
306 FUJITSU Sci. Tech. J., 42,3,p.306-315(July 2006)

Toward Realization of Service-Oriented
Architecture (SOA)

V Isao Morita
(Manuscript received April 25, 2006)

These days, companies must quickly identify changes that will affect them and quick-
ly respond to those changes.  In some cases, to secure global competitive superiority,
companies must make rapid decisions to start new businesses as early as possible.
On the other hand, because the IT systems at the heart of businesses are developed in
response to individual requests, there are multiple platforms and application architec-
tures, which causes complexity and bloating.  This makes it hard to grasp the overall
situation, making it difficult to adapt a system to a new business and ensure consis-
tency when a system is maintained.  Service-Oriented Architecture (SOA), which is a
concept for making systems robust against change, is attracting attention as a way to
solve these problems.  Fujitsu made its system of SOA technologies public in July
2005 to facilitate the realization of IT systems that are robust against change.  This
system provides SOA development techniques (SDAS/Service Modeling).  This paper
describes the technologies used to realize SOA.

1. Introduction
Service-Oriented Architecture (SOA) has

recently been in the spotlight.  It is regarded as
the only current solution for realizing informa-
tion technology (IT) systems that can keep up with
changes in the business environment and is
expected to provide great benefits to businesses.
Some say that SOA may outperform existing
system development methods because of its
advanced business analysis method and IT and
its revolutionary productivity.  However, others
say that it is only a buzzword used by vendors in
sales talks and it will change nothing.  In short,
as it now stands, SOA is not well understood.

The February 6, 2006 issue of Nikkei
Computer1) says that, “SOA is a culmination of
existing technologies for the purpose of problem
solving and there is no breakthrough in its tech-
nology.”  Fujitsu is adapting and promoting SOA,
and we were very impressed with this quote,
especially the part, “for the purpose of problem

solving.”  We are often asked what problems SOA
can solve; however, it is not easy to answer this
question because the problems it can solve vary
from business to business.  The above quote gives
us a renewed recognition of the fact that SOA is
designed to solve problems in business.

This paper describes SOA in terms of the
application of SOA technologies to solve problems.

2. What is SOA?
First, we will describe the concept of SOA.
SOA was first proposed in a report of Gart-

ner, Inc.  issued in 1996 (as long as 10 years ago).
The report said that SOA is a software architec-
ture that specifies system structures, where the
whole information system is regarded as a collec-
tion of services interoperated and used freely
through a common interface (the service bus)
independent of hardware.  In addition, the stron-
gest effect of SOA is that it makes a system robust
against change (Figure 1).



307FUJITSU Sci. Tech. J., 42,3,(July 2006)

I. Morita: Toward Realization of Service-Oriented Architecture (SOA)

A “service” is an independent group of func-
tions that is unrelated directly to anything except
the service interface.  There are various services
that run on various platforms and OSs, are
used at various locations, and are written with
various languages.  The service bus allows
communication between these services.  The
service interface is a standard method of commu-
nication that anyone can use, regardless of the
service vendor.  The service bus hides which ser-
vice the applications are communicating with.
SOA makes a system robust against changes that
occur in this structure.

Current IT systems are like spaghetti, and
it is impossible to tell what effects a change will
have in other parts of a system.  Given the present
circumstances, much time and expense are
required to make changes in a system.  In addi-
tion, system complexity has been increasing
recently because individual systems have become
integrated into company-wide systems using, for
example, advanced networks, the Enterprise
Architecture (EA) concept, and Enterprise Appli-
cation Integration (EAI) tools.  It now seems clear
that SOA can make a system robust against chang-
es in IT.

Let us compare the concept of SOA with the
evolution of IT.

1) Simple components
There was a time when systems were

thoroughly developed as components based on key
concepts such as reuse, efficiency, and streamlin-
ing.  The difference between a component and a
service is that a component only works when
embedded in the application that is using it, while
a service works even if it is used by an applica-
tion that is remote from the service or uses a
different language.
2) EAI

EAI tools enable connections between
systems with heterogeneous platforms and
languages, enabling us to connect individual
systems easily by converting the format and
properties of the data in the heterogeneous
connection process.  However, this technology is
based on data interoperation that is dependent
on the vendor that provides the EAI tools.
3) Distributed object technology

Distributed object technology enables an
object to work even if an application using the ob-
ject is remote from the object or the application
and object use different languages.  CORBA is a
well-known implementation of distributed object
technology.  Enterprise JavaBeans (EJB) is
another implementation that has made it easy
to implement distributed objects using Java

Order service Shipping service

Path to connect services

B2B

Service bus

Settlement service Order confirmation service Inventory check service New service

Figure 1
Image of SOA.



