
282 FUJITSU Sci. Tech. J., 40,2,p.282-294(December 2004)

Explicit Trust Delegation: Security for
Dynamic Grids

V David F. Snelling V Sven van den Berghe V Vivian Qian Li
(Manuscript received June 24, 2004)

This paper addresses the issue of how to build dynamic Grids without using the non-
standard proxy extensions that cause concern within the security community. The
approach allows commonly available security tools and libraries to invoke requests
(on the client side) and respond (on the server side) using only well-established
security protocols. This description is made in the context of the UNICORE Grid infra-
structure. UNICORE is known to have a strong, respected security model, but at the
cost of not supporting some dynamic Grid capabilities. The discussion shows how
UNICORE could be enhanced using Explicit Trust Delegation to provide dynamic
capabilities, hitherto only possible in Grids supporting a proxy-based security model.
We show how this approach provides a smooth migration path to proposed work on
Virtual Organizations.

1. Introduction
1.1 Need for delegation

Grid computing is built on the possibility of
users combining a number of different resources
into a single job to perform some action on their
behalf. The resources used for the job may come
under the control of different organizations and
could be spread over a number of different loca-
tions, and their use will be spread over time. The
sites that run the parts of the job will want to be
able to know that the work was authorised by a
particular user so the appropriate charges can be
made and the security of the sites assured. How-
ever, the user is disconnected from the execution
of the job (in space and time) and so cannot be
asked directly for authorization of a particular
action. Complex job flows in a Grid application
will also mean that two servers might need to com-
municate directly with each other (without the
user being present).

This is in contrast to the World Wide Web,

where interactions are always between an indi-
vidual and a Web server and the individual is
always “present” to authorise an action if
necessary. Traditional security mechanisms for
authentication and authorization such as the
Public Key Infrastructure (PKI) -based authenti-
cation used with https work well when the client
is connected to the service.

When the client (end-user) becomes discon-
nected from the server, a more complex situation
arises. The server must operate without direct
authorization since it can no longer contact the
user. There can be many reasons for this logical
disconnection; for example, the end-user may
physically disconnect from the server, the task
may operate in a batch-like environment, or the
server may create tasks remotely from the
end-user.

A common solution to the problem of discon-
nection is delegation, whereby end-users pass on
(grant) rights to a server (or process) to perform

283FUJITSU Sci. Tech. J., 40,2,(December 2004)

D. F. Snelling et al.: Explicit Trust Delegation: Security for Dynamic Grids

tasks on their behalf.
The traditional WWW interaction uses

“direct authorization”, whereby the end-users are
connected to a process when they request it to
perform an action and so can authorize the action
at the time it is to be performed. “Delegation” is
the process whereby one entity on the Grid (usu-
ally an end-user) grants rights to another entity
on the Grid (usually a process) to perform actions
on the entity’s behalf. “Static delegation” occurs
when the actions to be authorized are known in
advance of the delegation, so the delegation can
be limited to just the required actions and no more.
“Dynamic delegation” refers to the delegation of
rights to perform actions that are not known at
the time a task is started. Dynamic delegation
can support the runtime selection of the site or
machine on which to run a task and is done, for
example, when performing global load balancing,
brokering, or conditional computation within a
workflow graph.

Both types of delegation imply that the rights
grantor cannot provide direct authorization
because the grantor is disconnected from the
grantee when the actions are executed.

There is always a compromise between flex-
ibility and security in any distributed computing
context, but this is particularly true in Grid com-
puting. The flexibility of the system is reduced
whenever, in the interest of increased security, a
constraint is placed on the tasks that can be per-
formed by a Grid entity. Security is all about
getting that balance right, and Grid computing
raises more complex issues in this area than
traditional uses of the Internet.

The most flexible form of delegation is im-
personation, whereby the rights grantor allows the
receiver to assume the identity of the grantor and
perform any action on the grantor’s behalf. How-
ever, this is also the least secure, since the
delegated rights could be easily abused. There-
fore, delegation should be limited to the work that
is required.

1.2 Application of delegation
An example of the distinction between direct

and delegated authorization is the process
of executing jobs through a UNIX shell. When
logged into a UNIX shell, the end-users pass au-
thority to the shell to run processes on their behalf.
While an end-user is connected to the shell, the
shell has direct authorization. When an end-user
becomes disconnected (e.g., because the end-user
puts a process into the background and logs
out of the shell), the authorization becomes
delegated. Actions performed by the backgrounded
process are acting under delegate authorization.note 1)

More interesting examples emerge in the context
of Grids.

