
110 FUJITSU Sci. Tech. J., 40,1,p.110-116(June 2004)

High-Speed Information Utilization
Technologies Adopted by Interstage
Shunsaku Data Manager

V Hiroya Hayashi
(Manuscript received November 28, 2003)

The current business environment is characterized by many difficulties, including
ongoing economic stagnation, fierce competition, and rapid staff turnover. The key to
business survival is to gather as much information as possible, to utilize it as effec-
tively as possible, and to be able to tie this information to business operations.
However, at present the data integration and management technologies for utilizing a
diverse range of business information are still incomplete. While attempting to find a
solution to this problem, our attention was drawn to XML, and we developed Inter-
stage Shunsaku Data Manager-an XML database engine that achieves high-speed
searches of XML data. This paper explains the features of Interstage Shunsaku Data
Manager and the high-speed information utilization technologies that it employs.

1. Introduction
The key to business survival in the current

environment is to gather as much information as
possible and utilize it as effectively as possible.
To achieve these aims, particular attention is be-
ing paid to how information utilization can be
directly linked to business activities in the field.
However, data integration and management tech-
nologies suitable for a diverse range of business
information have yet to be perfected.

Until now, Relational Database Management
Systems (RDBMSs) have generally been adopted
as solutions for data integration and management.
However, RDBMSs require various schemas and
data structures for integrating business data (data
normalization), which makes designing such sys-
tems difficult. Also, performance tuning such as
adding indexes to the search target data is
required to search the data quickly. Indexes can
be effective for performing high-speed searches on
particular data items, but these techniques can-
not be used on data items that do not have indexes.

Another problem is that if data items are changed,
then the indexes also need to be redesigned. These
issues present difficulties when it comes to design-
ing and operating RDBMSs.

Our attention was drawn to XML because of
its potential in terms of data integration. XML
prescribes simple data structures whereby data
items are enclosed by start and end tags. This
eliminates the need to normalize data and design
integrated schemas, even when integrating dif-
ferent types of data. All that is required is to add
tags to the data and to group the data into a
single document. XML can also use recursive
structures to deal flexibly with variable-length
and variable-item data, which are not handled
well by RDBMSs. However, despite XML’s flexi-
bility, the XML data management systems that
have been developed up to now have had unre-
solved issues regarding search performance.

We developed Interstage Shunsaku Data
Manager (hereafter referred to as Shunsaku) as
an XML database engine that can search data

111FUJITSU Sci. Tech. J., 40,1,(June 2004)

H. Hayashi: High-Speed Information Utilization Technologies Adopted by Interstage Shunsaku Data Manager

quickly while still retaining the flexibility of
XML.1)-3) This was achieved using a combination
of our original SIGMA data search algorithm and
parallel search technology using blade servers.

Shunsaku combines XML’s flexibility with
high-speed data search technology, both of which
are important for data integration and manage-
ment and suitable for using diverse business
information in the field. Shunsaku can also fur-
ther expand the scope of XML utilization.

The following sections outline Shunsaku’s
architecture and its operation features.

2. Shunsaku’s architecture
This section describes the architecture of

Shunsaku.
Shunsaku systems are made up of director

servers and search servers. Shunsaku employs
an architecture whereby search servers, each
equipped with a search engine, are arranged in
parallel and can execute parallel searches. It is
assumed that these parallel search servers will
be blade servers.

The role of each type of server is explained

below. Figure 1 shows the architecture used by
Shunsaku.
1) Director servers

Director servers have functions for coordinat-
ing multiple search servers in parallel and do the
following:
• Manage files that store the search target data
• Distribute the search target XML data even-

ly to each search server
• Receive search requests from applications
• Distribute search requests to the search

servers
• Merge search results from the search serv-

ers and return the merged result to the
application that requested the search

2) Search servers
Search servers have search processing func-

tions for the target XML data and do the following:
• Search XML data at high speed by using the

SIGMA search algorithm.
• Receive and store target XML data from the

director server. As a result, there are no disk
I/O operations during the search stage.

• Receive search requests from the director

Target data
in memory

Target data
in memory

Target data
in memory

Target data
in memory

Director server
Search server

Blade server (PRIMERGY BX300, etc.)

Search
condition A

Search
condition A

Search
condition A

Search
condition A

Search
condition A

All CPUs
process the
same search
condition
in parallel.

