Grid Middleware for Effectively Utilizing
Computing Resources: CyberGRIP

@ Yoshimasa Kadooka
(Manuscript received September 6, 2004)

@ Akira Asato

Various research and development activities regarding Grid computing technology
have recently been promoted. This technology integrates heterogeneous computing
resources that are geographically dispersed and virtualizes them as a single comput-
er system. However, there have been very few reports in the business world about
Grid computing becoming successful or practical because most Grid computing re-
search is carried out in government science projects. Fujitsu has developed Cyber-
GRIP, which is a Grid middleware system for applying Grid computing to practical
corporate simulations and verifying the effectiveness of Grid computing. This paper
clarifies the needs and problems of these corporate simulations and describes how
CyberGRIP is solving the problems. This paper also describes in-house verification

using the CAD-Grid system.

1. Introduction

Based on the progress in computer perfor-
mance and broadband network technology, various
projects have recently started to research and
develop Grid computing technology, which inte-
grates geographically dispersed heterogeneous
computing resources via a network and virtualiz-
es them as a single computer system.? However,
most of these projects are national science projects
and there have been few reports so far about prac-
tical and successful applications of Grid computing
to business.

We have researched the practical application
of Grid computing, focusing on the virtualization
of computer power as the foundation of various
Grid technologies, and developed a Grid middle-
ware called Cyber Grid Innovation Platform
(CyberGRIP). CyberGRIP is intended to enable
advanced use of computers, mainly for simulations
in enterprises.

This paper describes the need for simulation

FUJITSU Sci. Tech. J., 40,2,p.261-268(December 2004)

in enterprises and related issues as the back-
ground of our research. Then, it outlines the
configuration of CyberGRIP and the operation of
its main components. Lastly, this paper describes
the CAD-Grid system, which was developed to
assist in the design of next-generation mobile com-
munication systems, as an example application
of CyberGRIP in business operations.

2. Present situation and
problems with simulations

In this section, to clarify the issues to be
solved by CyberGRIP, we describe the background
of its development. Specifically, we describe the
current needs for massive simulation in enterpris-
es and the fact that these needs are not sufficiently
satisfied.

As simulation technologies evolve, they are
increasingly being used not only by universities
and other research institutes but also by enter-
prises to support their business activities. For

261

A. Asato et al.: Grid Middleware for Effectively Utilizing Computing Resources: CyberGRIP

example, in the processor development division
of an enterprise, the engineers must execute mas-
sive simulations to check logic, optimize cell
placement and wiring, and calculate delays and
power consumptions. The need for efficient, high-
speed simulation is steadily growing because the
computations required for device development are
becoming highly complex as devices advance. On
the other hand, the market is demanding reduc-
tions in development terms and costs.

These circumstances in the manufacturing
industry are also found in the finance industry,
which requires massive simulations to speed up
transaction settlements in order to improve cus-
tomer service, appraise the current prices of
various assets and futures products, and manage
global risks.

Another example of an industry that requires
simulations is the distribution industry, which
needs a great deal of computation to plan mar-
keting strategies by data mining. Simulations,
therefore, are needed in many fields, and their
use will obviously expand in the future.

As described above, many types of industries
are performing simulations. However, an inves-
tigation we conducted showed that there are
various inherent problems in the execution of
simulations.

For example, in the manufacturing industry,
computers are often used inefficiently in simula-
tions because the availability of computers and
the progress of entered simulation jobs are man-
aged by hand. A problem arises when incorrect
input data is entered for large simulations and
the error is not found until the entire computa-
tion is completed. Even if the incorrect data is
found in the middle of a computation, a problem
occurs if the jobs related to the incorrect data can-
not be easily identified. In such acase, data must
be re-input to all parameters and the simulation
must be run again. If errors still remain in
subsequent processes (e.g., because there is insuf-
ficient time to remove them), it may be necessary
to redesign a product (e.g., an LSI) or another large

262

loss may be incurred. Therefore, a major issue is
how to efficiently perform massive simulations.

In the finance industry, it is already known
that the latest financial engineering can increase
the accuracy of simulations for risk management
by one order of magnitude. However, it is some-
times difficult to obtain the required accuracy
because the necessary computing resources
cannot be allocated, which can result in missed
business opportunities.

On the other hand, it has turned out that the
computing resources in enterprises are not always
used efficiently. One reason for this is that each
division of an enterprise purchases and manages
its own servers and, even when the machines in a
division are idle, other divisions cannot easily use
them. Another reason is that business-use per-
sonal computers (PCs), which have been upgraded
year by year, are mainly used for making and read-
ing documents and other purposes that do not
require much CPU performance. Also, they are
almost always idle at night.

