Framework of Web Applications for
Protection against lllegal Access

@ Satoru Torii

@ Yoshiki Higashikado
(Manuscript received December 15, 2003)

@® Takayoshi Kurita

The use of Web-based application servers has recently expanded worldwide. Conse-
guently, there is a growing threat of illegal computer access to applications. Security
measures are now being implemented for applications that incorporate security logic
in addition to business logic. This paper introduces aframework that protects against
illegal computer access to application servers, thereby minimizing the corrections
that must be made on the application side and protecting against illegal computer

access.

1. Introduction

Recently constructed Web-based business
application systems are being widely used in In-
ternet services such as e-Business. These Web
services (known as e-Businesses) use protocols
such as HTTP and HTTPS, which usually pass
through a firewall as is. For this reason, an ille-
gal HTTP request will directly reach aWeb service
application. Therefore, measures are needed to
prevent illegal access to Web service applications.

Simple Web application services developed
using Common Gateway Interface (CGI) technol-
ogy were used in the past. However, because the
content of Web services has become increasingly
complex in recent years, Web application systems
are now being developed with Java technology
based on the application server. Therefore, a Web
application developer must also incorporate secu-
rity logic within applications, along with more
advanced program logic to accommodate the ad-
vances being made in the content of Web services.

However, a high level of skill is needed to
implement security logic. Consequently, when
considering the person-hours needed to develop
and standardize the business and security logic,

102

measures must be taken to accommodate both
functions.

It is also necessary to 1) implement security
measures on the framework side of an applica-
tion server to accommodate improvements made
in application security and 2) prevent an increase
in application person-days.

This paper mainly describes a framework used
to prevent illegal access to application servers.

2. Model of an application server

We modeled a general application server as
follows (Figure 1):

The following describes each component of
this model.
1) HTTP server

This server directly receives HTTP requests
passed through the firewall from a client sys-
tem for relay to a Web container. HTTP servers
must have an Application Programming Interface
(API) for processing HTTP and HTTPS request
responses.
2) Web container

A Web container is an execution environment
for running JavaServer Pages (JSP) (i.e., the view

FUJITSU Sci. Tech. J., 40,1,p.102-109(June 2004)

S. Torii et al.: Framework of Web Applications for Protection against Illegal Access

Web container

— > HTTP [

(server)

Web browser

e ey Tt Backend
' Bus_lnes_s 1 system
! application ! » (DB server,
. (Servlet, . ¥l etc.) ,
L oJsP) D '

Py —

Container API

Application server

Figure 1
Model of Web application server.

of a business application) and Servlets (i.e., the
main part of a business application). A Web con-
tainer must include a container API for processing
the contents input to and output from an HTTP
server and the business application running on
the Web container calling service of a Web con-
tainer at execution.
3) Business application

A business application is a program that runs
on a Web container that consists of JSP or Serv-
lets. They use container APIs and connectors to
call the services of containers and back-end sys-
tems (e.g., DB servers) and process their data.

3. Requirements for protection

against illegal access

Generally speaking, there are three main
requirements for a framework of protection
against illegal access to an application server:
1) Security of each component

To ensure the security of each component of
an application server, not only the components but
also the links between them must be protected
from illegal access.
2) Protection against illegal access

It is difficult to eliminate all vulnerability;
therefore, a structure is needed to protect against
illegal access and minimize any resulting
damage.

FUJITSU Sci. Tech. J., 40,1,(June 2004)

3) Audit by logging surveillance

The proper performance of daily duties must
be checked. If any damage results from illegal ac-
cess, a function is needed to determine the extent
of damage and details of the illegal access, and iden-
tify the persons responsible for the illegal access.

3.1 Components to secure
1) Securing the base software

The HTTP server is the base software of an
application server, and the Web container must
be secure to prevent security breaches. Therefore,
an organization is needed to promote the develop-
ment of safe software and establish the necessary
techniques in cooperation with security experts.
2) Securing business applications

Knowledge about each business to be pro-
cessed is required when constructing a business
application. Until now, it was necessary to incor-
porate security logic into the logic of a business
application, which required many person-days.
Moreover, support functions that focus on
implementing business logic and enabling safe
construction of an application are needed.
3) Securing the entire system

All components must mutually cooperate to
provide the Web application service offered by the
application server. In the procedures for this
mutual cooperation, breaches in security may
arise and be used for illegal access.

103

S. Torii et al.: Framework of Web Applications for Protection against Illegal Access

Therefore, the level of security must be
increased in the components, the links between
them, and each cooperative process. Therefore,
the appropriate level of security must be provid-
ed for the entire system so that consistent
adjustments can be made.