Consider an application portal based on a
PKI for authentication. The portal provides a
secure interface to the end-user over the Internet
and interacts with the end-user to create a task
description of some sort (in UNICORE this would
be an Abstract Job Object [AJO]). The portal then
submits the task description to a server for exe-
cution. The server will require some authority to
execute the described task, and this must come
from the end-user and not the Portal. The cre-
ation and execution of the task description, if
performed while the end-user is connected to the
portal, could be performed under direct authori-
zation from the end-user. This is because
mechanisms exist that allow end-users to estab-
lish that they trust the portal to create (and even
run) tasks their behalf. If the portal must pass a
task (or sub-tasks) on to other Grid entities, some
form of delegation must be applied so the entity
running the task can ascertain that the end-user
actually requested that the task be performed.

One way of delegating the authority is for
end-users to create digital signatures of task de-
scriptions using their private keys (see below).

note 1) Because there is a security risk associated
with disconnected processes, many system’s
administrators prevent end-users from run-
ning background processes when they are not
logged in.

284 FUJITSU Sci. Tech. J., 40,2,(December 2004)

D. F. Snelling et al.: Explicit Trust Delegation: Security for Dynamic Grids

There are two methods by which such a signature
can be applied to a task description: 1) the task
description is returned to the end-user for inspec-
tion and signing or 2) the portal software signs it
on behalf of the end-user.

If the tasks to be performed are known while
the end-user is connected, the task description can
be authorized by static delegation using method
1). In general, this is an unsatisfactory solution
because the purpose of a portal is to hide the de-
tails of the task description from the end-user.

Method 2) is more satisfactory because it
hides the details of the task description from the
end-user and also allows for changes to the task
description after the end-user has disconnected.

In UNICORE Version 4, only static delega-
tion is possible. The aim of Explicit Trust
Delegation is to extend UNICORE’s functionality
to include dynamic delegation.

1.3 Trust issue
Various forms of delegation exist in many

(non-Grid) systems today. For example, a batch
sub-system reads a job script and creates processes
on the system on behalf of the end-user who sub-
mitted the job. Incoming mail is written to an
inbox owned by the end-user. In these cases, the
systems administrator authorizes the server pro-
cesses to perform these actions, usually through
processes that run continuously with more privi-
leges than a normal user. This basic strategy has
proven effective within a single administrative
domain and is commonly enhanced with various
extensions, for example, complex collections of
roles, access control lists, and time-expiring ac-
cess tickets. In the end, all these mechanisms
require that the end-user trust the system’s
administration.

In a Grid, the trust relationships required to
execute a task become much more complicated.
For example, a server at one site may want to
write to a file at another site on behalf of an end-
user. However, it is unlikely that the destination
site will trust the source site to write the file

directly on behalf of the end-user. Therefore, the
source site passes a message saying, “Please write
this file for me on behalf of this end-user.” If the
destination site is disconnected from the end-user,
it has no way to check that the end-user actually
authorized the file to be written.note 2) The spec-
trum of possible trust relationships is quite large.
At one end of this spectrum, the destination site
could trust the source site to request that a file be
written on behalf of any end-user at any time. At
the other end, the destination site could distrust
the source site completely and only write the file
when a connection to the end-user can be estab-
lished to authorize the action directly.

The UNICORE security model supports this
type of function using static delegation: the re-
quest to transfer a file from the source site to the
destination site is signed by the end-user when
the job is created. This approach requires a min-
imal trust relationship between the sites (since
the end-user has explicitly authorised the file
transfer request). However, there is no support
for dynamic Grid functions (e.g., file transfer from
a source whose location is only discovered during
execution) since the entire job tree must be signed
by the end-user at the client when the job is
created.

Another approach to gaining authorization is
to reconnect the end-user to the destination site
through the proposed development in Virtual Orga-
nizations (VOs).1) A VO is a trusted third party that
mediates between end-users and agents (e.g., serv-
ers) of the Grid to establish trust relationships. VOs
would provide dynamic support for joining and leav-
ing. Once an end-user becomes a member, the
end-user and agents can obtain trust assertions from
the VO server.

In the remainder of this paper, we describe

note 2) There is of course the reciprocal trust rela-
tionship that the source site trusts the
destination site to actually write the file. We
omit this side of the relationship as it re-
quires a richer set of security mechanisms
than is in common use in the Grid today, e.g.,
non-refutation.

