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This paper introduces two new CAD tools, “March” and “MagusMCP,” developed to
partially automate the design of clock signal distribution for timing optimization and
the timing constraints for systems-on-a-chip.  March synthesizes flexible structures
of clock distribution circuits based on flip-flop (FF) grouping and placement informa-
tion.  It also considers the placement and routing resource information of RAM and
optimizes the delay on clock paths and clock skew.  These features make it easier to
satisfy timing constraints.  MagusMCP automatically detects multi-cycle/false paths
based on analysis that takes circuit logic into account.  These tools make it possible
to ease timing constraints, thus enabling early timing closure.

1. Introduction
During the design of a system-on-a-chip

(SoC), timing closure is achieved by repeatedly
estimating the circuit delay and optimizing
circuit performance until the design satisfies the
given timing constraints.  Timing closure has
always been an indispensable step in SoC design,
but due to the steadily increasing demand for
integrated circuits of higher performance and the
greater impact of interconnection on timing, it
is becoming one of the most difficult and time-
consuming tasks to complete.  Reducing the cost
of timing closure is now a top priority in modern
SoC design.

In addition to the demand for higher
performance and the significant impact of inter-
connection on timing, the introduction of complex
timing constraints is another major reason for the
difficulty posed by timing closure.  In modern SoC
design, timing constraints are becoming increas-
ingly more complex due to the requirements for
low power consumption and the reuse of
pre-designed standard modules known as

intellectual properties (IPs).  For example, multi-
phased clocking schemes such as divided clocks
and clock gating techniques are commonly used
to reduce power dissipation in inactive modules.
In these cases, it is quite difficult for designers to
manually maintain consistency between the
logic/physical design, clock design, and timing
constraints.  Thus, the cost of generating and
maintaining complex timing constraints accounts
for a considerable portion of the total cost for
timing closure in modern design.

This paper introduces two new CAD tools
developed to handle complex timing constraints
and describes the new features of these tools.  The
first tool is a clock tree synthesis tool called March.
The second is a multi-cycle/false path analysis tool
called MagusMCP.

The rest of this paper is organized as follows.
Section 2 explains the background of timing
constraints for timing closure.  Sections 3 and 4
introduce the new CAD tools, March and
MagusMCP, respectively.  Section 5 summarizes
our work and presents some future possibilities.
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2. Timing closure problem of
SoC design
The purpose of timing closure is to ensure

that two kinds of constraints are satisfied: the
setup and hold constraints (Figure 1).  The set-
up constraint requires that a data signal must
arrive at the target flip-flop (FF) before the next
clock signal.  Conversely, the hold constraint re-
quires that a data signal must not arrive at the
target FF before the current clock signal.  When
both constraints are satisfied, the signal originat-
ing from the source FF arrives at the target FF
after the current clock and before the next clock,
thus ensuring the correct signal is latched at the
target FF.

2.1 Timing constraints under complex
clock structure
The setup and hold constraints depend on the

timing at which the clock signal arrives at each
FF.  In other words, the correct clock arrival time
must be ensured to determine the correct timing
constraint.  The problem is that the correct clock
arrival time cannot be determined until the clock
tree is built.

In the traditional flow of design, this prob-
lem is solved in the following way.  First,
timing-driven placement is performed by assum-
ing that every FF receives the clock at the same
time (i.e., assuming zero skew).  Then, the clock

tree is built so as to minimize clock skew.  After
the clock tree is built, a timing violation check is
performed based on the correct clock arrival time.
To correct any timing violations that are found,
the layout must be refined.  If the clock skew is
sufficiently small, the portion of design that
requires refinement will also be small.

However, this design flow may not always
work for existing SoCs that have a complex clock
structure involving multiple clock sources, a gat-
ed clock, and a divided clock.  There are several
reasons why such a complex clock structure is
necessary.  For example, a gated clock and divid-
ed clock are needed to reduce power consumption.
Multiple clock sources are often used when an SoC
has several reused modules, each of which
operates at a different frequency.  Such a clock
structure can cause problems because it negates
the assumption of zero skew.

For example, consider clock gating.  When a
module is idle, disabling the clock signal to that
module can reduce the power it consumes.  This
technique is called clock gating.