3.2 Protection against illegal access
1) Checking input requests

The typical technique of illegal access is to
pass a request that has been skillfully created to
breach a hole in security to the application server.
Such holes may exist in each component, and a
variety of techniques are used to breach them.
Therefore, input requests must be checked based
on these factors to determine whether to receive
the requests.
2) Checking output data

If anillegal access is successful, the response
message might include information about inter-
nal components of the application server and
personal information about a third party.

Therefore, output data must be checked to
see if it contains data that must not be output to
the client.
3) Protection mechanisms

If inaccurate data is detected, the protection
mechanisms are immediately adjusted so they can
prevent damage due to illegal access. In other
words, input and output data that is determined
to be inaccurate must be controlled so that it does
not pass a back component or back client. Other-
wise, inaccurate parts must be removed or
changed so the content can be passed.

3.3 Audit by logging or surveillance
1) Surveillance of business applications

The operation of business applications may
be changed due to illegal access. Moreover, it is
common for two or more business applications to
cooperate for processing. Therefore, the status of
two or more business applications can be super-
vised, the surveillance results can be associated
with the status of applications, and all applica-

104

tions can be checked to see if they are operating
correctly.
2) Logging of business applications

Logging functions that record the contents
of a request for information about an accessing
agency or URL level are already available. How-
ever, Web pages that change dynamically in a
business application according to the content of a
request and do not appear in a URL are often used.
Also, the processing contents of a business appli-
cation are difficult to understand by using existing
logging functions. Therefore, a record of the pro-
cessing contents of a business application may be
required for a better understanding and follow-up.
3) Securing the contents of logging

Generally, an unauthorized person may
attempt to delete and alter log data without
leaving any clues to such action. Moreover, when
a trouble occurs in a system, a series of relevant
processing histories may be requested to deter-
mine if there is a trouble in the system.

In other words, proof and authentication
must be obtained, and it may be necessary to safe-
ly retain processing history data to prevent the
alteration of recorded contents.

4. Framework

We have developed a framework for protect-
ing application servers from illegal accesses that
satisfies these requirements. Figure 2 shows an
image of the framework.

This framework provides a higher quality of
security in each component of the application
server. Moreover, it provides a higher quality of
security for the entire system.

We will now describe some of the functions
provided by this framework.

4.1 Separation of security logic
Conventional business applications imple-
ment both a business logic and a security logic.
Therefore, the two types of logic are separated
from each other. That is, the security logic is im-
plemented on the framework side so the business

FUJITSU Sci. Tech. J., 40,1,(June 2004)

S. Torii et al.: Framework of Web Applications for Protection against Illegal Access

Application server

HTTP
server i

|
=7

Web browser

A

| Input/output monitor functlon|
Ty

| Input/output monitor funct|0n|

Connector
(backend
system Backend

Application
I/F) system

(Servlet,
JSP)

) (DB server,

(I— etc.)

Audit
log | ; Audit

Ty
Container Audit Audit Database
API log log

Audit
log

Web container

Figure 2
Framework of Web application server.

logic can focus on its tasks. As a result, when an
application calls the security logic, the changes
made to the business logic part can be minimized.
Also, the security of not only the security logic
but also common parts, for example, libraries,
is improved.

4.2 Input stream surveillance and

protection mechanism

The standards used to check an input stream
differ according to each component, because the
methods used to breach a security holeinan HTTP
server generally differ from those used to breach
a security hole in a business application. There-
fore, our framework checks for and protects
against illegal HTTP server input requests and
also illegal Web container input requests.

4.3 Output stream surveillance and

protection mechanism

The surveillance and control mechanism of
an output stream checks and controls the validity
of data output at the HTTP server, Web contain-
er, and connector level. This enables the detection
of and protection against an outflow of important
information such as component information,
primary information being processed, and
confidential information in a back-end system.

FUJITSU Sci. Tech. J., 40,1,(June 2004)

4.4 Surveillance and control mechanism
for illegal business application
operation
A monitoring function acquires the resource

information that the operating application access-

es via the connector and the screen transition
information of the business application. Then, an
execution surveillance mechanism checks wheth-
er the business application accessed the resource
using the correct authority and whether the screen
transitions are performed correctly.

If large differences in surveillance results are
found based on an API call sequence defined
beforehand, the call is determined to be illegal.

4.5 Integration of extraction mechanism of

an audit log

The log of each component is recorded, along
with information about the accessing agency and
request response in an HTTP level log, the input
and output to the Web container, and the contain-
er API through which the business application was
called. This enables the flow of the entire busi-
ness application (including components of the
application server) to be audited by associating
the respective records of these components.

