
94 FUJITSU Sci. Tech. J., 40,1,p.94-101(June 2004)

New Web Application Development Tool
and Its MDA-Based Support Methodology

V Yasuyuki Fujikawa V Takahide Matsutsuka
(Manuscript received February 11, 2004)

Web applications are ubiquitous on the Internet, and almost every type of business
now needs to be able to quickly develop their own Web applications. This paper intro-
duces a technology developed by Fujitsu that reduces the development period for
Web applications and also improves their quality. The paper discusses a develop-
ment style that enables iterative refinement of a specification and specification
checking with customers.

1. Introduction
1.1 Problems in Web application

development
The importance of the Internet is rapidly

increasing, and Web applications are quickly
gaining popularity. Especially, thin Web client
applications, in which the content is described us-
ing HTML, are now quite common (Figure 1).
However, developers have two major problems: the
low productivity and low maintainability of Web
applications compared to conventional client-serv-
er type applications. These problems occur for
the following reasons:
1) We need to use many technologies at the

same time, for example, HTML, Java,
Java Servlet, JavaServer Pages (JSP), Java-
Script, and JavaBeans. The quality of a
system strongly depends on the technologi-
cal skills of the developers. However, the
developers might not have sufficient skills
to develop a high-quality system.

2) Because the ranges of each technology over-
lap each other and there is no standard
architecture, there are various ways of imple-
menting applications. Such diversity makes
development difficult in terms of reuse.

3) Frequent changes of business needs can be
observed in many cases, and applications
need to reflect such changes in a timely
manner.

1.2 MVC architecture
To solve the problems mentioned above, sev-

eral software frameworks have been proposed that
are based on the Model-View-Controller (MVC)
architecture (Figure 2). The MVC model is a tech-
nique for designing applications. It classifies the
functions of an application into three types of com-
ponents: models, views, and controllers.1)

Models carry the data and the application
logic. Views display the information from a mod-
el in windows or browsers. Controllers receive
requests from a view and dispatch the requests to
the appropriate models or views.

1.3 Advantages of Web application
frameworks
By using the Web application frameworks

described above, developers can easily separate
the model from the view based on the MVC frame-
work. Because the MVC framework provides most
of the controller’s parts as a common functional-

95FUJITSU Sci. Tech. J., 40,1,(June 2004)

Y. Fujikawa et al.: New Web Application Development Tool and Its MDA-Based Support Methodology

ity, developers do not need to implement the
controller from scratch.

The Web application framework provides the
following advantages:
1) The amount of development is reduced.
2) Developers can easily standardize the con-

struction of applications.
3) Individual developers can focus on their spe-

cialties. For example, a designer can create
views using HTML and a Java programmer
can develop models using JavaBeans.

4) Developers do not need to consider low-level

Figure 1
Thin client Web application.

Web client

Web browser

Web server AP/DB server

HTTP request

HTTP response

HTML: Hyper Text Markup Language
CSS: Cascade Style Sheet
JSP: JavaServer Pages
AP: Application
DB: Database

Business
logic

Servlet

JSP

DB

HTML

JavaScript

CSS

Figure 2
Model-View-Controller (MVC).

Client Server

Input
(Web browser)

Result
(Web browser)

<Controller>
Servlet

<Model>
EJB

JavaBeans

<View>
JSP

HTML

DB

HTTP
request

HTTP
response

Call

R
es

ul
tForw

ard

96 FUJITSU Sci. Tech. J., 40,1,(June 2004)

Y. Fujikawa et al.: New Web Application Development Tool and Its MDA-Based Support Methodology

layers such as network protocols.
Another strength of the framework is its con-

ceptual nature, which consequently contributes
to screen transitions. Because the framework
provides definitions, it allows the development of
screen transitions to reflect the conceptual
specifications. In other words, the framework
definitions contribute more to the development of
screen transitions than code per se.

Judging from the above advantages, we can
expect improved productivity, maintainability,
quality, and reusability.

Fujitsu released a Web application frame-
work called Webcoordinatornote 1) in 2001. In 2002,
Struts2) appeared as another Web application
framework from the open source community.
These initiatives indicate that frameworks are
now more commonly used.

1.4 Problems of Web application
frameworks
While frameworks solved some problems in

Web application development, various new prob-
lems are found. For example:
1) Before developers can develop applications,

they must spend a substantial amount of
time mastering the given frameworks.