In summary, the key issue to be solved is how
to perform massive simulations efficiently when
the computing resources in enterprises are not
fully used. If the free computing resources can be
used effectively, it might be possible to greatly
improve the efficiency of simulations and solve
most of the current problems in simulations. We
started the development of CyberGRIP based on
this idea.

3. Development of CyberGRIP

In this section, we describe the configuration
of CyberGRIP and the behavior of its main
components.

As described above, efficient execution of a
massive simulation requires 1) mechanisms for
efficiently submitting many jobs without needing
to monitor the status of computing resources or
the jobs being executed and 2) mechanisms for
using as many in-house computing resources as
possible to the fullest extent. To meet these
requirements, we developed the CyberGRIP Grid

FUJITSU Sci. Tech. J., 40,2,(December 2004)

A. Asato et al.: Grid Middleware for Effectively Utilizing Computing Resources: CyberGRIP

middleware. Next, we describe CyberGRIP.

3.1 Overall architecture

Figure 1 shows the overall architecture of
CyberGRIP.

CyberGRIP operates on a central UNIX or
Linux server and consists of three components:
Organic Job Controller (OJC),? Grid Resource
Manager (GRM), and Site Resource Manager
(SRM). OJC controls how the jobs submitted by
the user are executed. GRM determines the opti-
mum computing resources for the jobs transferred
from OJC. SRM monitors the status of the com-
puting resources and manages the communication
between them. There is one SRM for each com-
puting resource, and the SRM for a Windows PC
is called the “Grid Mediator for Windows (GMW)
manager.”

Each computing resource must have middle-
ware to communicate with its SRM and execute
jobs. When the computing resource is a Solaris
or Linux machine, a general batch system, for

User ﬁ_,7..
|
Central server
Web portal
o)
GRM

UNIX control | SRMs : GMW
manager i . manager

\
... .

Batch Batch GMW GMW
system system client client

Solaris/Linux servers Windows PCs

Figure 1
Architecture of CyberGRIP.

FUJITSU Sci. Tech. J., 40,2,(December 2004)

example, Condor,® can be used as the middleware.
When the computing resource is a Windows ma-
chine, the GMW client corresponding to the GMW
manager must be installed in the machine.

CyberGRIP can realize an environment in
which the user can submit jobs to virtualized com-
puting resources consisting of not only Solaris and
Linux machines but also Windows machines for
office use via the Web portal of a central server.
The user can do this without being aware of the
performance and other characteristics of the in-
dividual computers.

3.2 Job execution control by OJC

When many jobs are executed at a time, very
often there are dependencies between jobs (e.g.,
the results of one job are reflected in the parame-
ters of a subsequent job.) In these cases, the total
efficiency of job execution can be increased by
scheduling job execution according to the depen-
dencies. The effect of such scheduling is expected
to be especially large in a Grid computing envi-
ronment, in which individual jobs often terminate
asynchronously on independent resources. As
described in the previous section, input parame-
ter errors inevitably occur in a massive simulation.
However, even in a massive simulation, if the
inter-job dependencies are known, only the jobs
that depend on jobs with parameter errors need
to be re-executed. Therefore, the number of jobs
to be re-executed can be minimized.

Based on the above idea, we developed OJC
as a mechanism to properly and flexibly handle
the inter-job dependencies. Figure 2 shows the
basic structure of OJC. The user of OJC only
needs to write an OJC script and input it to the
0JC interpreter. (The OJC script represents
inter-job dependencies simply by using the
syntax shown in Figure 2.) The OJC interpreter
interprets the OJC script and defines the tree
structure representing the dependencies. During
job execution, the jobs are synchronized and
queued according to the tree structure in OJC and
executable jobs are transferred to the job execu-

263

A. Asato et al.: Grid Middleware for Effectively Utilizing Computing Resources: CyberGRIP

OJC script p

0JC
top {{

for $p (1,3,5) {
do_job{{p=$p}} {{

Job execution
request

>

> 0JC

system("bin -$p");
} 1

1
when {{ p="}} {{
system("endprocess");

1

Interpretation
of inter-job
dependencies

Creation and
change of
tree structure

GRM

interpreter |«

Job
selection

Job execution
instruction
using OJC

: . script .\ 7 O
= i@
Tree structure O

Job control

‘ Job executed

O Job being executed

Q Job awaiting execution

Notification of
job completion

Figure 2
Basic structure of Organic Job Controller (OJC).

tion component (GRM). This mechanism enables
optimum control of job execution even in a Grid
system, in which jobs terminate asynchronously.

0JC also has an interface that can be used
to re-execute jobs when an input parameter error
occurs. When the user requests, via the interface,
re-execution of a job that contains a parameter
error, every job that depends on that job is auto-
matically re-executed according to the tree
structure. Therefore, the user need not specify
re-execution of individual jobs. It is obvious that
these functions of OJC can solve or alleviate most
of the problems described in the previous section
that occur in massive simulations.