285FUJITSU Sci. Tech. J., 40,2,(December 2004)

D. F. Snelling et al.: Explicit Trust Delegation: Security for Dynamic Grids

how UNICORE will be enhanced using Explicit
Trust Delegation to provide these dynamic Grid
capabilities and how this approach provides a
smooth migration path to this proposed work on
VOs. In the next section, we describe some of the
background in security, including general issues
and specifics of the UNICORE model and the Grid
Security Infrastructure (GSI) from Globus2) and
how each balances the requirements of dynamism
with the needs of security. We then outline the
new Explicit Trust Delegation framework for
UNICORE and how it reconciles the conflict be-
tween dynamism and security. We conclude with
related work and future plans for security servic-
es within the UNICORE Grid.

2. Background
2.1 Introduction to PKI and SSL

The ability to perform work on remote sites
requires secure authentication of users so that the
remote site can know unambiguously who is try-
ing to perform the work. Grids usually establish
identity using a PKI based on X.509 certificates.
The entities in a PKI (i.e., end-users and servers)
are identified by a globally unique name called
the Distinguished Name (DN). Entities prove
their identity by possessing a set of credentials
consisting of an X.509 certificate and a matching
private key. The X.509 certificate binds the enti-
ty’s DN to the private key. Entities authenticate
by presenting their certificate and then proving
that they know the corresponding private key.
Certificates are public, and so it is knowledge of
the private key that establishes an entity’s claim
to an identity. This means that if a private key is
known to another entity, that entity can imper-
sonate the private key’s owner at will and without
restraint. Therefore, private keys must be kept
secret and are normally stored in an encrypted
file whose decryption pass phrase is known only
to the end-user.

Certificate Authorities (CAs) issue X.509
certificates. CAs are trusted by resource owners
to reliably establish the identity of end-users and

will have procedures in place to do this. The
existence of a CA and its procedures to establish
an identity means that obtaining an X.509 certif-
icate is an action that should be performed
infrequently. X.509 certificates typically have life-
times of the order of years.

Communication between entities in a Grid
is performed using the SSL protocol to secure the
communications. SSL communications use the
credentials provided by a PKI to build a secure
communication channel. The secure channel pro-
vides authentication because each end of the
channel knows the other end’s identity. SSL can
also provide integrity (a guarantee that the mes-
sage has not been changed by anyone else during
transmission) and privacy (a guarantee that no
one else can read the message during transmis-
sion). SSL is a standard protocol available in
almost all Internet-enabled applications.

2.2 Static-Grid delegation by SSH
Part of the aim of delegation is to execute work

on a remote system using secure authentication.
This can be accomplished most simply by using
Secure SHell (SSH). SSH can be configured to use
RSAnote 3) authentication, which, like the PKI de-
scribed above, is based on public key cryptography.
However, unlike the PKI, it does not have a glo-
bally verifiable identity (i.e., it does not have a
DN bound to a public certificate). SSH end-users
must identify themselves to each site at least once
by using another method (e.g., user name and
password). Following this initial login, SSH can
be configured to allow subsequent logins to rely
on password-less RSA authentication. It is thus
possible for an end-user to set up a private Grid
of sites that can be coordinated to execute work.
However, such a Grid will be inherently static
because it is limited to the sites that the end-user

note 3) RSA is a public key cipher, which can be used
both for encrypting messages and making
digital signatures. The letters stand for the
names of the inventors: Rivest, Shamir, and
Adleman.

286 FUJITSU Sci. Tech. J., 40,2,(December 2004)

D. F. Snelling et al.: Explicit Trust Delegation: Security for Dynamic Grids

has explicitly set up and as such will be difficult
to manage.

In a chain of sites thus organized, the SSH
implementation at one site has been delegated
authority (by the end-user at the initial login) to
perform actions at another site on the end-user’s
behalf. Should the SSH implementation or the
end-user’s account become compromised at the
first site, the end-user could be impersonated at
the second site. For this reason, sites must trust
each other’s internal security policies and admin-
istrators. Grids based on such mechanisms
require that all sites agree to a minimum level of
security and thus establish a notion of “transitive
trust” among themselves.

2.3 UNICORE V4 model
Actions to be performed on a UNICORE Grid

are described in a Java object called an AJO. The
classes making up an AJO provide support for
many types of computational tasks, job control and
management, file transfer and management, and
also complex functions such as loops and condi-
tional computation. Multi-site jobs are created
by including sub-AJOs within a parent AJO. An
end user sends an AJO to a UNICORE server for
execution. Sub-AJOs in multi-site jobs are con-
signed from server to server. The process of
sending an AJO from end-user to server or from
server to server is known as “consigning”.

