
85FUJITSU Sci. Tech. J., 40,1,p.85-93(June 2004)

Latest Progress and Trends in Java/EJB
Technologies

V Sumio Tasaka V Jun Ginbayashi
(Manuscript received February 2, 2004)

Java is evolving into a full-scale system development technology by the addition of
functions such as Applets, object-oriented programming, cross-platform support,
internationalization, JavaBeans, Remote Method Invocation (RMI), Java Database Con-
nectivity (JDBC), Enterprise JavaBeans (EJB), Java Plug-in, HotSpot Client Virtual
Machine (VM), Java Naming and Directory Interface (JNDI), RMI/Internet Inter-ORB Pro-
tocol (IIOP), eXtensible Mark-up Language (XML) support, and Java Secure Socket
Extension (JSSE). These functions have been added in three specifications: Java 2
Platform, Enterprise Edition (J2EE); Java 2 Platform, Standard Edition (J2SE); and
Java 2 Platform, Micro Edition (J2ME). Also, the manner in which these specifications
are decided has shifted from decisions made by Sun Microsystems to decisions made
by an open community through a process called the Java Community Process (JCP).
The main key-phrase of the latest trend in Java/EJB is “Ease of Development,” and
J2SE 1.5 (code name “Tiger”) will play a central role in this trend. Prospective
enhancements in the Java programming language specifications such as Generics,
Enhanced for Loop, Autoboxing/Unboxing, Typesafe Enums, Varargs, Static Import,
and Metadata are expected to simplify system development, learning, and mastering.
With these new technologies, Java will be used by a wider range of developers and
EJB-based development of enterprise systems will become more popular.

1. Introduction
Since its appearance in 1995, Java technolo-

gy (including Enterprise JavaBeans [EJB]) has
been evolving with various functions towards a
technology for full-scale system development.
Frequent enhancements with these functions have
led to a wider Java application area. However,
these enhancements have raised application
developers’ feelings of insecurity about the stabil-
ity of Java and forced them to spend more time
learning and mastering Java.

This paper aims to eliminate unnecessary
anxiety among developers by looking back on the
history of Java/EJB technology and clearly show-
ing its future trend.

First, in Section 2, the history so far of Java/
EJB technology is summarized. Section 3 shows

the direction of future enhancements in Java/EJB,
mainly based on the themes that are currently
being discussed in the Java Community Process
(JCP). In Section 4, the details of the latest ver-
sion (Java 2 Platform, Standard Edition [J2SE]
1.5), whose outline has just become clear, are in-
troduced. Finally, Section 5 concludes with a brief
look at the future of Java/EJB.

2. History and current status of
Java
Java was introduced by Sun Microsystems

in 1995 together with a browser, HotJava. Then,
Java gained public attention in the form of Ap-
plets, which are programs running on a browser,
and was later expanded to include, for example,
server-side applications and mobile appliances.

86 FUJITSU Sci. Tech. J., 40,1,(June 2004)

S. Tasaka et al.: Latest Progress and Trends in Java/EJB Technologies

The major version upgrades of Java are
shown in Table 1.

The major enhancement points of each ver-
sion are given below.
1) Version 1.0

Java Development Kit (JDK) 1.0 was an-
nounced as the first release of Java with the
following features:
• Object orientation
• Cross-platform support
• Network compatibility

Because it was a C++-like language, and also
because of its simple and pure language specifi-
cations, Java was quickly and warmly accepted
by developers, which is unusual for a new lan-
guage. However, it did not have sufficient
functions for system development. Also, it was
difficult to use Java in a Japanese environment,
because internationalization was not supported.
2) Version 1.1

Approximately one year later, JDK 1.1 was
announced. The following functions were added
in JDK 1.1:
• Internationalization
• JavaBeans
• Remote Method Invocation (RMI)
• A new event model
• Java Database Connectivity (JDBC)

Java did not have enough functions to sup-
port system development until functions such as
JavaBeans and JDBC were provided in this
version.
3) Version 1.2

From JDK 1.2, Java was given the new brand

name “Java 2.” In JDK 1.2, the following func-
tions were added:
• Java Foundation Classes (JFC)
• Input Method Framework (IMF)
• Common Object Request Broker Architecture

(CORBA) support
• EJB
• Java Plug-ins

After the release of Java 2, EJB made its
appearance and more enterprise systems were
developed using the server-side version of Java.
It would appear that, at first, Java was expected
to be effective for solving the shortage of client-
side applications on platforms other than Windows
(as implied by the catch phrase, “write once, run
anywhere”). However, server-side Java became
popular in those days because of the expansion of
the Internet.
4) Version 1.3

From JDK 1.3, Java and its related functions
were reorganized into the following three editions
based on the target system environment: Java 2
Platform, Enterprise Edition (J2EE);1) Java 2 Plat-
form, Standard Edition (J2SE);2) and Java 2
Platform, Micro Edition (J2ME).