0JC also has a dynamic job control function
(Figure 3). This function works when the num-
ber of jobs to be executed cannot be decided
statically at initial job entry. This occurs, for ex-
ample, when an input file of undefined size must
be processed in sections or parameters must be
optimized. In these cases, the number of jobs to
be executed depends on the file size or the optimi-
zation status.

Conventionally, because it was difficult to
automatically perform dynamic job control,

264

operators usually took one of two approaches:
1) execute all the jobs that have been submitted
without considering which ones need to be exe-
cuted or 2) individually decide whether to execute
each job based on the execution results of the pre-
viously executed job. Both these approaches are
very inefficient. By automating these decisions,
therefore, OJC significantly increases the efficien-
cy of job execution.

3.3 Resource and job management by

GRM, SRM, and GMW

GRM selects the computing resource that is
most suitable for executing the job requested from
0OJC and submits the job. The information trans-
ferred from OJC to GRM includes job attributes
as well as the relevant program name and input
parameters. The job attributes include whether
the platform (e.g., Pentium or SPARC) and
operating system (e.g., Windows or Linux) are
specified, the estimated execution time, and the
resource selection policies. GRM continuously
monitors the operation status of the computing
resources under GRM’s control via SRM and
compares the monitoring results with transferred

FUJITSU Sci. Tech. J., 40,2,(December 2004)

A. Asato et al.: Grid Middleware for Effectively Utilizing Computing Resources: CyberGRIP

Purpose of simulation: With the value of x increased,

obtain the point y = a.

(O Value calculated by job execution

Useless calculation

Unnecessary jobs
are executed

P x

n

All jobs to be executed are
submitted and executed.

(a) Conventional case

Figure 3
Dynamic job control of OJC.

job attributes to allocate the optimum resources
for each job. The resource policies supported by
the current version of GRM are only simple ones,
including the selection of the fastest machine;
however, the selection policies will be extended in
the future.

The binary program data of a job is deliv-
ered from the central server after a computing
resource has been allocated to execute the job.
Therefore, if the same program is executed on com-
puter resources that use different platforms or
operating systems, multiple types of binary data
must be prepared beforehand on the central
server.

SRM is the middleware that manages job
execution by the computing resources, and there
is one SRM for each computing resource. The
following explanation is for when the computing
resource is a Windows PC (hereinafter, simply
called the PC). Figure 4 shows the sequence of
job execution on the PC. The SRM associated with
the PC consists of the GMW manager running on
the server and the GMW client running on the

FUJITSU Sci. Tech. J., 40,2,(December 2004)

» <

Automatic cancellation

Only necessary jobs

are executed.

P x

Jobs judged unnecessary to execute
(x > n) are automatically canceled.

n

(b) Case using OJC

PC (Figure 1). When GRM allocates the PC to
execute a job, GRM immediately notifies the GMW
manager about the allocation. Then, the GMW
manager transfers the relevant program and in-
put file to the GMW client and instructs it to start
the program. Upon reception of the instruction,
the GMW client immediately starts executing the
job as a background job. When the job is complet-
ed, the GMW client transfers the job results as an
output file to the GMW manager. While the job is
being executed, the GMW manager periodically
sends the GMW client a message to check the
progress of job execution. If the GMW manager
does not receive a response to one of these mes-
sages, the GMW manager assumes that job
execution has been stopped because of an error in
the PC. In these cases, the GMW manager se-
lects and allocates another PC to the job and
attempts to re-execute it.

When a job is submitted on a PC under con-
trol of CyberGRIP, the job is given the lowest
execution priority to avoid adverse influences on
other operations being made by the PC owner.

265

A. Asato et al.: Grid Middleware for Effectively Utilizing Computing Resources: CyberGRIP

GMW manager

GMW client

OJC GRM
Submission
> Job start
Job start notification
<€

operation

Job end notification

<

During this period,
periodically check

Program transfer

Input file transfer

Start

Program
execution

“\,/"End notification

Output file transfer

File deletion instruction

< Job end

Figure 4

Job execution sequence (Windows PC).

Figure 5 shows the result of performance
monitoring on a PC being used as a computing
resource. The first peak indicates the momentary
increase in CPU load caused when the program
input from the GMW manager was started on the
PC. Next, in Period A, the initiated job used
almost 100 percent of the CPU capacity when the
user was not using the PC for other jobs. Then,
in Period B, the user started using a spreadsheet
program (Excel) and the CPU capacity required
for the operation was given over.

4. Application to CAD-Grid

In this section, we briefly introduce an
example application of CyberGRIP for massive
in-house simulation.

As mentioned at the beginning of this paper,
we thought it was important to show some practi-
cal and successful applications of Grid computing
to business. Therefore, as a first step we applied
CyberGRIP to some in-house work and verified
its effects. CAD-Grid was developed for this
purpose.