2) Because models and views are independent
of each other, developers have to carefully
organize the relationships between them by
editing definition files that describe the
relationships.

2. Our approach
2.1 Model Driven Architecture (MDA)

MDA3) is a software development architec-
ture proposed by the Object Management Group.
It enables developers to develop applications with-
out knowing the underlying platforms. Because

of this characteristic, MDA is expected to solve
the problems described in the previous section.

We therefore adopted MDAnote 2), note 3) as a ba-
sis on which we solve problems in Web application
development. The concept of MDA is shown in
Figure 3.

The key concepts of MDA are as follows:
1) MDA uses two models, called the Platform

Independent Model (PIM) and the Platform
Specific Model (PSM), to map a real-world
problem to a computer system. The PIM
reflects the conceptual model of the target
system. The PSM describes a model that is
specific to the target platform, for example,
a relational database or Java 2 Platform,
Enterprise Edition (J2EE).

2) MDA uses tools to convert a model between
the PIM and PSM levels and generate source
code from the PSM model.

3) MDA adopts Unified Modeling Language
(UML)4) to describe the PIM and PSM
models.

2.2 Problems with current MDA tools
Although MDA is a useful concept, the exist-

ing tools are not sophisticated enough to fully
realize it. Many tools do not support complete
conversion between PIM and PSM or between
PSM and source code. As shown in Figure 4, most
current MDA tools generate only a skeleton code

note 1) Webcoordinator has been renamed Apcoor-
dinator.

note 2) The term “model” in MDA differs from that
in MVC.

note 3) OMG and MDA are registered trademarks
of Object Management Group.

Figure 3
Concept of the Model Driven Architecture.

Conceptual
level

Ideal MDA tool

PIM

PSM

Source code

Platform

Platform Independent Model

Automated conversion

Platform Specific Model

Code generationReverse

97FUJITSU Sci. Tech. J., 40,1,(June 2004)

Y. Fujikawa et al.: New Web Application Development Tool and Its MDA-Based Support Methodology

from PSM. Therefore, developers still need to
write most of the source code.

2.3 Nijo approach
We solved this problem by limiting the ap-

plication areas to Web application. Figure 4 shows
the difference between existing MDA tools and our
Nijo approach. Nijo has been implemented using
a standard UML extension mechanism, so users
can describe a Web application as a PIM-level
model.

Our approach is as follows:
1) A Web application is described as a model.

Models are independent from specific plat-
forms, but are specific to Web applications.
To describe a model, we introduce a formal
modeling language for Web applications.
More detailed information about the lan-
guage is given in the next section.

2) Models are automatically converted into
models specific to the target framework. A
converted model is similar to PSM at the con-
ceptual level.

3) Our tool generates a set of source code from
the PSM model.
We do not support certain portions of an ap-

plication, for example, business logic. However,
we provide connections between other PSMs and
our models. Developers can independently define
business logic as a PIM with other MDA tools and
connect it to the Nijo model at the PSM level.

2.4 Language for Web application
modeling
To describe a Web application model, we

designed a modeling language. A model written
in this language is called a Nijo model. This
language is defined as an extension of UML.
Selecting UML as our basis has the following
advantages:
1) The language inherits UML’s ability to ex-

press a model graphically and formally.
2) The language has an extension mechanism.
3) Models have a single, unambiguous interpre-

tation, because they are defined formally in
terms of semantics.

4) The popularity of UML promotes efficient
user training.
Figure 5 shows the meta-classes of the Nijo

model in a UML class diagram.
A Nijo model consists of the core part of the

application and a definition part for screen

Figure 4
Model Driven Architecture and Nijo’s approach.

Other MDA tools Nijo approach

PIM

PSM

Source code

Platform

R
ev

er
se

R
ev

er
se

Skeleton
code

Skeleton
code

Code
generation

Coding

PIM

PSMPSM

Web application framework

Source code
(Screen control, etc.)

Source code
(Business logic)

Code
generation

- Platform independent, but:
- Architecture specific
 (Web application)

Minimize
coding

Shorten
distance

98 FUJITSU Sci. Tech. J., 40,1,(June 2004)

Y. Fujikawa et al.: New Web Application Development Tool and Its MDA-Based Support Methodology

transitions.
The application core part defines the main

composition elements of the Web application, for
example, classes, data items, and methods. This
part is the same as a UML class diagram except
for its ScreenClass. The ScreenClass represents
the data structure of a screen, in which each data
item has additional information such as the dis-
tinction between the input and output, the
alignment style, and the number of characters.
In short, the ScreenClass is an extension of Class
in UML.

