finish in a screen transition diagram. The
generated test specification can add or delete test
cases on an Excel spreadsheet. The test view-
points used for the generation are as follows.
1) Input data (normal/abnormal)
2) Number of items displayed on the screen for

repeated items such as charts (0/1/N)
3) Number of loop executions within the screen

transition diagram
Value candidates are generated automatical-

ly from the form of each item in the screen item
definition of each test case. Items with definite
codes such as gender, in particular, can be entered
just by selecting from the defined code value
displayed.

During a test based on a test specification
sheet created in the above manner, a screen called
the Test Execution Navigator (hereafter called the
Navigator), which navigates the test and supports

the testing tasks of a single test case, is displayed.
Navigator extracts the test case from the test spec-
ification sheet and displays the tasks that must
be performed before testing, the input operations
of the testing screen, and the verified test results.
The user performs testing tasks by following the
instructions of the Navigator and enters the test
results into the Navigator screen. Because these
test results are automatically reflected on the test
specification sheet, this test specification sheet can
be used as a result report at the same time.

In addition, this tool can be linked with
SIMPLIA/TF-WebTest, so testing operations can
be recorded and saved and then retested during
regression tests.

4. PROSPECS
In current application development, a devel-

opment environment supported by features such
as UML, a framework, and source program
automatic generation is generally used. The
productivity of source programs has improved dra-
matically due to the use of these development
environments. However, at the same time, there

Screen transition
Definition tool

Automated testing tool for Web application

Test specification sheet development support

Test specification sheet generation function

Screen transition diagram
Screen item definition

Operation
log

Test specification sheet
and reportTest execution support

Test execution management function

Test operation recording/
Re-execution feature

(SIMPLIA/TF-WebTest)
Navigator Reflection of

test results

Recording of test
operation and
automation of
regression test

Navigation of testing tasks by
displaying operation and

verification methods for each
test case

Figure 4
Automated testing tool for Web applications.

329FUJITSU Sci. Tech. J., 42,3,(July 2006)

H. Abotani et al.: Improvement of Software Quality and Productivity Using Development Tools

has been a troubling increase in the number of
undocumented programs. This increase is due to
the following problems with document creation.
1) Because of the shorter development periods,

priority is put on modifying programs that
are currently being worked on, and document
creation is left for a later date.

2) Because of frequent changes in specifications,
it is difficult to maintain the synchronization
of source programs and documents.
As a result, document creation tends to be

considered less important in system development.
Documents are required more during main-

tenance after the system has begun operation than
during the system’s development. In mainte-
nance, it is necessary to understand the existing
source program because the maintenance is based
on modifying the existing source program. More-
over, as time passes, development personnel and
maintenance personnel often change, so mainte-
nance personnel will struggle to understand the
source program. Furthermore, in most cases, the
available documents about the source program
have not been updated in synchronization with
the source program.

A reverse engineering tool solves these
problems concerning documents. There are three
benefits in using a reverse engineering tool.

Firstly, such a tool enables the creation of
accurate documents. Because the input is based
on the currently operating source program, the
reliability of the generated document is high.

Secondly, it enables documents to be created
from just the source program, which is useful for
understanding in-house source programs and
open-source programs created by others when
there is no other documentation.

Thirdly, it saves time when creating docu-
ments. This is a major benefit when creating
delivery goods or determining internal specifica-
tions when the source program is being created,
for example, as in prototype development.

 4.1 Reverse engineering tool PROSPECS
There are a number of reverse engineering

tools, most of which base input on the source
program and automatically generate documents
reflecting the comments of the source program
based on the extraction rule for comments.

Fujitsu has developed and is merchandising
a reverse engineering tool called PROSPECS.5)

The specifications of PROSPECS are as follows.
1) Input language: Java, C/C++, C#, Visual

Basic (hereafter called VB)
2) Generation types: 47 to 69 types (depending

on the language used)
• Definition information: class list, method list,

etc.
• Description: class description, method

description, etc.
• Reference information: class reference list,

parameter reference list, etc.
• Structure information: class hierarchy

diagram, method calling diagram, etc.
• Metrics information: file metrics, method

metrics, etc.
• Difference information: file difference, meth-

od difference, etc.
3) Generation forms: printout, HTML, Word,

CSV
PROSPECS can be used for creating docu-

ments and understanding the source program. It
features a form editor and a source browser for
supporting tasks. In most cases, users are stan-
dardizing the formality of documents. This is done
using PROSPECS’ form editor, which defines the
format of a document and is a drawing tool for
laying out rectangular areas, lines, comments, and
source analysis results with a mouse. This tool is
easy to operate and makes it easy to obtain a print-
ed image (Figure 5).