The clock cycle in the example shown in
Figure 2 is 5 ns.  The source FF and target FF
receive the clock signal at the same time.  The
clock path to the target FF has a clock gate.  When
the “enable” signal at the clock gate is zero, the
clock signal is disabled at the target FF.  The
delay between the clock gate and target FF is
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Figure 1
Setup constraint and hold constraint.
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1 ns.  The enable signal must arrive at the clock
gate before the clock, which is 1 ns earlier than
the clock arrival time of the target FF.  Because
the clock cycle is 5 ns, the delay from the source
FF to the clock gate must be less than 4 ns.

We cannot assume zero skew in this case.
The clock signal first arrives at the clock gate be-
fore reaching the target FF.  Thus, the target FF
and clock gate cannot receive the clock signal at
the same time.  The designer cannot determine
the correct timing constraint until the clock
arrival time at each FF is known.  Once the clock
arrival times are fixed, the designer must repeat
timing optimization to correct any new timing
errors detected.  Moreover, this repetition may
take considerable time.

This kind of problem is becoming quite com-
mon because it occurs not only for clock gates, but
also for divided clock generating circuits.

2.2 Multi-cycle paths and false path
extraction
The extraction of multi-cycle paths and false

paths is another issue that should be addressed
in order to reduce the cost of timing closure.

A multi-cycle path in a sequential circuit is a
combinational path that does not have to propa-
gate signals in a single clock cycle.  A k-cycle path
enables the use of k clock cycles to propagate sig-

nals.  An infinite-cycle path — also called a false
path — is a path that is never activated given the
circuit’s functionality and the delay values of the
circuit components.

Figure 3 shows an example of a multi-cycle
path in a fully synchronous sequential circuit.  For
this circuit, the details of combinational logic A
are omitted.  FF1 and FF2 are flip-flops with
enable input EN.  FF3 and FF4 are flip-flops with-
out an enable input.  The paths between FF1 and
FF2 are multi-cycle paths, as indicated by the bold
lines.  This can be recognized by the following
analysis.  FF3 and FF4 constitute a counter whose
state transition is as follows: (00)/ (01)/ (11)/
(10)/ (00).  The values of the enable inputs of FF1
and FF2 become 1 when the state of the counter
is either (00) or (10).  Therefore, the paths between
FF1 and FF2 are actually 3-cycle paths.

Figure 4 shows a classic example of a false
path.  As you can see, the circuit has four combi-
national logic blocks (A, B, C, and D), for which
the longest delays are 3 ns, 1 ns, 3 ns, and 1 ns,
respectively.  The longest path through pin D0 of
MUX1 and pin D0 of MUX2 is false because
control inputs C of MUX1 and MUX2 never have
values of 0 at the same time (assuming the NOT
gate has zero delay).

A circuit with many clock gates can have sev-
eral multi-cycle paths.  When a clock gate blocks
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Figure 2
Setup constraint at clock gate.
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the clock signal, a clock-driven FF does not latch
the data signal.  This means the data signal need
not arrive in the clock cycle.  Such a circuit may
have many multi-cycle paths, of which even the
designer may not be aware.  Detecting multi-
cycle paths is important to reduce the design time.
Without knowing which path is a multi-cycle path,
we may needlessly spend much time optimizing
its delay.

A complex clock structure, multi-cycle paths,
and false paths make it difficult to obtain the
correct timing constraint.  Consequently, the cost
of timing closure increases.  To solve this prob-
lem, we have developed a clock tree synthesis tool
called March and a multi-cycle/false path analy-
sis tool called MagusMCP.

3. Clock tree synthesis tool:
March

3.1 Basic idea
The increasing complexity of clock trees

makes the design process even more difficult
under the current flow of design where zero skew
is assumed.  As discussed in Section 2.1, the
timing constraint of a path to the enable signal of
a clock gate depends on the clock path delay from
the gate to the FF.  Existing clock tree synthesis
tools require repeated trial-and-error testing to
obtain a good result for such a circuit.

We believe that to resolve this problem, two

aspects of clock tree synthesis tools must be
improved.  One is having an interface to handle
the complex clock structure.  The other is accu-
rately estimating the clock arrival time during an
early phase of layout so the designer can estimate
the correct timing constraint before placement and
avoid repeated timing optimization.  Based on this
idea, we developed a clock tree synthesis tool
called March that has the following features:
1) March has an interface to identify FF groups.