Search results
are integrated,
and the
response is
returned.

XML-data
file

Director server: Receives search requests and returns search results.
Search server: SIGMA high-speed, XML-data search engine.

Search target (XML) data

XML-data

XML-data

XML-data

XML-data

XML-data

Figure 1
Architecture of Interstage Shunsaku Data Manager.

112 FUJITSU Sci. Tech. J., 40,1,(June 2004)

H. Hayashi: High-Speed Information Utilization Technologies Adopted by Interstage Shunsaku Data Manager

server and return search results to the
director server.

• Enable advanced parallel searches. This is
achieved by having each search server run
independently.

• Enable several hundreds of search requests
to be processed in parallel. This is achieved
by using low-cost blade search servers.

3. Shunsaku’s operation features
Shunsaku can treat XML data as text. This

allows the flexibility of XML to be exploited and,
in terms of data integration, eliminates the need
to design data normalization and integration sche-
mas for various types of data. Also, because XML
can easily handle variable-length and variable-
item data (unlike RDBMSs), it is not limited to
data integration because it can be expanded into
other applications. In addition, Fujitsu’s original
SIGMA algorithm makes indexless searches pos-
sible, which means that every item (character,
numeric, date, etc.) of XML data can be searched.
Furthermore, by combining parallel search archi-
tecture with blade servers, both the performance
and size of Shunsaku systems can be scaled up

easily.
These features mean that the construction

and operating costs of Shunsaku systems can be
from 30 to 70% lower than those of a conventional
RDBMS alternative.

The following sections give further details of
Shunsaku’s features.

3.1 Easy changes to data items
Shunsaku can perform indexless searches on

XML data by using search engines equipped with
the SIGMA algorithm.4) This means that all XML
data items can be searched. If search data is
added or changed either during or after system
construction, the system can respond flexibly to
such additions and changes without the need to
redesign the database.

Next, we describe the SIGMA algorithm,
which is Shunsaku’s core technology.

The SIGMA algorithm is a high-speed string
lookup algorithm that uses unidirectional se-
quential processing. This algorithm is installed
on the search servers and used to search XML
data (Figure 2).

The SIGMA algorithm performs the follow-

High-speed string lookup algorithm through unidirectional sequential processing using an automaton

 Search performance remains constant regardless of the number of conditions.

 This removes the need for an index.

SIGMA engine
String search example:

Conditions (1), FUJI ; (2), FIRST ; (3), Shunsaku

An automaton that synthesizes conditions (1), (2), and (3) is created.

Target data is successively checked against the automaton, and the agreement with the

conditions is evaluated.

Automaton

Initial state Assessment Assessment Assessment

Assessment Assessment Assessment

Assessment Assessment Assessment Assessment

Condition (1)
FUJI

(46 55 4A 49)

Condition (2)
FIRST

(46 49 52 53 54)

Condition (3)
Shunsaku

(53 68 75 6E 73 61 6B 75)

Condition
(2)

Condition
(1)

Condition
(3)

5 items
100 000

items

Search target data
loaded in memory

46

49 82 54

53 68 75 75

55 49

Result

Figure 2
SIGMA algorithm.

113FUJITSU Sci. Tech. J., 40,1,(June 2004)

H. Hayashi: High-Speed Information Utilization Technologies Adopted by Interstage Shunsaku Data Manager

ing steps:
1) Disassembles the search conditions in byte

units and creates an automaton for the
search conditions.
In the example shown in Figure 2, condition
1, “FUJI”, is evaluated as “46 55 4A 49”; con-
dition 2, “FIRST”, is evaluated as “46 49 52
53 54”; and condition 3, “Shunsaku”, is eval-
uated as “53 68 75 6E 73 61 6B 75”. Then,
an automaton is created as shown in the
figure.