The source browser is used to reference a
source program. It consists of a window display-
ing reserved words, identifiers, and comments of
the source program in different colors; a window
displaying definition lists of classes and methods;
and a window displaying reference and structure

330 FUJITSU Sci. Tech. J., 42,3,(July 2006)

H. Abotani et al.: Improvement of Software Quality and Productivity Using Development Tools

information. This tool improves the readability
of the source program. Moreover, by using the
comment keyword setting, extracted keywords
and comments reflected in the document can be
displayed in different colors. This tool makes it
easy to define the comment to be extracted from
the source program.

4.2 Aiming for abstraction of logic
Software development can be broken down

into processes such as analysis, designing,
implementation, and testing. The documents
generated by the current reverse engineering tool
have a quality close to that of the source program
created in the implementation process. One of
our goals for the future is to generate documents
having the same quality as documents in the
analysis and designing processes. We can achieve
this goal by establishing a technology to extract
meaningful logic from the source program and
generating highly abstract documents.

5. NetCOBOL
When constructing the base of an open sys-

tem, there is always a debate regarding whether
to use Java and VB or to use COBOL as a pro-
gramming language, and to resolve this debate,
the features of each language must be considered.
Java supports the Internet, which enables flexi-

ble system construction; whereas with COBOL,
existing assets operating on mainframe systems
and office computers can be reused. In future
system construction, it will be important to use
the right language for the situation based on
current existing assets and the objective of the
system to be constructed. The number of cases
that use Java for front operations is growing, and
COBOL is used for constructing business logic
using existing assets.

NetCOBOL,6) which is a COBOL develop-
ment environment offered by Fujitsu, provides
integrated support for development using COBOL,
from design to testing. It also ties up with
Interstage Apworks, which is an integrated
development environment that adopts the indus-
try standard Eclipse. These two features of
NetCOBOL enable quick and efficient develop-
ment of a system using Java and COBOL. In
addition, in a system construction based on
Microsoft’s .NET Framework, a system can be
developed in the same way as VB and C# by
using Visual Studio.NET, which is the integrated
development environment of the .NET Frame-
work. The NetCOBOL integrated development
environment supports all the phases of the
development cycle, for example, designing, pro-
gramming, testing, and maintenance. This section
introduces the basic features offered by the
NetCOBOL integrated development environment,
for example, the compiler, debugger, screen and
print-form editing, testing support, and document
creation support features.
1) Project Manager

Project Manager is the main tool of the Net-
COBOL development environment. It controls the
dependencies of development assets and enables
operation linkage with various support tools, for
example, the compiler and debugger. It can
efficiently develop applications, including
applications with conventional specifications and
applications with object-oriented COBOL specifi-
cations. Some Project Manager screenshots are
shown in Figure 6.

Figure 5
PROSPECS Class description.

331FUJITSU Sci. Tech. J., 42,3,(July 2006)

H. Abotani et al.: Improvement of Software Quality and Productivity Using Development Tools

2) Compiler
This complies with international standards

and has object-oriented features that have been
adopted in the new COBOL2002 standard. It also
realizes major industry-standard specifications
and the Fujitsu-standard specifications in
common with Fujitsu mainframes and office
computers.

Japanese cannot be expressed in the charac-
ter-code system in a single byte, which can
represent one of 256 characters. Therefore, mul-
tiple character-code systems such as Shift-JIS,
EUC, Unicode, and EBCDIC-JEF are provided.
The support of character-codes is important, so
NetCOBOL supports the Japanese Shift-JIS,
EUC, Unicode, and EBCDIC-JEF character-codes.
3) Debugger

NetCOBOL’s rich interactive debugging fea-
tures make it possible to improve efficiency when
testing tasks and obtain quick solutions to prob-
lems. Some examples of these features are:
• Flexible breakpoint setting
• Monitoring of data contents
• Breaking at data modification points
• Testing of just a sub-program

It also has an analysis report feature that
outputs detailed debugging information during
operation and can speed up troubleshooting
investigations.