The definition part of the screen transitions
is an extension of the UML ActivityGraph. It
contains the following elements: a NijoUI that
represents a screen, a NijoCall that represents an
action that calls a procedure defined elsewhere, a
Transition that indicates a change of state from
one activity to another, a NijoObject that repre-
sents an object, and a DataAccess that represents
the relationship between a NijoUI or NijoCall and
a NijoObject to specify data accessed by the
activity.

Figure 5
Nijo meta model.

2.5 Development tool for Nijo model and
graphical expression of Web
applications
To make Nijo-compliant models, we devel-

oped a development tool called Apmodeler. It
provides a GUI, with which all the information of
a Nijo model can be manipulated.

Figure 6 shows an example of a screen tran-
sition diagram (STD), which can be edited through
the STD editor of Apmodeler. In the diagram,
NijoUI, NijoCall, and NijoObject are indicated by
a window icon, two small squares, and a pack-
age, respectively. A solid line represents a
Transition between NijoUIs and NijoCalls. A
dashed line represents a DataAccess from a Ni-
joUI or a NijoCall to a NijoObject.

 This example is for a small application. It
contains the following screens and operations: an
input screen that accepts a search condition from
the user, a search operation that accesses a data-
base using the search condition, and a result
screen that displays the result data.

NijoModel

ScreenTransition

LogicFlow
ActivityGraph

DataAccess

ObjectFlowStateEnumeration NijoClass

EnumerationLiteral Attribute Operation

ScreenClass Parameter
State

Transition
Literal NijoObject

InitialState FinalState Decision NijoUI NijoCall

NijoCallScreenTransition

Inheritance: B class inherits properties of A classClass A B

Aggregation: An instance of A class has multiple instances of B classA B

(b) Definition part of screen transitions (a) Core part of application

99FUJITSU Sci. Tech. J., 40,1,(June 2004)

Y. Fujikawa et al.: New Web Application Development Tool and Its MDA-Based Support Methodology

Figure 6
Screen transition diagram.

2.6 Apmodeler runtime environment
Apmodeler has been implemented as a plug-

in of Interstage Apworks. Interstage Apworks is
based on Eclipse, which is an open-source soft-
ware development environment. Eclipse allows
the Apmodeler plug-in to be well-integrated with
the Eclipse environment, so Apmodeler can be
used with other plug-ins of Eclipse.

3. Development process using
Apmodeler

3.1 Problems with the conventional
development style
The following is a conventional style of de-

veloping Web applications:
1) User interface definition

Systems engineers (SEs) and customers dis-

cuss the user interfaces, screen layouts, and data
items in screens. Then, the SEs create HTMLs
as a specification of this information.
2) Conversion of HTMLs to JSPs

Programmers transform the HTMLs to JSPs.
3) Development of the application

Programmers develop the application, which
consists of parts such as the screen transition part,
database access part, and input check part.
4) Confirmation of application behavior

The SEs check the application and deliver it
to the customer to make sure the product meets
the customers’ requirements.

This process has the following problems:
1) The customer cannot check the behavior of a

specification until the application has been
developed.

Result Error

Result

[success] [failure]

[back]

[back]

[exit]

˙NijoIn¨
result_body

˙NijoOut¨
success

˙NijoOut¨
failure

˙NijoIn¨
error_body

˙NijoIn,NijoOut¨
search_body

˙NijoIn,NijoOut¨

˙NijoIn¨

SearchCondition

[search]

Input

Search

Initialize

InitialState of
this screen

transition diagram

NijoObject

NijoUI

NijoCall

NijoCall

FinalState of
this screen

transition diagram

: Data access : Transition

100 FUJITSU Sci. Tech. J., 40,1,(June 2004)

Y. Fujikawa et al.: New Web Application Development Tool and Its MDA-Based Support Methodology

2) The customer and SEs only check the static
aspects of an application, for example, the
screen layout. The dynamic part of a specifi-
cation is developed by programmers at a later
stage.

3) It is difficult for the customer to check the
behavior of an application with a static
HTML specification.