2) Evaluates match conditions by successively
comparing each byte of the data in memory
(from beginning to end) against the automa-
ton created in Step (1).
In the example, if the value of the byte being
analyzed is “46”, the automaton switches to
the next state. If the next value is “55”, the
automaton again switches to the next state.
This process continues until all of the data
has been evaluated. If a value does not meet
the automaton state transition conditions,
the automaton returns to its initial state.
When a block of data has been completed,
the result state of the automaton is evaluat-
ed and the algorithm determines whether the
data is a hit (whether it matches the search
conditions).
With the SIGMA algorithm, the search is

completed as soon as it has run through the search
target data once. The search performance of this
algorithm is not affected by the number of hits,
because it always runs through all of the data
once, regardless of the number of hits. Further-
more, consistent search performance can be
maintained no matter how many search conditions
there are, because only the width of each automa-
ton increases with the number of search conditions
and there is no change in the cost of evaluating
data. The strengths of the SIGMA algorithm are
that any data item can be a search target and
indexes are not required for searching, because
every search always runs through all of the data.

Shunsaku loads search target data into the

memory of each search server and then executes
the SIGMA algorithm. This means that search
performance depends purely on the amount of data
loaded in memory and the performance of the CPU
that is processing it. That is, the search perfor-
mance increases as the CPU performance
increases–if the CPU performance is doubled, the
search performance will also double.

3.2 Superior multiplexing performance
In the implementation of the SIGMA algorithm

used by Shunsaku, all of the search target data is
loaded into memory, so the CPU usage rate for search
processing is always 100%. As a result, new search
requests cannot be received while another search
request is being processed. This means that if each
search process takes an average of one second to
complete and 100 search requests are issued simul-
taneously, then the 100th request will take 101
seconds to process (Figure 3).

In such situations, Shunsaku’s original high-
traffic technology delivers superior multiplexing
performance. Figure 3 shows this technology, which
is explained below.

The search performance of the SIGMA algo-
rithm does not depend on the number of search
conditions. This characteristic can be exploited
to chain together multiple simultaneous search
requests using “OR” conditions. In this way, a
single search condition can be formed so that all
of the search requests can be processed simulta-
neously. The time taken for this kind of batch
processing does not differ from that for a single
search request, thanks to the characteristics of
the SIGMA algorithm. When the search process
is completed, the results are distributed for each
request.

Requests that are issued when search pro-
cessing is already underway are kept on hold until
the processing for the preceding search request is
completed. If multiple search requests are issued
during this time, then all of these requests are
grouped together and processed as a batch.

The amount of time that searches can be ex-

114 FUJITSU Sci. Tech. J., 40,1,(June 2004)

H. Hayashi: High-Speed Information Utilization Technologies Adopted by Interstage Shunsaku Data Manager

pected to take using high-traffic technology is the
time taken to keep the request on hold plus the
time taken to process the search itself. If, for ex-
ample, it takes an average of one second to process
a search, then the search can be expected to take
two seconds (one second to keep the request on
hold plus another second to process the search
itself). Figure 4 compares the performance ob-
tained using multiplexing and a conventional
RDBMS. For example, if there are 100 concurrent
requests, the processing time (6.63 s) is only about
4.5 times the time (1.46 s) required for a single
request, which is a remarkable improvement over
conventional RDBMSs.

3.3 Simple scale-up operations
Shunsaku achieves parallel search process-

ing by utilizing blade servers for the search servers

that run the search engines. The search process-
ing performance solely depends on the amount of
search target data loaded into memory and the
performance of the CPUs. For example, suppose
that there is 50 MB of search target data, that
this data is loaded into a single search server, and
that it takes one second to process a search. Then,
if the amount of data increases to 100 MB after
system operations commence, the time taken for
each search simply increases to two seconds. At
this point, if another search server (blade server)
is added, then each search server (blade server)
will hold 50 MB of data, the time taken to process
each search will be back to one second, and the
search performance is maintained. In this way,
Shunsaku systems can be scaled up simply by
adding search servers (blades) as the amount of
data increases.

•
•

•
•

•
•

Simple FIFO system cannot produce high throughput performance and constant response times.

Multiple search requests are integrated and executed as a single conditional search.

High-traffic
technology

Condition
(1)

Search request

Search request

Search result

Condition
(1)

Condition (2) to (100)

Waiting
Search target data Hours

Waiting time

Search time remains
constant even when
the level of concurrency
increases.

Integration of requests

Distribution of results

Search target data

Batch search

1 item

2 items

100 items

Hours

1 item

2 items

100 items

Figure 3
High-traffic technology.