For example, accesses can be cheeked to see
if they have the proper authority by comparing

105

S. Torii et al.: Framework of Web Applications for Protection against Illegal Access

the access histories of external resources (e.g., DB
servers), the history of access to the connector for
database calls, and whether the correct resource
was accessed.

5. Implementation

Application servers can be protected fromil-
legal accesses by protecting their input and
output.b

Therefore, we developed an experimental
real-time filter? for HTTP server input requests
and a function called Wivern® for Web container
input requests. These are outlined below.

5.1 Real-time filter (protection function of

HTTP server)

A great deal of damage resulting from illegal
accesses through security holes in standard ap-
plications such as HTTP server software and PHP
has been reported. The usual response to this
problem is to apply correction patches to HTTP
servers. However, for certain problems, these
patches are not promptly applied.

The real-time filter screens out illegal re-

quests that may violate proper use procedures via
known security holes in HTTP server software.
Specifically, it looks for attacks in requests re-
ceived by the HTTP server before the server
processes the requests. If a request that accom-
panies an attack is accepted, a filter is used so
the attack does not pass through the HTTP
server.

Figure 3 shows the functional components
of the real-time filter.

The real-time filter does the following:
1) Ensures comprehensive and accurate

protection

The real-time filter sorts and checks content
by preparing two or more judgment rules by
which a general-purpose description is possible.
It also analyzes the syntax of requested judgment
parameters in a formal language and judges by
considering the specification information about
the server.
2) Filters without external influence

Because the real-time filter is implemented
as a module of the HTTP server (even with SSL
encryption of requests), it can filter content with-

Application server

Apache core function
Apache API

Web browser

Apache Web server

—>
<

Real-time filter

Request checking/
function to transmit
results

Iy

Web container

Reading function of
setting file and
rule file

| Logging function |

Logging
file

Figure 3
Real-time filter function.

106

FUJITSU Sci. Tech. J., 40,1,(June 2004)

S. Torii et al.: Framework of Web Applications for Protection against Illegal Access

out external influence.
3) Supports dynamic renewal of rules
Dynamic renewal of rules is supported, and
the newest rule file can be applied without hav-
ing to reboot the HTTP server in order to update
the filtering rule. Therefore, it is possible to add
a rule to deal with a newly discovered vulnerabil-
ity while continuing service without having to stop
the Web application service.
4) Temporary measures can be taken before
patch application
Generally, when a security hole is discovered
in a component of an application server, HTTP
server, or other server, it takes time to acquire a
security patch from the vendor. However, the
real-time filter can be used to implement a tem-
porary measure to close the hole until the patch
is available.

5.2 Wivern protection function for Web
containers
Various attacks, for example, session hijacks,
cross-site-scripting (XSS), and command injection,
target the vulnerabilities of business applications,
which generally have inadequate parameter
checking.

However, if a business depends heavily on
the logic of a business application, its input pa-
rameters must be checked.

Wivern uses the servlet filter? in a Web con-
tainer in the preceding processing of a business
application that extends to JSP and the Servlets,
and inspects and processes requests relayed from
the HTTP server to the Web container. The Serv-
let filter is a new function that has been added
to the Servlet API2.3Y interface filter for
forwarding requests to and responses from a Web
container.

Figure 4 shows the functional components
of Wivern.

Wivern has the following features:
) Implementation without changing existing
applications
Because Wivern is implemented as a Java
Servlet filter, it can be implemented without
making design changes or modifying existing
applications.
2) Increased efficiency of development work

Because the operation processing part and
security processing part are independent, Wivern
can be operated while these two parts are being
developed. Moreover, the inspection processing

=

> wrTe >
< server (_:

|
N=F

Web browser

Application server
Web container

Filtering module

e

Wivern

..............

Figure 4
Function of Wivern.

FUJITSU Sci. Tech. J., 40,1,(June 2004)

107

S. Torii et al.: Framework of Web Applications for Protection against Illegal Access

of typical input values is done using six types of
tester parts having a total of 20 test functions,
and in most cases, the only work required for Wiv-
ern implementation is to describe a rule file and
setting file. Moreover, the user can additionally
create original inspection components as required.
3) Flexible error processing

Unlike the case for Web application firewalls,
a standard method is used to interface Wivern
with Web applications. Therefore, when abnor-
malities are detected by input inspection,
processing can be done in a format standardized
for business applications.
4) No need to periodically renew rule files

Because inspection is conducted using a pos-
itive approach (with the system allowing only safe
content to pass), there is no need to renew rule
files unless there are extensions and changes to
an application.

5.3 Performance evaluation

The real-time filter and Wivern offer a filter-
ing capability on the Web application input side.