AJOs are consigned using an SSL-based pro-
tocol called the UNICORE Protocol Layer (UPL).
The UPL provides secure, authenticated commu-
nication between the UNICORE clients and
servers, including high-speed file transfer. The
UPL’s secure connection is based on the same
X.509 certificates used for identifying end-users
and servers in a UNICORE Grid.

The consign part of the UPL requires two
certificates to be transferred with every AJO:
the “endorser” certificate and the “consignor”
certificate. These certificates represent different
roles in the delegation process. The endorser is
the end-user to whom the AJO belongs (i.e., the

person who created the AJO and under whose
authority the AJO will be executed). Ownership
of the AJO is established by transferring to the
server a digital signature of the AJO along with
the AJO itself. This digital signature is created
using the private key bound to the endorser
certificate. A valid digital signature of an AJO is
taken to be authorization by the end-user for the
actions described in the AJO to be performed by
the server. The consignor is the agent that trans-
fers the AJO to the server and is either the
end-user or another UNICORE server (sub-AJOs).
The consignor certificate is extracted from the
UPL connection used to transfer the AJO.

When an end-user consigns an AJO, the end-
user’s certificate is used for both the Consignor
and Endorser roles (Figure 1). When a sub-AJO
is consigned between two servers, the end-user’s
certificate has already been used to endorse the
sub-AJO and the server’s certificate is used to
establish the UPL connection and thus consign
the sub-AJO (Figure 2). An end-user is allowed
to endorse and consign AJOs, whereas a server
can only consign AJOs. This means that server
processes cannot create jobs. A server can only
consign jobs that have been endorsed by end-
users. This allows servers to consign sub-jobs, but
these sub-jobs will be executed with the delegat-
ed identity of the Endorser.note 4) End-users may
only consign jobs that they have endorsed.

These rules mean that sites running UNI-
CORE do not need to trust other UNICORE sites
in order to receive sub-AJOs from them. All AJOs
they receive must have been created by end-
users and cannot be modified by intermediary
servers.

Once an AJO is received, the server checks
that the Endorser has properly signed the AJO.
Following this, the server performs local site au-
thorization, ensuring that the Endorser is allowed
to execute jobs on the site and is mapped to a
local account.

The current UNICORE delegation model is
static. The end-user describes the steps that a

287FUJITSU Sci. Tech. J., 40,2,(December 2004)

D. F. Snelling et al.: Explicit Trust Delegation: Security for Dynamic Grids

Key to all figures:

Authenticated SSL by X

Job to run for User Y

Job endorsed by Z

Quill indicates where the Job
is signed, e.g.private key
available.

X

Client

Dave

Dave

Job
U:Y

Job Job
Server

Dave

Z

Client

Dave

Dave Dave
Dave

Server A

Job
Server A

Dave

Job

Server B

Dave

Sub-job

Sub-job Sub-job

Figure 1
UNICORE V4 single-site job.

Figure 2
UNICORE V4 multiple-site job from UNICORE client.note 4)

note 4) Servers are also allowed to retrieve the
results of jobs they have consigned and to
delete jobs they have consigned.

288 FUJITSU Sci. Tech. J., 40,2,(December 2004)

D. F. Snelling et al.: Explicit Trust Delegation: Security for Dynamic Grids

job will take, including the resources required to
execute each step, before the job is submitted. This
description is signed, and the UNICORE servers
execute this description if it has not been changed
since the signing. Although the description al-
lows some flexibility, for example, conditional
execution of parts of the job and a generic request
to run anywhere suitable, there is insufficient flex-
ibility to adapt to changing circumstances as
required by some Grid applications.note 5)

An essential part of the UNICORE approach
is the separation of authentication from authoriza-
tion. Certificates are used solely for authentication
and carry no authorization information. Authori-
zation of actions is contained within the signed
AJO, and authorization of users within sites is
performed by the server using site local rules.

There is no need in UNICORE to contact any
other parties to create a delegated job; endorsing
is an activity carried out entirely on the client side.