CAD-Grid was designed to accommodate the
PC clusters and UNIX servers deployed in the

266

company and the desktop PCs connected to in-
house networks for office work as a virtualized
single-computer system.

CAD-Grid was applied to simulations for
designing a mobile communication system in the
division responsible for developing base stations
and mobile terminals and produced significant
improvements over conventional methods. For
example, the simulation period was reduced to
about one-fourth and the person-hours for the sim-
ulations were reduced to about one-third. These
successful results indicate that the approach with
CyberGRIP will be useful for resolving the prob-
lems in massive simulations. Also, the aim of
showing an example of a practical and successful
application of Grid computing was achieved with
better-than-expected results. The application of
CAD-Grid is described in another paper in this
special issue.?

5. Conclusion

The initial phase of CyberGRIP provided
better-than-expected results. On the other hand,
the verification using CAD-Grid revealed a few
points that need to be improved. For example,

FUJITSU Sci. Tech. J., 40,2,(December 2004)

A. Asato et al.: Grid Middleware for Effectively Utilizing Computing Resources: CyberGRIP

: Period ' Period '
A B :

&g avv-ne

Dk AMTH

=101 x|
I =R

| e #RW BRCAWE e o [B@mE @

100
a0

&0
/-"D—_
Temporary peak
at program start .’
\TD* \\

a0
20
10

oy

Q

FaX

ol T ol BwlEl +xle| =elsE o=z

Submitted job

Job of PC owner
(Excel)

0

bl 0000 T4

0164 &)

[0000 & | 7.000 EARS | 140

he— [[Aoud [a%e (3] [4709. [JPa-5]

¥EHIROTA
¥EHIROTA
YEHIROTA
$HIROTA

1.000
1.000
1.000
1.000

Gy
.. testd
EXCEL

ther mpro

Process
Process

% Proces..

Figure 5
Results of performance monitoring.

the mechanism for allocating computing resourc-
es is too simple to achieve preferential execution
of urgent jobs. Also, the overhead cannot be ig-
nored when the number of jobs to be handled
increases because sometimes not all the process-
es are optimized. In addition to these problems
in function and performance, security enhance-
ment remains an important issue to be solved.

Further efforts will be made to solve these
problems and thereby upgrade the quality of
CyberGRIP. In-house application of CyberGRIP
will be expanded from the simulation of the
mobile communication system to many other
projects to further increase the efficiency of in-
house work. Moreover, business applications of
CyberGRIP will be promoted in cooperation with
related divisions.

FUJITSU Sci. Tech. J., 40,2,(December 2004)

Acknowledgement

This research has been partially funded by
the New Energy and Industrial Technology De-
velopment Organization (NEDO).

References

1) I. Foster and C. Kesselman: The GRID: Blueprint
for a New Computing Infrastructure. Morgan
Kaufmann, SC-18, 1999.

2) l.Foster and C. Kesselman: The GRID2: Morgan
Kaufmann, 2nd Edition, 2003.

3) Condor: http://www.cs.wisc.edu/condor/

4) T. Yamashita, T. Nakamura, and H. Noguchi:

CAD-Grid System for Accelerating Product De-
velopment. FUJITSU Sci. Tech. J., 40, 2,
p.224-231 (2004).

267

A. Asato et al.: Grid Middleware for Effectively Utilizing Computing Resources: CyberGRIP

Akira Asato received the B.S. degree
in Information Science from the Univer-
sity of Tokyo, Tokyo, Japan in 1983. He
joined Fujitsu Laboratories Ltd., Ka-
wasaki, Japan in 1983, where he has
been engaged in research and devel-
opment of computer architectures. He
is a member of the Information Process-
ing Society of Japan (IPSJ), a secre-
tary of the SIG-Architecture Committee
of the IPSJ since 2000, and a member

of the Editorial Board of IPSJ Transactions on Advanced Com-
puting Systems (ACS) since 2001.

268

Yoshimasa Kadooka received the
M.Sc. degree in Mathematics from
Kyusyu University, Fukuoka, Japan in
1982 and the Ph.D. degree in Science
from Kanazawa University, Ishikawa,
Japan in 2004. He joined Fujitsu Ltd.,
Kawasaki, Japan in 1982, where he was
engaged in development of communi-
cation systems and multimedia
systems. He moved to Fujitsu Labora-
tories Ltd., Kawasaki, Japan in 2002,
where he has been engaged in research of Grid computing tech-
nology. He is also a Professor at the Visiting Faculty of Kansai
University, Osaka, Japan. He is a member of the Japan Society
for Computational Engineering and Science and the Japanese
Society of Computational Statistics. His research interests are
Grid computing, problem solving environments, and fluid
dynamics.

FUJITSU Sci. Tech. J., 40,2,(December 2004)