FFs included in the same group are expect-
ed to receive the clock signal at the same
time.  When two FFs are included in differ-
ent groups, the skew between the FFs will
be ignored.
March allows a pin on a clock path to be
included in such a group (Figure 5).  The
user may include the pin of a clock gate or a
divided clock generating module and then use
March to synchronize the group that includes
a clock gate or clock generating module.
Conventional clock tree synthesis tools
control skew for each FF clock pin at the end
of the clock path.  Thus, the ability to control
skew at a pin on the clock path serves to
simplify the clock tree synthesis process.

2) March considers the placement and routing
resource information of RAM.  RAM uses a
varying number of metal layers.  When RAM
uses all the metal layers, no wires can be
routed over it.  Conversely, wires can be rout-
ed over RAM that does not use the upper
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layers.  A clock tree synthesis tool that ig-
nores such information cannot determine
whether a net can be routed around or over
RAM.  As a result, the clock net routing esti-
mated by such a tool is incorrect.  Having
both the correct placement and routing
resource information are important in esti-
mating the delay from the clock source to
each FF.

3) March optimizes not only the clock skew, but
also the delay from the clock source to each
FF.  Thus, a smaller delay on the clock path
reduces the amount of estimation error and
improves the predictability of clock arrival
time.

3.2 Experimental results
To determine how much more accurate the

estimated clock arrival time can be based on the
idea described in Section 3.1, we applied March
to a design with 139 RAMs and 173 k FFs.  The
delay between the clock source and each FF is
8 ns for a conventional clock synthesis tool and
5 ns for March.  The error in clock arrival time
estimation by conventional clock synthesis is more
than 1000 ps due to routing resource estimation
error and a longer delay on the clock path, while
the estimation error of March is less than 200 ps.

Thus, given the more accurate estimation of
clock arrival time, March is instrumental in
solving the timing closure problem caused by

increased clock complexity.

4. Multi-cycle/false path analysis
tool: MagusMCP
This section introduces the MagusMCP

multi-cycle/false path analysis tool.  This tool
automatically detects multi-cycle paths and false
paths by analyzing circuit functionality based on
the features described in References 1) and 2).
Information about the multi-cycle paths and false
paths detected is added to the timing constraints
and then used for more accurate static timing
analysis (STA) and early timing closure.  This sec-
tion reviews the implication-based analysis
proposed in References 1) and 2).  The new con-
tributions reported in this paper in terms of
multi-cycle/false path analysis deal with extend-
ing the techniques for false path analysis, along
with the results of the impact of multi-cycle/false
path detection on early timing closure being
reported.

4.1 Implication-based analysis for
multi-cycle/false path detection

4.1.1 Multi-cycle path analysis
One of the major obstacles to multi-cycle path

analysis is the excessive computation time, which
is mainly due to the exponential expansion of
paths in circuits.  To accelerate multi-cycle path
analysis, we focused on multi-cycle FF pairs
instead of multi-cycle paths.  A pair of multi-cycle
FFs (FFi, FFj) is an ordered pair of FFs such that
every path from FFi to FFj is a multi-cycle path.
In Figure 3, (FF1, FF2) represent a pair of multi-
cycle FFs.  To check whether a given FF pair is a
multi-cycle FF pair, we only need to examine the
transition conditions of the source FF and sink
FF.  Specifically, we need to confirm the following
condition, which we call the Multi-Cycle (MC)
condition:

where FFi(t) denotes the value of FFi at time t.
Implication-based analysis can be illustrat-
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Example of synchronized groups.
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ed by using the circuit shown in Figure 3.  Con-
sider the FF pair (FF1, FF2) in this figure.  The
combinational logic part of the circuit is first
expanded into two timeframes as shown in
Figure 6 to show the relationship between
values at time t, t+1, and t+2.  In Figure 6, the
leftmost column, middle column, and rightmost
column of the FFs are at time t, time t+1, and
time t+2, respectively.  The combinational circuit
between the FFs at time t and FFs at time t+1 is
at time t.  The combinational circuit between the
FFs at time t+1 and FFs at time t+2 is at time
t+1.  Each dotted-line arrow indicates an implica-
tion relationship, which means that the value at
the head implies the value at the tail.  To check
whether a pair of FFs is a multi-cycle path, we
must check whether the pair satisfies the MC
condition for both rise and fall transitions at FF1.
Only the case of rise transition is explained here;
that is, FF1(t) = 0 and FF1(t+1) = 1.  Note that
these values are assigned before the implication
procedure.  In Figure 6, these values are circled
and the other values are the results of the impli-
cation procedure.  Because FF2 has an implied
value 0 on enable input EN at time t+1, the MC
condition holds true for rise transition at FF1.