2.4 Grid security infrastructure (GSI)
The GSI from the Globus Project achieves

delegation using “proxy certificates”.2) A proxy cer-
tificate is an X.509 certificate issued by the
end-user (not a CA) to a process acting on the end-
user’s behalf. The proxy certificate carries the
identity of the end-user. That is, it can be used to
establish SSL connections and is interpreted by
sites using the GSI as authority to perform work
on the end-user’s behalf. An entity presenting a
proxy certificate within the GSI will be granted
all the rights of the end-user.

Proxy certificate holders can issue proxy
certificates to other entities, which makes dynamic
delegation very easy within the GSI because the
details of the execution do not need to be known

in advance. Furthermore, as the right to dele-
gate can also be passed on, the resources used
during the execution can also be dynamic.

Simple implementations of the GSI proxy
mechanism allow full impersonation rights; the
holder of a proxy certificate gains all the rights of
the user at a site. Version 3.2 of Globus Toolkit2)

introduces a VO-like Community Authentication
Server (CAS) that issues certificates marked up
to restrict the rights of the bearer to those agreed
between the VO and the resource owner. Imper-
sonated rights can be restricted in this way, but
as the agreement does not involve the user, these
rights will be broader than the minimum required
to perform any particular task.

The private key bound to a GSI proxy certifi-
cate cannot be stored in an encrypted form. This
is because it must be read by the processes to which
the rights have been delegated without contact
with the end-user. Therefore, for example, direct
authorization of access to the private key is not
possible. The GSI proxy private key is typically
stored unencrypted and protected only through the
normal file system mechanisms of the site. This
means that, for example, any systems administra-
tor at a site can read a GSI proxy identity.

The combination of impersonation rights and
unencrypted storage means that GSI proxy iden-
tities are both valuable and relatively easy to
acquire. The main mechanism for limiting the
damage caused by unauthorised acquisition of a
GSI proxy identity is to limit the lifetime of the
delegation. GSI proxy certificates have typical life-
times of the order of hours or days.note 6)

The relatively short lifetime of GSI proxy
certificates causes problems for long-running
processes because the proxy can expire before the
process has completed. Therefore, a mechanism
for extending the lifetime of delegated rights is
required. Condor-G, for example, overcomes this
by emailing end-users when they need to refresh

note 5) The AJO endorsement applies to the tasks
to be performed, but does not control the
contents of files. There is therefore some
inter-site trust necessary for file transfer.
The receiving site has authorization from the
end-user to write the file, but if the send site
has been compromised, the contents may not
necessarily be what the end-user expects.

note 6) This seems to be the only way to invalidate
GSI proxy certificates. There seems to be no
revocation mechanism.

289FUJITSU Sci. Tech. J., 40,2,(December 2004)

D. F. Snelling et al.: Explicit Trust Delegation: Security for Dynamic Grids

their delegations; however, this defeats the pur-
pose of the GSI proxy by requiring end-user
intervention with a delegated process, for exam-
ple, by falling back on direct authorization. On
the other hand, any scheme to automatically re-
fresh delegation without end-user intervention
would run the danger of creating an indefinitely
prolonged delegation.

The GSI imposes a transitive trust require-
ment on all sites participating in a particular Grid
(members of a particular VO). Because posses-
sion of a proxy certificate alone is sufficient to
authorise work at remote sites, any site
accepting GSI delegations must trust that the orig-
inating site and all other sites in the delegation
chain are properly managed and not compromised.

Delegation within the GSI requires the in-
volvement of at least the end-user and the server
and may require three parties if a CAS is used.
The delegation protocol needs to be carefully
designed because the entities issuing a proxy
certificate (e.g., end-users and proxy authorized
processes) must be careful to authenticate the
identity of the process requesting the proxy so that
delegated rights are given to the correct process.

3. Explicit Trust Delegation
We have described the two main approaches

to delegation within Grids: that used by UNI-
CORE V4 and that used in the GSI. These two
approaches can be considered to be at different
ends of a spectrum that ranges from inflexible but
secure to flexible with insecurities. The most de-
sirable delegation mechanism would be placed
near the middle of this spectrum, combining the
flexibility of the GSI with the security of UNI-
CORE V4. The proposal in this section attempts
to achieve this balance.

As mentioned in Section 2.3, when AJOs are
consigned between end-user and server, only two
roles are involved: consignor and endorser. In
Figure 1, end-user Y is both consignor and endors-
er: end-user Y first endorses an AJO and then
consigns it to a server. In the case of sub-AJOs

(Figure 2), the end-user keeps the endorser role,
but Server A becomes a consignor to Server B.