J2SE 1.3 had the following additional func-
tions:
• HotSpot Client Virtual Machine (VM)
• Java Naming and Directory Interface (JNDI)
• RMI/Internet Inter-ORB Protocol (IIOP)
• Security enhancements

After the release of version 1.3, the way in
which Java will be applied to enterprise systems
became clear with the editions based on target

Major Java upgrades Version NameRelease date

May 1995 Java (announced)

January 1996 1.0 JDK 1.0

February 1997 1.1 JDK 1.1

December 1998 1.2 Java 2 (JDK 1.2)

July 2000 1.3 Java 2 (J2SE 1.3, J2EE 1.2, J2ME)

February 2002 1.4 Java 2 (J2SE 1.4, J2EE 1.3, J2ME)

Table 1
Major version upgrades of Java.

87FUJITSU Sci. Tech. J., 40,1,(June 2004)

S. Tasaka et al.: Latest Progress and Trends in Java/EJB Technologies

platforms. In particular, Java application to en-
terprise systems became more popular after EJB
2.0 and JavaServer Pages (JSP) were announced
in J2EE. Figure 1 shows the application model
and components supported by J2EE. To make it
easier to build enterprise systems through com-
ponent-based development, several detailed
application models based on EJB have been ad-
vocated by companies and consortiums such as
the Component Consortium for EJB,3) which has
been established in Japan. Figure 2 shows the
EJB-based application model of the Component
Consortium for EJB. At the same time, because
of J2ME, the application area of Java expanded
to include mobile appliances, which led to the cur-
rent widespread use of Java in mobile-phone
applications.

Among the enhancements in version 1.3, the
following functions added to EJB in EJB 2.0 are
important because they can be used to design and
implement coarse-grained entities and make data-
base access more efficient, which are both necessary
tasks when developing enterprise systems:
• A new architecture for container-managed

persistence (CMP 2.0)
• Support for the management of relationships

among entity beans
• Query syntax for select methods for entity

beans (EJB-QL)
• Message-driven beans
5) Version 1.4

Until version 1.3, Sun Microsystems decid-
ed the specifications of Java and its related

functions. Since version 1.4, however, the specifi-
cations have been decided in a more open manner.
Now, new specifications and improvements of ex-
isting specifications are made based on Java
Specification Requests (JSRs) submitted by the
Java community to a process called the Java Com-
munity Process (JCP).4)

 When a JSR is submitted to the JCP, the
member companies of the JCP discuss whether it
should be implemented. If they decide it should
be implemented, an expert group is established
to decide the final specifications for the JSR. Only
member companies of the JCP can submit a JSR,
but submitted JSRs are made public on the JCP’s
Web site so the JCP can receive a wider range of
opinion.

J2SE 1.4 was the first version whose specifi-
cations were discussed and determined by the JCP.
The following functions were added:
• XML support
• Java Web Start
• A new I/O

DB

DB

Client
presentation

tier

Applet

HTML

Web browser

Server
presentation

tier

Servlet

JSP

Servlet
container

Business
logic
tier

EJB

EJB
container

EIS
tier

DBMS

Business logic tier

EJB container

Business
service

component

Business
model

component

Figure 1
J2EE application model and components.

Figure 2
EJB-based application model of Component Consortium
for EJB.

88 FUJITSU Sci. Tech. J., 40,1,(June 2004)

S. Tasaka et al.: Latest Progress and Trends in Java/EJB Technologies

• A logging API
• Assertion
• Java Secure Socket Extension (JSSE)

In this way, the specifications of Java are now
discussed and evolved within an open community.

3. Future enhancements of Java
A roadmap for future enhancements of Java

has been released.5) The roadmap is shown in
Table 2.

As described in Section 2, the application
area of Java has become wider and Java technol-
ogy is becoming more popular. J2ME has been
adopted in mobile appliances such as mobile
phones. J2EE has already reached the level of de
facto standard in the development of enterprise
mission-critical systems along with the rich en-
hancement of EJB functions.

However, Java is still difficult for beginners

to learn and there are relatively few high-level
developers. For this reason, Java is not so suc-
cessful in the area of section-wise application,
where Basic and C# are used. On the other hand,
Java is successful in the area of mobile applianc-
es and enterprise systems.

As a result, for the next version of Java, ease
of development rather than function enhancement
will be the priority issue. This could be the larg-
est change of policy since Java was born.