Table 1 shows how much these filters affect
performance in terms of the time needed to
process a Web application request.

The table shows that the real-time filter and
Wivern reduce performance by approximately 8%
and 9%, respectively, which are almost the same
reductions as the approximately 10% degradation
in performance that is generally attributed to a
Firewall.

Moreover, there is a large amount of Web
application traffic on the output side and the traf-
fic rate on the input side, which is used as a
candidate for filtering, is expected to be no more
than 10% of that on the output side. Therefore,

the time overhead of these filters is low compared
with the time required to process a Web
application.

Since these products were made as an exper-
iment to evaluate each function, a comprehensive,
overall performance evaluation was not done.

6. Technical trend

To protect application servers, security equip-
ment is being placed before the HTTP server to
enable detection and protection against illegal
access at the HTTP level (Figure 5).

It is difficult to perform fine control in con-
junction with business applications protected by
this equipment. However, the main aspects of the
application server framework can be controlled at
a level near the level of the business application.

Although security functions such as authen-
tication are gradually being implemented in the
J2EE framework, there is currently no overall
security framework to protect against illegal ac-
cess. However, there is a growing trend toward
implementing such a framework on the framework
side of application servers.

7. Conclusions

This paper described a framework for pro-
tecting against illegal access of an application
server. We showed that this framework can pro-
tect an application server against the main types
of vulnerability in Web applications, for example,
session hijacks, cross-site scripting (XSS), and
command injection. Inthe framework, a real-time
filter supervises the stream of HTTP onan HTTP
server to defend against input requests and
Wivern supervises the display screen in a Web
container.

Table 1
Performance degradation.
Performance Measurement
Sebelelt EEREE) | AEr(ns) degradation (%) environment
Real-time filter 19.4 21 8 SL“En'ﬂxeg%'\’”*z
: 9 Pentium Il 800 MHz
Wivern 14.6 15.9 Tomcat 4, Struts 1.1, Linux

108

FUJITSU Sci. Tech. J., 40,1,(June 2004)

of frameworks used to prevent illegal accesses for
implementation in the Interstage Application
Server. While working to achieve the remaining
functions for making components more secure, we
will adopt and maintain compatibility with the
new development techniques for safe software that
are being advanced by current research.

References

1)

2)

3)

4)

5)

S. Torii et al.: Framework of Web Applications for Protection against Illegal Access

(=) -
Firewall- Security appliance

for Web application

Figure 5
Web security appliance.

We are currently considering the functions

The Ten Most Critical Web Application Security
Vulnerabilities. The Open Web Application
Security Project (OWASP), January 13, 2003.
http://www.owasp.org/documentation/topten
M. Mitomo et al.: A practical evaluation of the fil-
tering tool for Web servers. (in Japanese), 15th
Information Processing Society of Japan, CSEC
study group report, December 21, 2001.

I. Morikawa et al.: Input Validation Filter for Java
Servlet. 19th Annual Computer Security Appli-

Application servers

Satoru Torii received the B.S. degree
in Information Sciences from Tokyo
University of Science, Chiba, Japan in
1985. He joined Fujitsu Laboratories
Ltd., Kawasaki, Japan in 1985, where
he has been engaged in research and
development of operating systems,
intrusion management systems, and
information security architecture. He is
a member of the Information Process-
ing Society of Japan (IPSJ).

Yoshiki Higashikado received the
B.S. degree in Chemical Physics from
Ritsumeikan University, Kyoto, Japan in
1990. He joined Fujitsu Ltd., Shinyoko-
hama, Japan in 1990, where he has
been engaged in development of
networking systems. He joined Fujitsu
Laboratories Ltd., Kawasaki, Japan in
2003, where he has been engaged in
research and development of network-
ing systems, intrusion management
systems, and information security

architecture. He is a member of the Japan Society for Software

cations Conference, December 8-12, 2003. Science and Technology (JSSST).

Core J2EE Patterns - Intercepting Filter, Core
J2EE Pattern Catalog.
http://java.sun.com/blueprints/corej2eepatterns/
Patterns/InterceptingFilter.html

Servlet API 2.3, Interface Filter.
http://java.sun.com/j2ee/1.4/docs/api/javax/
servlet/Filter.html

FUJITSU Sci. Tech. J., 40,1,(June 2004)

Takayoshi Kurita received the B.S.
degree in Information Sciences from
Ibaraki University, Ibaraki, Japan in
1986. He joined Fujitsu Ltd., Shinyoko-
hama, Japan in 1986, where he has
been engaged in development of Pub-
lic-Key Infrastructure (PKI) and its
applications.

109