In the UNICORE V4 model, the Endorser is
used for two purposes: to authorize the actions
(by signing the AJO) and identify on whose be-
half the action is to be performed. This means
that a set of actions can only be created by the
person who wishes to execute them; that is, a user
cannot delegate the ability to create a set of ac-
tions. The Explicit Trust Delegation extension to
UNICORE adds a new role to the model in order
to separate these two purposes. The User role
identifies the end-user on whose behalf the action
is to be performed. The Endorser role is retained
but now only authorizes the actions (still by
signing the AJO).

Figures 3 and 4 show how normal UNI-
CORE jobs are managed under the new scheme.
Here, the end-user can have any of three differ-
ent roles: the “User role” to identify the user, the
“Endorser role” to authorize the actions, and the
“Consignor role” to consign jobs to the server. The
significant change from Figures 1 and 2 is that
Server A may now play both the Consignor and
Endorser role, but under the condition that only
the end-user takes on the User role.

UNICORE servers supporting Explicit Trust
Delegation will implement the following set of
rules to define the behavior of each of these three
roles:
1) Only the User role is mapped to a local iden-

tity and has tasks executed on the User’s
behalf.

2) Only end-users can take on the User role.
3) End-users and UNICORE agents (e.g., serv-

ers, portals, resource brokers, schedulers,
etc.) may take on the Consignor role.

4) UNICORE agents may take on the Endorser
role to authorize actions on behalf of an
end-user.

5) All Endorsers other than the User must be
entered explicitly as trusted agents allowed
to endorse the end-user’s jobs.
During processing of an AJO at a server, the

290 FUJITSU Sci. Tech. J., 40,2,(December 2004)

D. F. Snelling et al.: Explicit Trust Delegation: Security for Dynamic Grids

Client

Dave

Dave

Job
User: Dave

Job
User: Dave

Server

Dave

Client

Dave

Dave Dave
Dave

Server A

Job
User: Dave

Job
User: Dave

Server A

Dave

Server B

Dave

Sub-job
User: Dave

Sub-job
U: Dave

Sub-job
U: Dave

Figure 3
Explicit Trust Delegation framework single-site job.

Figure 4
Explicit Trust Delegation framework multiple-site job from UNICORE client.

server authenticates the Consignor and Endors-
er; ensures that the User has authorized access
to the site; and verifies that, if the Endorser is
not the User, the Endorser is authorized to en-
dorse on behalf of the User. All this information
is coded explicitly into the authorization database
maintained at each site.

By way of example, we return to the portal
use case (Figure 5). The portal can now be grant-
ed Endorser rights at sites that explicitly trust
that portal to endorse AJOs on behalf of known
end-users. An end-user may contact the portal,
for example, by using https. Based on the https
connection, the end-user’s client can authenticate

the portal as a trusted agent in the Grid. The
portal takes input from the user to construct an
AJO, which will include a copy of the end-user’s
certificate (typically obtained from the https con-
nection) in the User role. The portal then endorses
the AJO and consigns it to a server of choice, for
example, the portal’s certificate server, as both
Consignor and Endorser. The server then checks
that the User is allowed to run the task at the site
and that the Endorser is explicitly trusted to en-
dorse on behalf of the User.

Notice that if this AJO contained sub-AJOs
intended for other sites, the sub-AJO would be
consigned to the secondary site with the primary

291FUJITSU Sci. Tech. J., 40,2,(December 2004)

D. F. Snelling et al.: Explicit Trust Delegation: Security for Dynamic Grids

site in the Consignor role, the portal in the En-
dorser role, and the end-user in the User role. The
secondary site would need to be configured to ac-
cept AJOs from the Consignor site, accept the
User, and explicitly trust the portal as the
Endorser.

The introduction of the User role into the
UNICORE model allows dynamic delegation
because a set of actions can be created by a third
party on behalf of an end-user without the end-
user needing to explicitly authorise the actions.

4. Related work
We have investigated other security models

such as Kerberos3) and DCE4) for their ability to

allow dynamic Grids.
Kerberos uses conventional (i.e., not public

key) cryptography technology to provide authen-
tication. A Kerberos server provides a trusted
third-party service. An authentication server (Key
Distribution Center) sits between client and server
to issue credentials when a client requests them.
When a client sends a request, the authentica-
tion server replies with credentials encrypted in
the client’s key. These credentials consist of a
“ticket” for the server, which is encrypted in a serv-
er’s key, and a session key as a shared secret key
for both client and server. Each ticket contains
the client’s ID and a copy of the session key. The
client can then transmit the ticket to the server.