The next version of Java will be J2SE 1.5
(code name “Tiger”). For J2SE 1.5, the following
five themes will be considered:
1) Quality: compatibility will be extremely im-

portant.
2) Performance and scalability
3) Ease of development
4) Monitoring and manageability
5) Desktop clients

“JSR-176: J2SE 1.5 (Tiger) Release Contents”
is being developed in the JCP according to these
themes. Furthermore, several JSRs have been
submitted with respect to the specifications of
more detailed functions (Table 3).

The final version of J2EE 1.4 was released
in November 2003. EJB 2.1, in particular among

Table 2
J2SE Technology Update and Roadmap.

Date Version (Code name)

Summer 2004 1.5 (Tiger)

Early 2005 1.5.1 (Dragonfly)

After 2005 1.6 (Mustang)

Table 3
JSR-176: J2SE 1.5 (Tiger) Release Contents.

JSR-003 Java Management Extensions (JMX) Specification

JSR-013 Decimal Arithmetic Enhancement

JSR-014 Add Generic Types to the Java Programming Language

JSR-028 Java SASL Specification

JSR-114 JDBC Rowset Implementations

JSR-133 Java Memory Model and Thread Specification Revision

JSR-163 Java Platform Profiling Architecture

JSR-166 Concurrency Utilities

JSR-174 Monitoring and Management Specification for the Java Virtual Machine

JSR-175 A Metadata Facility for the Java Programming Language

JSR-199 Java Compiler API

JSR-200 Network Transfer Format for Java Archives

JSR-201 Extending the Java Programming Language with Enumerations,
Autoboxing, Enhanced for Loops and Static Import

JSR-202 Java Class File Specification Update

JSR-204 Unicode Supplementary Character Support

JSR-206 Java API for XML Processing (JAXP) 1.3

89FUJITSU Sci. Tech. J., 40,1,(June 2004)

S. Tasaka et al.: Latest Progress and Trends in Java/EJB Technologies

several constituent specifications in J2EE 1.4, has
the following additional functions:
1) Implementation of Web services
2) A container-managed timer service
3) An enhancement of EJB QL (ORDER BY,

aggregate operators)
4) An extension for message-driven beans

Ease of development is also the major re-
maining problem in EJB, and the use of metadata,
for example, will be pursued in the standardiza-
tion activity for EJB3.0 (JSR-220). The following
features are now under discussion in JSR-220:
1) A simpler CMP programming model
2) Development and testing without an EJB

container
3) More standardized deployment

4. Extension of Java
programming language
specifications in J2SE 1.5
The outline of the latest version, J2SE 1.5,

has just become clear. This chapter explains which
types of functions, especially which types of ex-
tensions to the Java programming language
specifications, will be added in J2SE 1.5.6),7)

The following extensions in J2SE 1.5 have
been announced:
1) Generics
2) Enhanced for Loop (foreach)
3) Autoboxing/Unboxing
4) Typesafe Enums
5) Varargs
6) Static Import
7) Metadata

These functions are explained in detail below.

4.1 Generics
For the current collection-type classes such

as java.util.list, and java.util.Vector, extra casts
are needed because all the objects in the collec-
tion are treated as the base class Object. Also,
even when an object of a different type is added to
the collection, an error only occurs at runtime.

Generics make it possible to check the type of

elements in collection-type classes at compile time
by specifying the type of objects stored in collec-
tion-type classes. This function is similar to
Template in C++. This function will make it possi-
ble to write more type-safe descriptions in Java.

For example, when String objects are stored
into and retrieved from ArrayList, it is currently
necessary to cast them as follows:

List wordlist = new ArrayList();

wordlist.add("title");

String title =

((String) wordlist.get(0)).toUppercase();

However, when Generics is used, the cast is
not needed:

List<String> wordlist =

new ArrayList<String>();

wordlist.add("title");

String title =

wordlist.get(0).toUppercase();

Also, because any type of object can be stored
in a List class, even when only String objects
should be stored in a wordlist, Integer objects can
be added to the wordlist as follows without caus-
ing errors at compile time:

List wordlist = new ArrayList();

wordlist.add(new Integer(1));

Integer i = (Integer) wordlist.get(1);

If we describe as follows using Generics:

List<String> wordlist =

new ArrayList<String>();

wordlist.add(new Integer(1));

Integer i = wordlist.get(1);

an error occurs at compile time because the type
is specified.

This function makes the code simple with-
out annoying casts and increases the level of safety

90 FUJITSU Sci. Tech. J., 40,1,(June 2004)

S. Tasaka et al.: Latest Progress and Trends in Java/EJB Technologies

by type checking at compile time. Also, the num-
ber of errors at runtime is reduced.