308 FUJITSU Sci. Tech. J., 42,3,(July 2006)

I. Morita: Toward Realization of Service-Oriented Architecture (SOA)

language.  Because the interoperation method is
standardized, objects can connect and communi-
cate with other objects at any location.  These
technologies provide a basis for realizing SOA.
4) Web services

Web services are becoming popular because
they make software functions available over a
network.  Web service technology is also standard-
ized.  The protocol SOAP, which is based on XML,
is rapidly spreading because it is not only
independent of hardware, OSs, and languages, but
also easy to use compared to CORBA.

With the emergence of Web service technolo-
gy, the concept of SOA, which was proposed 10
years ago, has become feasible and is attracting
much attention.
5) Service bus

All major vendors now provide service bus
products to realize SOA.

The service bus includes functions such as a
messaging function and mediation function and
acts as an intermediate interface between
services.

3. Service unit
We said that the aim of SOA is to realize

system architectures that are robust against

change, but is it possible to realize a robust sys-
tem structure just by introducing a service bus
product?

The reality is that everyone wants to know
the best method for separating a required func-
tion into service units.

Service units are not clearly defined in the
concept of SOA.  As described in the beginning of
this paper, this is because the problems that SOA
can solve vary from business to business.

In cases where deregulation is in progress,
as in the financial industry, it is necessary to
respond to the elimination and integration of
business processes and quickly make business
improvements on site.  In these cases, systems
can be made robust against change if implement-
ed using a service in which order controls are
separated from business processes.  This separa-
tion can be achieved using workflows that
implement order controls and services that
implement business processes (Figure 2).

If a system needs to handle changes or vari-
ety in the presentation layer in the future (e.g.,
an expansion of channels to provide screens fo-
cusing on operability for internal operators or
publication on the Internet for customers), the
underlying business logic should be implemented

Loan business flow

Speedy business improvement is
possible by addition of new business
processes and change of business 
process order.

Reception Consideration Screening Settlement Approval

Service bus

Customer
reception
service

Screening
service

Settlement
service

Accounting
service

Figure 2
Image of workflow and services.



309FUJITSU Sci. Tech. J., 42,3,(July 2006)

I. Morita: Toward Realization of Service-Oriented Architecture (SOA)

as a common service and shared by all types of
channels to keep up with changes in the presen-
tation layer (Figure 3).

Although not detailed here, the analysis re-
sults in the upper processes will greatly influence
the service design and therefore these processes
are important factors in deciding the service units.

4. Problems in existing system
The problems described above will be solved

by clarifying requirements and designing common
components as before and then defining the ser-
vices.  However, these approaches can lead to the
following problems:
• Many changes are made in the system.
• Every requirement that is identified is

temporarily made; however, their effect on
the overall optimization is not considered.

• Because the effects of changes are unknown,
a modified copy of the target application is
added to the system and used under limited
conditions.

• As a result of these problems, the system

becomes bloated and complex like spaghetti,
making the effects of changes harder to grasp
and requiring more time and expense to
make them.

• Rebuilding is needed, but it is impossible to
know what type of structures are required
to build the system in order to respond to
change quickly and prevent the system from
becoming bloated and complex.
The developments that caused the bloating

have reached their limit of effectiveness.
A number of companies are believed to have

these problems in their systems.

5. Breakthrough
To prevent a system from becoming bloated

and complex:
1) Decompose the system into an appropriate

size.
In line with business, divide the system into

services that can adapt to changes and have the
appropriate sizes and no relation to each other.

Presentation layer is diversified and changeable.

Terminal used
exclusively for
internal operators

Internet 
browser Mobile phone Facsimile Mail

Delivery status notification service

In the future

Service bus

Figure 3
Responding to changes in presentation layer.



310 FUJITSU Sci. Tech. J., 42,3,(July 2006)

I. Morita: Toward Realization of Service-Oriented Architecture (SOA)

2) Separate the stable parts from the unstable
parts.
Existing systems are composed of important

processes for business and incidental processes
(e.g., creation of management documents, infre-
quent exception handling, and functions that
frequently change).

This paper proposes a modeling technology
that identifies services so a bloated, complex, spa-
ghetti-like state can be avoided.

6. Assuming causes
Systems become bloated, complex, and

spaghetti-like because of important entities that
exist from the start to the end of a business flow
and attract many business processes.

In addition, an entity normalized by Data
Oriented Approach (DOA) (Figure 4) attracts
more processes.  However, DOA is important for
clarifying the true meaning and dependency of

business data and is an underlying assumption
in the method of analysis introduced next.

We call these important, long-lasting entities
“kaname entities.”  A  “kaname” is a Japanese term
that means a nail or a place to secure the ribs of a
Japanese fan and is compared to the most impor-
tant things in a system.

