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To realize the low power consumption and low-cost equipment needed to decode high
definition broadcasts, Fujitsu has developed a single-chip multicore processor FR1000
that integrates four 8-way, Very Long Instruction Word (VLIW) FR-V processor cores.
This new multicore processor is fabricated using a 90 nm, nine-metal-layer CMOS pro-
cess and a 900-pin flip-chip package.  The processor cores operate at 500 MHz, the
memory interfaces at 250 MHz, and system bus at 166 MHz.  The use of a single proces-
sor core enables MPEG-2 MP@ML video-stream decoding at 190 MHz.  Conversely, the
use of four processor cores enables the decoding of MPEG-2 MP@HL video streams
by just using software.  Moreover, this new processor needs only about 3 W to decode
MPEG-2 MP@HL video streams.  This paper introduces the hardware and software
development environment of this new processor, describes the processor’s software
operation environment, and cites some examples of its application.

1. Introduction
This paper introduces Fujitsu’s FR1000

single-chip multicore processor that integrates
quadruple Very Long Instruction Word (VLIW)
FR-V processor cores and specially developed soft-
ware.  This new processor inherits and builds upon
Fujitsu’s supercomputing technologies.1)-3), note)

There are two major methodologies for
increasing the processing performance of a
processor: increasing the frequency, and increas-
ing the total number of processing elements in
parallel.  Processors used for consumer products
must satisfy the requirements of high perfor-
mance, affordable price, and low power
consumption.  For example, the processor for a
personal computer (PC) may achieve high perfor-

mance, but requires a forced-air cooling device or
an expensive sealing package for the chip to oper-
ate within a power consumption limit of 100 W.
Therefore, employing such expensive devices for
a consumer products market under severe price
competition is not possible.  The price levels for
embedded processors are generally set much low-
er than those of general-purpose processors.
Consequently, we must use a less expensive pack-
age and cool it without using a cooling fan.  To
meet these conditions, we must make a low-priced
LSI that consumes about 1/50 of the power con-
sumed by a PC microprocessor.  Hence, we decided
to achieve high performance and low power con-
sumption by retaining the fundamental FR-V
concept and increasing the total number of pro-
cessing elements in parallel.  The FR5501) uses
VLIW and Single Instruction Multiple Data
(SIMD) to achieve the paralleled processing of
eight instruction levels and four data levels
(Figure 1).  Moreover, without increasing the
frequency, it was necessary to execute in parallel

note) VLIW can be referenced in the following doc-
ument:
Joseph A. Fisher et al, “Embedded Comput-
ing — A VLIW Approach to Architecture,
Compiler and Tools,” Morgan Kaufmann
Publishers.  FR-V is introduced on p.70 as
an example of the VLIW processor.
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several processing steps larger than those at the
instruction level to boost the level of performance.
Since semiconductor process technology has
entered the 90 nm age, the FR1000 multicore
processor with a VLIW processor that we had
initially planned could finally be realized.3)

Our target was realizing media processing,
such as for images and audio, exclusively by soft-
ware.  Previously, the control CPU was configured
with dedicated hard-wired logic  (e.g., Application
Specific Integrated Circuits [ASICs]) to perform
this kind of processing.  Until now, a supercom-
puter or computing server had to divide a main
task into multiple parallel tasks, primarily by
utilizing the loop parallelism in source code.  How-
ever, such media processing programs as those for
MPEG decoding include embedded parallel tasks
like Inverse Discrete Cosine Transform (IDCT)
functions and a large portion of slice level tasks.
Therefore, we decided to equip the multiple-core
VLIW processor with our processor.  Thread-level
(which is larger than instruction-level) parallel
processing was performed on multiple processor
cores, with the instruction-level parallel process-
ing performed in each processor core using VLIW
architecture as done by existing FR-V processors.
As a result, we achieved higher performance at
lower power consumption.  For example, the de-
coding of MPEG-2 MP@HL, which represents six

times the processing volume of MPEG-2 MP@ML,
consumed only about twice as much as power as
for the decoding of MP@ML streams by the FR550.

One major problem to resolve for realizing a
multicore processor system was providing an
environment to enable easy program debugging.
We planned to apply inherited programs and the
same software development environment devel-
oped for single processors to the multicore
processor environment.  Therefore, even though
the processor was actually a shared memory
system, we treated it as a distributed memory sys-
tem to enable use of our inherited assets for a
multicore software development environment.
This allowed us to use the existing software de-
velopment environment in the same way as for a
single processor core.  Moreover, the debugging
facility for the multicore processor was realized
by adding functions to existing hardware and
software functions.