Generics has been considered for quite some
time and might have been included in J2SE 1.4.
It will finally be added in J2SE 1.5.

4.2 Enhanced for Loop (foreach)
Enhanced for Loop provides the same func-

tion as the foreach syntax in C# and other
languages.

For example, to look at the elements of an
array or collection one by one, we currently use
Iterator as follows:

void cancelAll(Collection c) {

for (Iterator i = c.iterator();

i.hasNext();){

TimerTask tt = (TimerTask) i.next();

tt.cancel();

}

}

By describing this with Enhanced for Loop,
the code becomes simpler:

void cancelAll(Collection c){

for (Object o : c)

((TimerTask)o).cancel();

}

Also, it is possible to describe this example
with Generics:

void cancelAll(Collection<TimerTask> c){

for (TimerTask task : c)

task.cancel();

}

Enhanced for Loop makes it unnecessary to
use loop variables and Iterator in code. It is ex-
pected to decrease the number of mistakes in
coding, because it reduces the volume of descrip-
tion, especially when describing a nested loop.

4.3 Autoboxing/Unboxing
In the current Java, when a variable of a

primitive type, for example, the int type, is treat-
ed as an object, it must be converted to the
corresponding wrapper class, for example, Inte-
ger. In J2SE 1.5, conversion from a primitive type
to a wrapper class and vice versa is automatically
performed by Autoboxing/Unboxing. The function
of Autoboxing/Unboxing is also adopted in C#.

For example, the following description in the
current Java:

// from int to Integer

int i = 42;

Integer x = new Interger(i);

// from Integer to int

Integer y = 42;

int j = y.intValue();

can be simply described as follows by using Auto-
boxing/Unboxing:

// from int to Integer

int i = 42;

Integer x = i;

// from Integer to int

Integer y = 42;

int j = y;

Autoboxing/Unboxing makes it unnecessary
to use a wrapper class. Also, when combined with
Generics, this function is very useful when, for ex-
ample, an Integer needs to be stored in a collection.

4.4 Typesafe Enums
Typesafe Enums is a famous function in C,

C++, Pascal, and other languages, and will be add-
ed in J2SE 1.5. It can be used as a label in switch
statements. Typesafe Enums can be defined like
a class rather than a list of integers. Also, because
Typesafe Enums automatically generates VAL-
UES, family(), valueOf(), and other methods, it is

91FUJITSU Sci. Tech. J., 40,1,(June 2004)

S. Tasaka et al.: Latest Progress and Trends in Java/EJB Technologies

especially useful in the Enhanced for Loop
syntax.

The following shows an example of using
Typesafe Enums:

public enum Coin{

penny(1), nickel(5), dime(10), quarter(25);

Coin(int value) { this.value = value; }

private final int value;

public int value() { return value; }

}

public class CoinTest{

public static void main(String[] args){

for (Coin c : Coin.VALUES)

System.out.println

(c + ": ¥t"+ c.value() +"¢ ¥t" + color(c));

}

private enum CoinColor

{ copper, nickel, silver }

private static CoinColor color(Coin c) {

switch(c) {

case penny: return CoinColor.copper;

case nickel: return CoinColor.nickel;

case dime: return CoinColor.silver;

case quarter: return CoinColor.silver;

default: throw new

AssertionError("Unknown coin: " + c);

}

}

}

In this example, class CoinTest uses an enum
definition Coin. The new Enhanced for Loop syn-
tax in the main method prints out the contents of
the enum definition Coin. For example, “penny:
1¢ copper” is printed out for the first content, pen-
ny. The example shows that VALUES, which is
automatically generated, is used in the Enhanced
for Loop syntax.

Typesafe Enums does not exist in the cur-
rent Java. It simplifies descriptions and therefore

reduces the burden on developers.

4.5 Varargs
Varargs is a function that makes it possible

to define a method having variable-length argu-
ments like printf and scanf in C/C++.

Currently, a function similar to variable-
length arguments can be described using an array,
for example, as follows:

Object[] args = {

new Integer(9999),

"tom"

};

String result =

MessageFormat

.format("ID {0}: Name:{1}, args);

By using Varargs, this example can be de-
scribed more simply without an array as follows:

String result =

MessageFormat

.format("ID {0}: Name:{1}, 9999, "tom");

4.6 Static Import
Static Import is a function that makes it pos-

sible to describe static fields and methods like the
other classes by using import declarations. Be-
cause Java does not have the macro functions
found in C/C++, it is usual to define an interface
in which only constants are defined. However,
this is an improper usage of an interface.