4) Screen and print form editing
A detailed screen and print form application

can be created in COBOL by defining three fields:
the screen definition field, which defines the type
and screen location of data to be entered/displayed;
the print form definition field, which defines the
type and location of data to be printed; and the
overlay definition field, which overlaps the print
form definition field. In addition, COBOL
programmers can define the screen and print form
definition field in the same way as a normal file
by using the familiar WRITE and READ state-
ments, which shortens the construction time.
5) Development and maintenance support

(SIMPLIA/COBOL support kit)
This provides various features that support

development and maintenance. These features
include the following:
• Testing support

The conversion tool and interactive editor
simplifies the creation of test data and enables
data to be created more efficiently by using exist-
ing data.
• Document creation support

Maintenance documents (e.g., screen and
ledger design, file design, application structure
design, and module design documents) can be
automatically generated from development assets.
• Support for migration between platforms

Support for migrating data and source code
between mainframes, office computers, and open
systems is provided.

6. Conclusion
In Fujitsu, application development using

Java and COBOL is increasing year by year, and
a systematic development tool set that supports
multiple platforms without depending on technol-
ogies of a specific vendor is becoming increasingly
important.

By using the information of the design pro-
cess for implementation and testing, considering
new technologies such as Model-Driven Architec-
ture (MDA) and development methods based on

Figure 6
Project Manager screenshots.

332 FUJITSU Sci. Tech. J., 42,3,(July 2006)

H. Abotani et al.: Improvement of Software Quality and Productivity Using Development Tools

Hideo Abotani, Fujitsu Ltd.
Mr. Abotani graduated from Akashi
National College of Technology, Akashi,
Japan in 1983. He joined Fujitsu Ltd.,
Numazu, Japan in 1983, where he
was engaged in development of pro-
gramming language compilers on
mainframes. Since 1994, he has been
engaged in development of the COBOL
compiler on open systems.

Service-Oriented Architecture (SOA), and through
other means, Fujitsu intends to offer more practi-
cal development tools and advance in its pursuit
of technological superiority.

References
1) Eclipse.

http://www.eclipse.org/
2) Fujitsu: Interstage Apworks.

Kouji Sasaki, Fujitsu Software Technol-
ogies Ltd.
Mr. Sasaki graduated from Hamamat-
su Industrial High School, Hamamatsu,
Japan in 1987. He joined Fujitsu
Software Technologies Ltd. (formerly
Fujitsu Shizuoka Engineering Ltd.),
Hamamatsu, Japan, in 1987, where he
has been engaged in development of
source code analyzers.

Tomoki Shiratori, Fujitsu Ltd.
Mr. Shiratori received the B.S. and M.S.
degrees in Computer Science from the
University of Tokyo, Tokyo, Japan in
1992 and 1994, respectively. He joined
Fujitsu Ltd. Kawasaki, Japan in 1996,
where he has been engaged in devel-
opment of middleware products for Java
programming language, for example,
Graphic User Interface (GUI) library and
its development environment.

http://www.fujitsu.com/global/services/
software/interstage/products/devsuite/

3) Fujitsu: SIMPLIA series. (in Japanese).
http://software.fujitsu.com/jp/simplia/

4) Junit.org.
http://www.junit.org/

5) Fujitsu: PROSPECS. (in Japanese).
http://jp.fujitsu.com/fst/services/frontier/kobo/

6) Fujitsu: NetCOBOL.
http://software.fujitsu.com/jp/cobol
(in Japanese)
http://www.netcobol.com/

Masaki Tonomura, Fujitsu Ltd.
Mr. Tonomura received the B.E. degree
in Electric Engineering from Kinki
University, Osaka, Japan in 1989. He
joined Fujitsu Ltd., Kawasaki, Japan in
1989, where he has been engaged in
development of Computer Aided Soft-
ware Engineering (CASE) and support
tools for software development.