The multicore architecture employed by the
FR1000 is based on a single processor with
additional architecture to control communication
between the multicores.  This architecture makes
it possible to construct the software development
environment for a multiprocessor that inherits the
software development environment for single
processors.

2. FR1000 hardware architecture
The FR1000 multicore processor integrates

quadruple VLIW processors on a single chip.  Each
VLIW processor core can execute up to eight par-
allel instructions at a time.

Moreover, each processor core of the FR1000
is a FR550-compatible processor.  The instructions
executed on the FR550 processor core consist of
integer arithmetic instructions, floating point
arithmetic instructions, and media instructions
with 16-bit, fixed-point arithmetic operations.  A
single media instruction or SIMD can process four
or eight operations in parallel.  A processor core
capable of executing eight parallel instructions
simultaneously can execute 28 operations  simul-
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taneously in one cycle.  Consequently, the FR1000
processor can execute 112 operations simulta-
neously per cycle.

Figure 2 shows the block diagram of this pro-
cessor.  From an aggregated view, the chip consists
of four processor cores, a main memory controller
with two channels, a direct memory access
controller (DMAC) for transfer between local
memory units, a DMAC for external transfer, and
a 64-bit system bus interface.  When configuring
the chip for a system that requires the processing
of a huge volume of image data such as High
Definition TeleVision (HDTV), a high-speed/high-
precision printing system, or a graphics system,
it is essential to provide high-speed data transfer
capability including that for I/O access and
between memory units.  High-performance arith-
metic processing capability is also very important.
For example, in an arithmetic instruction, if it
takes 90 cycles to transfer data from memory to
the arithmetic unit and 10 cycles for the proces-
sor core to execute the operation, then data
transfer controls 90% of total processor capabili-
ty.  Although the memory bandwidth is not
necessarily a cause of concern regarding a
single processor, it becomes a major factor for a
multicore processor.

Consequently, we adopted the configuration

described below to prevent data transfer from
posing a bottleneck in terms of performance
capability.
1) Four processor cores interconnected by a

crossbar bus  are employed, with two 64-bit
channels of the main memory interface op-
erating at 266 MHz and one system bus
interface operating at 178 MHz.

2) To reduce external memory access, each pro-
cessor core is equipped with 128 KB SRAM
(local memory unit) as local storage.

3) The DMA controller is functionally divided
into a DMAC for internal data transfer
(internal DMAC) and a DMAC for external
data transfer (external DMAC), and each
DMAC runs independently at the same time.
The internal DMAC is used to control data
transfer between processor cores, each pro-
cessor core and external memory, and
different memory units.  The external DMAC
is used to control data transfer between mem-
ory and the system bus.

4) In addition to the crossbar bus used for data
transfer as described above, there is a built-
in, inter-processor communication control
feature for transferring commands between
processors.
A dedicated crossbar bus connects the local

memory unit built into each processor core.  Thus,
all cores can access all local memory units.  The
internal DMAC and external DMAC described
above are both equipped with 16 channels.  Given
this bus architecture, the FR1000 processor can
simultaneously process data transfer between the
built-in local memory units, data transfer between
areas in memory, and data transfer between
memory and an external device.  As shown in
Figure 3, the data transfer speed between
memory and an external device reaches up to
1 GB/s.

Programs to be run on a multicore processor
generally require a means of inter-processor
communication.  Due to data transfer, the time
needed for communication between processors is
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Block diagram of FR1000.
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approximately 10 times that required for arith-
metic instructions, and thus may become a
bottleneck.  Therefore, the FR1000 processor is
provided with a mechanism dedicated to commu-
nication between processors for reducing
communication overhead and enabling inter-
processor communication independently of data
transfer.  Moreover, each core has a message buffer
dedicated to inter-processor communication that
can send 4-byte message data to another core
within nine core cycles.

In addition, for program optimization, each
core has a hardware Performance Analyzer
counter (PA-COUNT) dedicated to measuring
performance for analyzing the bottleneck factor
while the processor is running.  This counter is
configured with five 40-bit counters, and can
measure the availability ratio of a processor and
the stall factor ratios according to the counter’s
settings while an application program is actually
running.

3. FR1000 software environment
The software development environment for

the FR1000 processor is realized by enhancing
SOFTUNE for the multicore processor.4)  SOFT-
UNE is a software development environment
developed by Fujitsu for the FR-V processor.  This
new environment supports the use of existing
software development methodology for a single

processor.  Figure 4 shows the SOFTUNE
software development environment for the
FR1000 processor.  As shown in the figure, sever-
al parts have been enhanced for a multicore
processor.