By using Static Import, constants in anoth-
er class can be imported by describing “import
static” as follows:

import static java.awt.Color.CYAN;

button.setForeground(CYAN);

In Static Import, not only constants but also
static methods can be imported.

92 FUJITSU Sci. Tech. J., 40,1,(June 2004)

S. Tasaka et al.: Latest Progress and Trends in Java/EJB Technologies

4.7 Metadata
Metadata is exactly the same as Attribute in

C#. This function makes it possible to define a
new attribute for classes, methods, and fields. For
example, in the same way a developer can describe
the accessibility to a class or method by using a
declaration (e.g., public or private), a developer
can explicitly specify the accessibility to a class,
method, or field by defining a Metadata attribute.

Metadata has two major purposes. One is to
enable developers to define an attribute clearly
by describing a Metadata attribute within code.
The other is to utilize such information by using
tools.

For example, when Metadata is used to de-
scribe attribute @Remote in order to specify that
a method is remote as follows:

import javax.xml.rpc.∗;

public class CoffeeOrder{

@Remote public Coffee [] getPriceList(){

...

}

@Remote public String

orderCoffee(String name, int quantity){

...

}

}

a tool can generate the following source code,
which increases development productivity:

public interface CoffeeOrderIF

extends java.rmi.Remote {

public Coffee [] getPriceList()

throws java.rmi.RemoteException;

public String

orderCoffee(String name, int quantity)

throws java.rmi.RemoteException;

}

public class CoffeeOrderImpl

implements CoffeeOrderIF{

public Coffee [] getPriceList(){

...

}

public String

orderCoffee(String name, int quantity){

...

}

}

As the example shows, Metadata is not only
an important function from a tool vendors’ point
of view, but also a big help for developers.

5. Conclusion
Since its appearance in 1995, Java has been

evolving into a full-scale system development tech-
nology through the addition of various functions
in new specifications (e.g., internationalization,
JavaBeans, JDBC, EJB). At the same time, the
application area of Java has expanded to include,
for example, mobile appliances and enterprise
mission-critical systems. Also, the manner in
which the specifications are decided has shifted
from decisions made by Sun Microsystems to de-
cisions made by an open community through a
process called the Java Community Process (JCP).

Currently, a significant change of policy is
occurring in Java and the key phrase is “Ease of
Development.” J2SE 1.5, which will appear in the
summer of 2004 (code name “Tiger”) is at the cen-
ter of this change. The extension of the Java
programming language specifications now pro-
posed in J2SE 1.5 has been carefully designed to
realize a high degree of Ease of Development and
is also designed to improve Ease of Learning and
Ease of Mastering. With these new technologies,
Java will be used by a wider range of developers
and EJB-based development of enterprise systems
will become more popular.

References
1) Java 2 Platform, Enterprise Edition (J2EE) Web

page.
http://java.sun.com/j2ee/

2) Java 2 Platform, Standard Edition (J2SE) Web

93FUJITSU Sci. Tech. J., 40,1,(June 2004)

S. Tasaka et al.: Latest Progress and Trends in Java/EJB Technologies

page. (in Japanese).
http://java.sun.com/j2se/

3) Component Consortium for EJB Web page. (in
Japanese).
http://www.ejbcons.gr.jp/indexi.html

4) Java Community Process Web page.
http://jcp.org/en/home/index

5) Java 2 Platform, Standard Edition (J2SE) Update
and Roadmap.
http://servlet.java.sun.com/javaone/sf2003/
conf/sessions/display-1540.en.jsp

6) New Language Features for Ease of Development
in the Java 2 Platform, Standard Edition 1.5:A
Conversation with Joshua Bloch.
http://java.sun.com/features/2003/05/
bloch_qa.html

7) Forthcoming Java Programming Language Fea-
tures.
http://servlet.java.sun.com/javaone/sf2003/
conf/sessions/display-3072.en.jsp

Jun Ginbayashi received the B.S. and
M.S. degrees in Mathematics from The
University of Tokyo, Tokyo, Japan in
1981 and 1984, respectively. He also
received the D.Phil. degree in Comput-
ing from The University of Oxford, Ox-
ford, United Kingdom in 1996 after three
years’ study there. He joined Fujitsu
Ltd., Tokyo, Japan in 1986, where he
has been engaged in research, devel-
opment, and promotion of development

environments for business application systems.

Sumio Tasaka received the B.S. degree
in Physics from Tokyo Metropolitan Uni-
versity, Tokyo, Japan in 1989. He joined
Fujitsu Ltd., Yokohama, Japan in 1989,
where he has been engaged in research
and development of development envi-
ronments.