Web Services client

Po.
Dave

Portal

Po.: Portal

Server A

Portal

Po.

Job
U: Dave

Server B

Po.

Sub-job
U: Dave

Sub-job
U: Dave

Po.

Server A

Po.

Job
U: Dave

Sub-job
U: Dave

Figure 5
Explicit Trust Delegation framework multiple-site job from Web Services client to explicitly
trusted portal.

292 FUJITSU Sci. Tech. J., 40,2,(December 2004)

D. F. Snelling et al.: Explicit Trust Delegation: Security for Dynamic Grids

Kerberos 5 was used as the basis for the GSI
design5) and so has many similarities to GSI,
allowing delegation through “Ticket Granting
Tickets,” which can be both forwarded and used
to create further tickets.4) As such, it has many of
the advantages and some of the disadvantages of
the GSI. However, it should be noted that the
creation (and delegation) of a ticket requires the
involvement of a third party; namely, the Kerberos
server. In contrast, GSI delegates with just
the involvement of the User and Server and
UNICORE can create a delegation with a single
party (the Endorser). Furthermore, Kerberos
authorization requires a user connection (i.e., di-
rect authorization rather than delegation).

The DCE (Distributed Computing Environ-
ment) security model is a superset of Kerberos; it
allows a server to permit either authenticated or
unauthenticated access. If a client sends an au-
thentication request to a server, the server replies
with just the service it uses, which can be none or
DCE secret key. If both parties agree to the con-
dition, the client requests authentication and the
server provides the service. Authentication is
carried out at runtime as part of the Remote
Procedure Call (RPC) protocol.

DCE authorization is direct; if the user
(client) disconnects from a DCE session, the
authentication becomes invalid.

5. Future work
Administering authorization databases in

large or very dynamic Grids will be quite a bur-
den if every user, Endorser, and server needs to
be added individually. The infrastructure of a
VO takes responsibility for identifying these en-
tities, for example, by issuing X.509 certificates.
We plan to investigate ways of automating this
process and will consider the implications of
allowing the VO to decide the trust levels for the
whole organisation. For example, it could be pos-
sible to allow endorsing if both the User and
Endorser are in the same VO. The extent to which
this flexibility can be supported in a standard way

will depend on extensions to existing standards
in authentication and authorization.6),7)

Using a PKI as the basis for authentication
and delegation has the advantage that the end-
user and server can communicate directly with
each other without the need for a trusted third
party. However, one disadvantage is that users
must always have access to their private keys,
which may be difficult if they use more than one
device to communicate with the Grid.note 7) One
solution to this is to introduce a trusted third party
with whom the user can lodge credentials and that
can be accessed by servers (for an example, see
the MyProxy servers developed using the GSI).8)

We will investigate how these can be integrated
into the Explicit Trust Delegation framework, for
example, by users lodging their willingness for a
certain Endorser to create jobs on their behalf with
such an authorization server.

As with most Grid systems, UNICORE is
moving towards Web Services.9) This means that
the delegation mechanisms will need to be
adapted to work within existing Web Services
infrastructures. There are also Web Services tech-
nologies that address aspects of the delegation
problem, for example, WS-Security.10) We will in-
vestigate how these can be applied to the Explicit
Trust Delegation framework.

It may be necessary to allow some level of
end-user authorization of the creation of a partic-
ular AJO by an Endorser. To do this, the User
will need to insert some sort of token stating that
the User has allowed the Endorser to create an
AJO. We will investigate ways of creating this
token, which could include the User signing some
pieces of information, for example, the Endorser’s
certificate, an Identifier of the particular AJO
being created, and/or a time range for which the
delegation is allowed. Adding this extra authori-
zation step will reduce the flexibility of the system,

note 7) Storing a private key on a portable device
such as a smart card is not a viable option at
the moment as the card readers are not wide-
ly available.

293FUJITSU Sci. Tech. J., 40,2,(December 2004)

D. F. Snelling et al.: Explicit Trust Delegation: Security for Dynamic Grids

so the first step will be to establish whether it is
necessary.

6. Conclusions
Grid jobs combine a number of sites into a

single workflow. If this is to be allowed, then the
administration of the sites in a Grid must trust
the other sites in order to accept work requests
from them. The degree of trust that is required
differs between the UNICORE and GSI models.