115FUJITSU Sci. Tech. J., 40,1,(June 2004)

H. Hayashi: High-Speed Information Utilization Technologies Adopted by Interstage Shunsaku Data Manager

In addition, if a Shunsaku system is operat-
ing with multiple search servers and one of the
search servers fails, the director server automat-
ically detects the failure and redistributes the data
held by that search server among the other search
servers (automatic degradation). As a result, if a
search server fails, processing can be continued
without needing to stop the system.

4. Future development scenarios
Shunsaku provides basic functions that fo-

cus on search processing. Search data is updated
and added using command-based batch process-
ing. In the future, users will become more
concerned about whether search data is up to date.
To ensure that search data is up to date, the next
step is for Shunsaku to achieve real-time data
updates. The basic requirement for achieving this
goal is to ensure that the files Shunsaku uses to
hold the search target data are robust. To achieve
this, we will introduce the concept of transactions
for data updates. Achieving real-time updates is
likely to further expand the range of Shunsaku
applications.

The current version of Shunsaku assumes
that data is concentrated at the location where
the Shunsaku system is installed. However, the
reality is that the cost of the operations for
collecting data from each site is often high. In
response, we plan to implement a “data grid” con-
cept in Shunsaku so that data distributed over
multiple sites can be easily searched from any site.

5. Conclusion
We have developed an XML database engine,

called Interstage Shunsaku Data Manager, to
overcome the shortcomings of the data integra-
tion and management technologies that are
suitable for using diversified business informa-
tion. Shunsaku enables high-speed data searches
while making the most of XML’s flexibility. It has
a parallel search engine equipped with Fujitsu’s
original SIGMA algorithm. These features enable
Shunsaku to handle variable-length and variable-
item XML data without modifications and perform
high-speed searches of all data items. Shunsaku
is well suited to production systems, because it
can easily be scaled up in response to increases in

Application
program

• • •

Search condition: Extract exactly 100 records possessing a specific tag whose value is N or greater.
Total number of records = 1 million
Record length = 2280 bytes;
Data items (tags) = 31
20 search servers (50 000 records per search server)

Environment

Director
server

20 search
servers

Director server (1)
 PRIMEPOWER 650
 CPU: SPARC64-IV 675 MHz 8
 Memory: 8 GB

Search server (20)
 PRIMERGY BX300
 CPU: Pentium®III 866 MHz 1
 Memory: 2 GB

Results

R
es

po
ns

e
tim

e
(s

)

1200

600

1 50 100 150 200
Number of concurrent executions

Existing
technology

(RDB)

Shunsaku

6.4 s

1.46 s 4.16 s 6.63 s

320 s

640 s

Note: In the measurement environment, the number of records that matched the search condition was set at 1000.

XML-data file

Figure 4
Test results (benefits of using high-traffic technology).

116 FUJITSU Sci. Tech. J., 40,1,(June 2004)

H. Hayashi: High-Speed Information Utilization Technologies Adopted by Interstage Shunsaku Data Manager

the amount of data and provides functions such
as automatic degradation that ensure availabili-
ty. By using Shunsaku as the core engine, optimal
data integration/management solutions can be
created, while further expanding the use of XML.

In the future, Shunsaku will be further de-
veloped to include support for real-time updates
and will evolve to include the data grid concept,
which will further expand the scope of Shunsaku
applications.

References
1) Interstage XML Search (Product: Shunsaku Data

Manager V6). 2003.
http://www.fsw.fujitsu.com/products/
InterstageSuite/XMLSearch/overview.html

2) Interstage Shunsaku. (in Japanese), Fujitsu Jour-
nal, 29, 5, 2003.
http://journal.fujitsu.com/261/topstory/02.html

3) Interstage Shunsaku Data Manager. (in Japa-
nese), 2003.
http://interstage.fujitsu.com/jp/v6/shunsaku/

4) Full-text retrieval. Fujitsu Journal, 28, 1, 2002.
http://journal.fujitsu.com/253e/sp3.html

Hiroya Hayashi received the M.S. de-
gree in Computer Science from the
Graduate School of Engineering at
Gunma University, Gunma, Japan in
1987. He joined Fujitsu Ltd., Numazu,
Japan in 1987, where he worked on
development of an operating system for
fault-tolerant systems. He then worked
on development of the relational data-
base for the open systems Syfmoware,
and is currently working on development

of an XML database engine.