Unless kaname entities are analyzed and
decomposed, problems will recur.  The decomposed
units are set as services in SOA.  Then, compo-
nent-like services are considered.  This is the first
step in performing Kaname Analysis to realize
SOA.

7. Kaname Analysis
Kaname Analysis is based on kaname enti-

ties and kaname events.  Kaname entities are
DOA entities and are the most important entities
in a business flow.  Kaname events are important
business events that can change the state of an

Order

Order number, item code,
quantity, amount, person responsible, 
customer, shipping address,
customer phone number,
product number, 
product specifications,
account number, delivery date,
order date, branches, 
complaint information, …

Entity

Order 
reception
process

Acceptance 
status

analysis 
process

Item collection 
instruction 

process

Item sales
source 

information
Allocation
instruction
process

Customer 
information

management

Shipping 
instruction
process

Invoice
process

Complaint
management

Payment 
confirmation

process

Payment 
confirmation

process

Sales plan
results 

management

Sales booking
process

Figure 4
Kaname entity attracts processes.



311FUJITSU Sci. Tech. J., 42,3,(July 2006)

I. Morita: Toward Realization of Service-Oriented Architecture (SOA)

entity.
These important entities and events need to

be identified because we want to distinguish the
essence of a business from its incidental aspects
and stable things from changeable things.

Regarding the identification of the essence,
Professor Zentaro Nakamura stated that, “To boil
water, in the past, a pan was filled with water,
put over a wood fire, and the water was brought
to the boil.  Today, we fill a kettle with water and
put it on a stove or just use an electric kettle.  In
any case, the essence of this task is to change the
status of the water.  The entity here is the water,
and the event is the change in status over time.”2)

In, for example, the general sales and manu-
facturing business, an order is first received, the
inventory is checked, the item is delivered to the
customer, and the payment is received.  This busi-
ness process does not change.  The DOA entities
(e.g., Order, Customer, Item, Inventory, Invoice,
and Payment) are stable and essential, and this
is the main reason for performing DOA.

The first step in identifying the essence of a
business is to construct a proper data model; that
is, not a table relationship diagram based on the

normalization of data structures in screens,
ledgers, and databases, but a business data
model that has been clearly mapped from the es-
sence of the business task.  In short, the first step
is to develop a data model centered on kaname
entities (Figure 5).

After finding the kaname entities, the state
transitions are analyzed.  Here, there are two key
points to keep in mind.  The first is that analysis
must be performed with the responsibilities of the
kaname entities clarified.  To take the example
above, the Order entity is only responsible for the
order.  That is, the only purpose of Order is to
ensure that the customer receives the requested
item.  If Order is also responsible for other tasks,
the system becomes more complex, so there should
be another entity, for example, Production
Order, that produces the ordered item.

The other point is to find the events that
change the states of the entities.  This is easier to
understand if it is considered that a state change
is a change that people other than the changer
need to know about.

The state is analyzed to analyze the business
process.  When writing business processes using

Order Breakdown

Customer + Order + Row

Invoice

Customer + Invoice + MonthCustomer + Order

Production OrderOrder

Production Order

Destination

Destination

Customer

Customer

Bill To

Bill To

Item

Item

1

1

1

1

1 1

1 1

1

1

1

Figure 5
Data model centered on kaname entities.



312 FUJITSU Sci. Tech. J., 42,3,(July 2006)

I. Morita: Toward Realization of Service-Oriented Architecture (SOA)

a business flow or similar diagram, the following
problems often occur:
• There are too many branches to draw them

all.
• Infrequent exceptions need to be described.
• It is difficult to determine the granularity

when writing processes.
• The flow chart exceeds 1000 pages, so nobody

can or wants to review it.
When analyzing the states, we can focus on

the essence of the business.  For example, the
acceptance of an order is an important state
change from the viewpoint of the overall process
required to complete the order, and this state
change can be identified in the state analysis.  On
the other hand, the only people who need to know
the individual steps required to accept an order
are those who perform them; these steps are not
the essence of the business and are not within the
scope of state analysis (Figure 6).

Detailed coverage of all the points is one

issue, and the analysis of the essence is another.
An effective way to identify the essence of a busi-
ness and detect stable function units of business
essence across organizations and businesses
without falling into the traps described above is
to clarify the kaname entities and their state
transitions.

8. Service architecture model
So far, we have described the process up to

the identification of state transitions of kaname
entities.  Next, we describe how to identify servic-
es using the identification results.
1) Step 1

The service architecture model (service mod-
eling in SOA) begins by defining one service for
each state of each kaname entity (Figure 7).

The screens, processes, and entities are
deployed in service boxes.  The caller and the callee
are clearly distinguished in the interface between
services.