This paper focuses on circuit functionality.
Taking into account circuit delay and hazards in

functional multi-cycle path analysis is discussed
in Reference 1).

4.1.2 False path analysis
Theoretically, a false path is considered a

special case with regard to multi-cycle paths.
When a pair of FFs is a false FF pair, the analysis
described in Section 4.1.1 above always detects
such a pair as a multi-cycle FF pair.  However,
false FF pairs are rare in practice.  Therefore,
path-based false path analysis is also required to
detect many false paths.  In MagusMCP, false path
analysis is also based on implication.  For a given
path, logic values corresponding to the activating
condition of each gate on the path are first
assigned, and then the implication procedure is
invoked.  If a contradiction is found, we can
conclude that the path is false because it has no
activation vector.

For example, consider the path drawn as a
bold line in Figure 4.  The activation conditions
for gates MUX1 and MUX2 are MUX1.C = 0 and
MUX2.C = 0, respectively.  However, this implies
a conflict at the NOT gate.

Taking into account the circuit delay in func-
tional false path analysis is discussed, for example,
in Reference 3).
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4.1.3 Automatic recognition of complicated
clocking

Actual designs typically include complicated
clocking.  For multi-cycle path analysis, recogniz-
ing clock behavior is essential for accurate and
efficient analysis.  MagusMCP automatically
recognizes a clock definition from the timing
constraints and transforms complicated multi-
phased or gated clocks into fully synchronous
sequential circuits.2)

4.2 Experimental results in an industrial
setting
We have applied MagusMCP to actual

designs.  Table 1 lists the results of applying
multi-cycle path analysis to an industrial design.
In the table, the “Number of cells” column indi-
cates the number of cells in the circuit.  The
“Number of FFs” column indicates the number of
FFs.  The “Number of target critical FF pairs”
column is the number of target-critical timing FF
pairs specified in an input file in the form of an
STA timing report.  The “Number of MC pairs”
indicates the number of multi-cycle FF pairs de-
tected by the analysis.  “CPU time(s)” indicates
the CPU time in seconds required for multi-cycle
path analysis.

Table 1 indicates that more than 2% of the
target-critical timing FF pairs are multi-cycle
paths.  The CPU time is very short.  Because the

example design was in the last stage of layout,
multi-cycle path detection is helpful, even though
not very many FF pairs are recognized as multi-
cycle paths.  It should also be mentioned that just
one multi-cycle FF pair may help ease the timing
constraints when the pair has several paths
between them.

Table 2 lists the results of applying false
path analysis to another industrial design and
evaluating the impact of generated false paths on
negative slack.  The slack at a pin is the differ-
ence between its required time and the arrival
time.  Negative slack means that the arrival time
is longer than the required time, thus indicating
a timing error.  A negative slack path has nega-
tive slack at the end of the path.  In Table 2, the
“Number of target critical paths” column indicates
the number of target critical paths specified in an
input file in the format of an STA timing report.
The “Number of false paths” column indicates the
number of false paths detected.  The “negative
slack without FP” and “negative slack with FP”
columns indicate, respectively, the negative slack
values of the most critical path calculated by STA
with and without the false paths detected by
MagusMCP being specified.  The “CPU time(s)”
column indicates the CPU time required for false
path analysis.

Table 2 indicates that more than 10% of the
target-critical timing paths are false paths.  The
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Table 2
Results of false path analysis.

Table 1
Results of multi-cycle path analysis.
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amount of CPU time needed to analyze about
40 000 paths is not so long.  Regarding the impact
of generated false paths on negative slack, false
path generation improves negative slack by more
than 10%.  During this experiment, we also
observed that the most critical path is quite like-
ly to be false.  These results suggest that automatic
false path generation can significantly improve
negative slack and accelerate timing closure.

5. Conclusion
We have introduced two new CAD tools for

early timing closure in SoC design.  The March
clock tree synthesis tool can take into account
complex timing constraints from early stages of
design, thus enabling clock path delay to be
accurately estimated from the beginning of
layout.  The MagusMCP multi-cycle/false path
analysis tool automatically detects timing excep-
tion paths and improves negative slack for early
timing closure.  Experimental results reveal that
more than 2% of target-critical timing FF pairs
are multi-cycle paths and that false path genera-
tion improves negative slack by more than 10%.
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