Objects can be generated in each core by
using the environment for existing single proces-
sors.  The following two functions have been
enhanced for use with a multicore processor.
1) Function that makes a program (commonly

used in multiple cores) resident in a shared
library.

2) Function that first generates a program
object using the program development envi-
ronment for single processors, and then
allows four objects for individual cores to be
integrated into one object by using the
object integration tool.
Figure 5 shows an image of program debug-

ging by SOFTUNE that has been enhanced for a
multicore processor.  The In Circuit Emulator
(ICE) server has been newly developed to control
communication between multiple single-processor
debuggers and processor cores for a multicore pro-
cessor debugger.  By combining the use of the ICE
server and SOFTUNE debugger in each core, a
program running on each core can be debugged
using the existing method.  Moreover, the activi-
ty status of each core is displayed in the core status
window on the monitor screen shown in Figure 5.

The operating system for the FR1000 proces-
sor is based on REALOS and enhanced for a
multicore processor.5),6)  REALOS is a real-time
OS for the FR-V processor that conforms to
µITRON specifications, in which the run unit of
software is defined as a task.  Communication
between tasks on a single processor uses Service
Call that is already provided for single processors.
We have enhanced the existing µITRON standard
to provide Service Call for a multicore processor
in our own MP-library (Figure 6), because the
µITRON standard does not currently define a
multicore processor.  REALOS and Service Call
library (MP-library) for a multicore processor
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coexist and work together on each processor core.
Thus, this arrangement allows the user to do the
following:
1) Use the existing REALOS Service Call to

communicate between tasks within the
processor, and

2) Use the new enhanced Service Call to com-
municate between tasks on different
processors.
As a result, a user can now select the exist-

ing or new Service Call for communication
between processors.

4. Tuning of application
programs
Application programs are generally opti-

mized to make full use of a processor’s capabilities.
This is because it may not be easy to increase the
level of performance unless the programs written
for a multicore processor are optimized.
Figure 7 shows a flowchart for optimizing the
capability of an application program running on
a multicore processor.  The left side of Figure 7
shows the flow of optimization for a single proces-
sor; the right side shows that for a multicore
processor.

Three tools are used for program optimiza-
tion with the FR-V processor: REALOS Analyzer,
Sampler, and PA.  REALOS Analyzer measures
the task availability ratio.  Sampler measures the
frequency of functions that are executed.  PA is
used for optimization at the command level.  The
following describes how these tools are used to
optimize the system.

The first step of tuning operation to increase
the capability of application is optimization at the
algorithm level for a single processor.  For exam-
ple, tasks performed at the C language level, such
as the amalgamation of different functions, reduce
the number of unnecessary processes.  The next
step involves finding functions whose execution
imposes a heavy processing load by measuring the
frequency ratio of each function.  A sampler is
provided for the FR-V processor to find such func-
tions.  The sampler checks the function being
executed at the specified time interval, and then
displays the result as a count based on the data
collected.  As shown in Figure 8, the output
window displays the ratio of each function to the
total execution of functions.  From this informa-
tion, it is easy to identify those functions that
impose a heavy processing on the processor.  These

Optimizing for a single processor

Optimization at the function level
(bottleneck analysis by using PA)

Optimizing for a multicore processor

Equalizing the processing load on 
each processor core
(by using REALOS Analyzer)

Measurement of performance

Optimization at the algorithm level
(e.g., amalgamation of different 
functions, reducing unnecessary 
processes)

Finding functions whose execution
imposes a heavy processing load
(by using Sampler)

Optimization at the algorithm level
(e.g., dividing into tasks, assigning
a task to a certain processor core, 
optimizing data access)

Figure 7
Tuning flow on FR1000.
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are the functions selected for optimization.
Although it was understood that the system

could be further optimized to increase availabili-
ty of the processor cores by measuring the
availability ratio of each processor core and the
interlock factors, the existing embedded proces-
sor could not perform such optimization because,
unlike the CPU in a supercomputer, the embed-
ded processor lacks the hardware necessary to
measure performance while running an actual
application program.  Fortunately, the FR-V
processor is provided with such hardware to
measure performance.  The PA tool was developed
for this purpose.  When PA is used to evaluate
performance, the hardware activates the measur-
ing device by providing a dedicated library.  The
following items are checked:
• Instruction Level Parallelism (ILP)

 (Total number of valid instructions in VLIW)
• VLIW Per Cycle-VPC

 (Ratio of VLIW instructions executed with-
out a stall)

• Operation Per Cycle-OPC
(Ratio of instructions executed without a
stall)

• Interlock factors
• Hit rate of cache
• Frequency distribution of input instructions

Figure 9 shows sample measurement results
obtained by PA.  The contents of measured data

can be displayed in the form of a graph and also
as diagnostic results of the bottleneck factor(s).
Thus, these indicators are used to optimize an
application.