Each kaname entity is deployed for each
decomposed service that corresponds to a state of
the kaname entity.  Whether a database table is
created for each service need not be considered in
this analysis process because the design feasibil-
ity is reevaluated at a later stage.  The major
objective here is to find function units that are
independent from each other and are robust
against change.  To do this, the system is decom-
posed into services, so a feasible design is
considered later.  In fact, there are various meth-
ods of implementation, for example, providing a
virtual view.  There might be cases where the
processes have performance problems.  The
important point here is whether the process
reduces the amount of interface between services
and whether the system can be decomposed into
independent functions.
2) Step 2

Perform a simulation of events.  Simulate an
order and keep track of how the process transits
between services in the service architecture
model.  At this time, clarify the trigger of the pro-

Order

Specifications 
Fixed

Production 
Received Fixation WaitingOrder Fixed

Shipped

Delivered

Produced

InvoiceProduction Order

Delivered 
From Warehouse

Invoice Fixed

Invoiced

Collected

Figure 6
State transfer model of kaname entities.



313FUJITSU Sci. Tech. J., 42,3,(July 2006)

I. Morita: Toward Realization of Service-Oriented Architecture (SOA)

cess (e.g., a screen event or the time), as well as
the arguments and return values of the interface.
In addition, evaluate whether each entity is
necessary for the service that contains it.  Based
on the results, improve the service architecture
model (Figure 8).
3) Step 3

So far, the entities that make the business
complex have been decomposed into services that
are independent from each other.  As described
above, services representing the workflow control,
channel response, and other functions are added
according to the problems that exist.  In addition,

in Step 3, the communication between other
system interfaces is clarified.
4) Step 4

Verify the original problem (whether the sys-
tem is robust against change) on paper.  Because
SOA is a new technique, it is important to study
its effects and make improvements to its design.

With the steps described above, an analysis
is introduced centered on the essence of the busi-
ness.  Naturally, it is also important to discuss
and cover all the functions, screens, and data in
the design.  The analysis and design can be
performed in the model.

InvoiceSpecifications
Fixed

Order Fixed Fixation Waiting

Shipped

Delivered

Invoiced

Collected

Invoice Fixed

Production Order

Production 
Received

Produced

Delivered From
Warehouse

Production
status

management
service

Specifications
fixation service

Order fixation
service

Shipping status
management

service

Delivery status
management

service

Production
reception
service

Shipping status
from

warehouse
management

service

Invoice fixation
waiting service

Invoice fixation
service Invoice service

Collection
elimination

service

Kaname entity state transition

Service architecture model

1 Service for 1 state

Order

Service bus

Figure 7
Service architecture model (step 1).



314 FUJITSU Sci. Tech. J., 42,3,(July 2006)

I. Morita: Toward Realization of Service-Oriented Architecture (SOA)

Order

Order

Specification
entry

Specification
input

screen

Order fixed
request

Specification
confirmation

screen

Order
reception

Order state
management

request

Order input
screen

Order input 
completion

screen

Specifications
fixation service

Invoice fixation 
waiting service Invoice fixation service Invoice service

Collection elimination 
service

Order fixation service Order state
management service Shipping sub-system

Order
fixed
I/F

Order

Order
reception

Order
reception

I/F

State
change

State
change

I/F

Shipping Delivery

Order filed I/F Order reception
I/F
 

Order reception
I/F

Order reception
I/F

Service bus

Order entry

Figure 8
Service architecture model (step 2).

In addition, a feasibility design needs to be
performed.  There are still many points to consid-
er in design, for example, the timing, data amount,
transactions, and the physical deployment of
tables.  This paper has described how to design
structures that are robust against change in the
upper processes.  Discussions about other SOA
design topics will be published at a later date.

9. Conclusion
Fujitsu made its system of SOA technologies

public in July 2005 to facilitate the realization of

IT systems that are robust against change.  This
system provides SOA development techniques
(SDAS/Service Modeling) for business modeling
and service configuration.  This paper has mainly
described service configuration.

References
1) Special Issue: SOA.  (in Japanese), Nikkei Com-

puter, February 6, 2006.
2) Z. Nakamura: A Planning Method of Successful

Simple Work by Kaname Entity/Event Analysis.
(in Japanese), The Nikkan Kogyo Shimbun, Ltd.,
2003.



315FUJITSU Sci. Tech. J., 42,3,(July 2006)

I. Morita: Toward Realization of Service-Oriented Architecture (SOA)

Isao Morita, Fujitsu Ltd.
Mr. Morita received the B.E. and M.E.
degrees in System Engineering from
Tokyo Denki University, Japan in 1985
and 1987, respectively.  He joined
Fujitsu Ltd., Tokyo, Japan in 1987,
where he has been engaged in software
development and support of technolo-
gies in the upper processes of Fujitsu’s
system development methodology,
SDAS.

 