3.2 Development style using Apmodeler
To solve these problems, Apmodeler provides

features to help the customer check the behavior
of an application at an early stage of development.
By using Apmodeler, we can take the development
process shown in Figure 7.
1) User interface definition

Based on the customer’s requirements, SEs
define data items in screens and screen transi-
tions. Then, Apmodeler generates an executable
application with a screen layout (JSP). The SEs
can run the application and discuss the user in-
terfaces with the customer and show them how
the application behaves. The customer can then
check immediately whether the application meets

their requirements.
2) Refinement of screen layout

SEs refine the generated JSP interactively
based on the user’s comments about the applica-
tion’s behavior.
3) Development of application

The user interface specification has already
been developed. Programmers develop only the
business logic parts, for example, the database
access routines.
4) Confirmation of application’s behavior

SEs check the application and deliver it to
the customer if it is satisfactory.

This process resolves the problems of the con-
ventional development style.
1) User interfaces can be decided at an early

stage of development. The customer can
check the behavior of the application direct-
ly by running it.

2) The customer can check not only the static
layouts but also the dynamic behavior of the
application.

3) SEs can define all of the user interface spec-
ification. In general, SEs can determine the

Figure 7
Development style using Apmodeler.

Screen
 item

definition
/modification

JSP
(generated)

Application
(user interface

part)

Screen
transition
definition

/modification

JSP
(modified)

HTML
editor

Apmodeler
generator

Add
business

logic

Execution of application

Review by customer

SEs’ role Programmers’ role

Programmer

101FUJITSU Sci. Tech. J., 40,1,(June 2004)

Y. Fujikawa et al.: New Web Application Development Tool and Its MDA-Based Support Methodology

user’s requirements, but may be less able to
complete the programming. However, by
using Apmodeler, SEs can develop the
application’s exterior without needing
programming skills.

4) Programmers can concentrate on the busi-
ness logic and the application’s interior.

4. Discussion
4.1 Debugging

Automatic code generation tools may have
shortcomings in the maintenance phase. When
programmers find a bug, they tend to change the
generated source code directly rather than chang-
ing the specification documents. They stop using
the generation tools at this point, because the
source code would be overridden if they used them
again.

To address this problem, Apmodeler supports
debugging functionality at the model level. Sim-
ilar to the debugging functionality of popular
programming languages, the developers can mon-
itor the current location, set breakpoints, and
inspect the value of objects. All operations can be
carried out in the context of the screen transition
diagram. Therefore, the developers do not need
to debug the generated code.

4.2 Application parts not handled by
Apmodeler
Nijo does not handle all parts of an applica-

tion. As discussed in Section 2.2, the developers
must connect the model developed by Apmodeler
and other modeling tools at the PSM level.

Therefore, we may need to come up with a
mechanism to connect the Nijo model with other
models at the PIM level.

5. Conclusion
We introduced a graphical language that can

model Web applications in platform-independent
forms. Using this language, developers can de-
velop Web applications without knowing specific
platforms or frameworks.

We also proposed a new development style
that makes it possible to check whether the spec-
ifications meet the customers’ requirements at an
early stage.

References
1) T. Matsutsuka et al.: An Architecture to Develop

Presentation Logic for Enterprise Business
Applications. Proceedings of the Evolve 2000 Con-
ference, Feb. 2000.

2) The Apache Software Foundation, Struts.
http://jakarta.apache.org/struts/

3) MDA Guide Version 1.0.1.
http://www.omg.org/docs/omg/03-06-01.pdf

4) OMG Unified Modeling Language Specification
Version 1.5.
http://www.omg.org/docs/formal/03-03-01.pdf

Takahide Matsutsuka received the
B.S. and M.S. degrees in Computer
Science from Tokyo Institute of Tech-
nology, Tokyo, Japan in 1994 and 1996,
respectively. He joined Fujitsu Labora-
tories Ltd., Kawasaki, Japan in 1996,
where he has been engaged in research
and development of enterprise distrib-
uted systems and software architecture.
He was a visiting researcher at Carn-
egie Mellon University in the 2001 to
2002 academic year, where he was

engaged in research of pervasive computing. He is a member
of the Information Processing Society of Japan (IPSJ).

Yasuyuki Fujikawa received the B.S.
and M.S. degrees in Physics from Osa-
ka University, Osaka, Japan in 1985 and
1987, respectively. He joined Fujitsu
Ltd., Kawasaki, Japan in 1987, where
he has been engaged in research and
development of systems engineering
methodologies and tools.