Explicit Trust Delegation is an extension of
the UNICORE architectural model that allows
trusted agents in a Grid to create AJOs (effective-
ly, Grid actions) on behalf of end-users. The trust
granted to these agents is made explicit in the
model, thus allowing site administrators the flex-
ibility to manage the trust relationships in the
Grids to which they belong.

It is the authors’ belief that these ideas could
apply equally to other Grid systems based on PKI
and certificate mechanisms.

References
1) I. Foster et al.: The Anatomy of the Grid, Grid

Computing: Making the Global infrastructure a
Reality. Berman, Fox, and Hey editors, 2003.

2) V. Welch et al.: Security for Grid Services. Twelfth
International Symposium on High Performance
Distributed Computing (HPDC-12), Seattle, June
22-24, 2003.
http ://www.globus.org/Security/GSI3/
GT3-Security-HPDC.pdf

3) B.C. Neuman: Proxy-Based Authorization and
Accounting for Distributed Systems. Proceedings
of the 13th International Conference on Distrib-
uted Computing Systems, May 1993, p.283-291.

4) DCE 1.1: Authentication and Security Services.
Open Group CAE Specification Document Num-
ber C311, October 1997.
http://www.opengroup.org/onlinepubs/
9668899/front.htm

5) V. Welch et al.: X.509 Proxy Certificates for
Dynamic Delegation. 3rd Annual PKI R&D
Workshop, Gaithersburg, MD, 2004,
http://www.globus.org/Security/papers/
pki04-welch-proxy-cert-final.pdf

6) Security Assertion Markup Language (SAML)
V1.0. OASIS 200205, November 2002.
http://www.oasis-open.org/committees/
download.php/2290/oasis-sstc-saml-1.0.zip

7) Extensible Access Control Markup Language
(XACML) V1.0. OASIS Standard 200301, Febru-
ary 2003.
http://www.oasis-open.org/committees/
download.php/2406/oasis-xacml-1.0.pdf

8) J. Novotny et al.: An Online Credential Reposito-
ry for the Grid. Proceedings of the Tenth
International Symposium on High Performance
Distributed Computing (HPDC-10), IEEE Press,
August 2001.

9) P. Wieder et al.: Creating Interoperability between
Grids. Cracow 03 Grid Workshop, Cracow, Octo-
ber 27-29, 2003.
http ://www.cyfronet .krakow.pl/cgw03/
presentations/w-3.pdf

10) Web Services Security: SOAP Message Security
1.0. OASIS Standard 200401, March 2004.
http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-soap-message-security-1.0.pdf

294 FUJITSU Sci. Tech. J., 40,2,(December 2004)

D. F. Snelling et al.: Explicit Trust Delegation: Security for Dynamic Grids

Dr. David F. Snelling received the
Ph.D. in Computer Architecture
from the University of Manchester,
Manchester, UK in 1993 while working
as a research Fellow and Lecturer. He
joined Fujitsu European Centre for
Information Technology in 1997 and
transferred to Fujitsu Laboratories of
Europe Ltd., Middlesex, UK in 2002,
where he worked in computer systems
design and Grid computing. He is re-

sponsible for the architecture and development of UNICORE.
Dr. Snelling is currently Area Director (Architecture) of the GGF,
co-chair of the OGSI Working Group and of the WSRF Working
Group in OASIS. He is also chair of the EU’s Next Generation
Grids Experts Group and serves as an advisor to several
organizations on the issues of Grid computing.

Sven van den Berghe received the
B.Sc. (Honors, 1st Class) in Mathemat-
ical Physics from Nottingham
University, Nottingham, UK in 1979. He
continued his studies at Nottingham
University on a University Scholarship,
receiving a Ph.D. for work in Computa-
tional Chemistry in 1983. He joined
Fujitsu Ltd., London, UK in 1997, work-
ing first for Fujitsu European Centre for
Information Technology and then trans-

ferring to Fujitsu Laboratories of Europe Ltd., Middlesex, UK in
2002. During his time with Fujitsu, he has been working on Grid
computing, primarily in the development of UNICORE.

Vivian Qian Li received the M.Sc.
degree in Computing Science from
Staffordshire University, Staffordshire,
UK in 2001. Her Ph.D. research
started from July 2001 and mainly
focuses on dynamic creation of ASP
applications using the meta-modeling
approach. She joined Fujitsu Labora-
tories of Europe Ltd., Middlesex, UK in
January 2004, where she has been en-
gaged in research and development of

Grid computing for many EU Grid projects, including GRIP (Grid
Interoperability Project), EUROGRID, UniGrids, and NextGRID.