Optimization at the multicore processor lev-
el must start during that within the functions after
single processor optimization is under way, as
shown in Figure 7.  At this stage, however, the
fact that the scope of optimization is not focused
on one processor alone must be kept in mind.  In
the FR1000 environment, a program is divided
into tasks based on the µITRON standard as
described above.  Specifically, a program must be
divided into tasks, with each task then assigned
to a certain processor core for execution.  At such
time, it is crucial to make modifications and
adjustments at the algorithm level, such as equal-
izing the processing executed by each processor
and minimizing the communication overhead
between processors.

Figure 10 shows the algorithm used for
MPEG-2 MP@HL decode processing that we
actually applied to a multicore processor.  In Core 0
a bit stream is entered and the header analyzed.
One picture consists of multiple slices.  When Core 0
detects the head of a slice, it activates Core 1
through Core 3 and processes the slice.  Core 0 is
placed in the wait state until all image process-
ing has been completed.  Each picture is processed
in this manner.  Even though performance and

Time interval
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Code size

Function nameCount value (%)

Figure 8
Output of function processing load: program tuning environment (Sampler).
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its attainment can be recognized by measuring a
specific task executed in a specific core, and how
much time it takes to do so, all such information
can be obtained by a task performance measur-
ing tool called REALOS Analyzer run on the
µITRON OS on the FR-V processor.  REALOS
Analyzer can analyze the dynamic stack usage by
each task in addition to the execution time and
availability ratio of each task.   Figure 11 shows
the sequence diagram of the MPEG-2 decoding.
Graphs are shown in the sequence of Core 0, Core 1,
Core 2, and Core 3, starting from the top.  The
black parts indicated for Core 0 denote the execu-
tion time of header analysis.  The other bar graphs
denote the processing times for decoding the slice
layer.  From Figure 11, we can see that the heavi-
est processing load is imposed on Core 0, followed
by that on Core 1, regardless of our efforts to
balance the workload in each core except Core 0.
In particular, the availability ratio of Core 2 is
about 60% and that of Core 3 about 50%.  There-
fore, we can understand that the processing
performed in Core 0 must be optimized or the
workload shifted from Core 0 to Core 2 or Core 3
to increase total capability.  It is important, how-
ever, to understand that this unbalanced load is
caused by the characteristics of image data used
for testing.  In other words, the balance of pro-
cessing load varies depending on the image to be
processed.  Conse quently, more image data should

be collected before drawing further conclusions.
Figure 12 shows the REALOS Analyzer per-

formance optimization results for the current
MPEG-2 MP@HL decoding program.  The verti-
cal axis represents the operating frequency
required for decoding MPEG-2 MP@HL.  First, we
applied MP@HL to the MPEG-2 MP@ML decod-
ing processing for a single core.  Upon executing
the decoding on a FR1000 core, we found that a
processing frequency exceeding 1 GHz was need-
ed (Bar A in Figure 12).  We then showed the
measurement results of performance when test-
ing the same models that had been modified for
use with a multicore processor by using the meth-
od shown in Figure 10 (Bar B in Figure 12).
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However, we could not increase performance at
all by simply modifying the program for use with
a multicore processor.  We still needed a process-
ing frequency in excess of 1 GHz.  After analyzing
the situation, we found that performance did not
increase by simply modifying the program because
a heavy load was imposed by memory access.  This
condition could be attributed to many functions
simultaneously accessing the same memory unit
in the multicore environment.  Accordingly, to re-
duce the memory access load, we changed the
memory map for MPEG-2 decode processing and
equalized the load imposed by accessing data in
memory as well.  Thus, we were able to double
the performance relative to that before this ad-
justment, and execute decoding at a processing
frequency of approximately 500 MHz (Bar C).  Fur-
thermore, we could increase performance even
more by separating data access processing from
the core by using built-in local memory.  We were
ultimately able to execute MPEG-2 MP@HL de-
coding at a frequency of approximately 380 MHz
(Bar D).
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5. Conclusion
The FR1000 is designed to achieve 51.2

GOPS, 1.0 GB/s-DMA using four processor cores,
an internal DMAC, external DMAC, two 64-bit
channels of main memory interfaces operating at
266 MHz, and a system bus interface operating
at 178 MHz.  By using the FR1000, we have
demonstrated MPEG-2 MP@HL stream decoding
at a power dissipation of 3.0 W without using
dedicated circuits.
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