
54 FUJITSU Sci. Tech. J., 40,1,p.54-60(June 2004)

Early Detection of Changes Using Event
Sequence Extractor

V Koji Wakio V Toru Yoshibayashi V Naoki Akaboshi
(Manuscript received January 14, 2004)

Today’s fast-changing business environment makes high demands on organizations
for timely strategic decisions and business actions. If it was possible to analyze all
the business events and promptly identify those conditions that require the attention
of decision makers, the necessary adjustments and improvements could be made at
the right time. In this paper, we present Event Sequence Extractor, which is our effi-
cient solution for promptly detecting problematic sequences of business events that
require action by decision makers. Event Sequence Extractor integrates the Inter-
stage Navigator family of products, which provide faster Business Intelligence to
enable decision-making in business process monitoring. The result is a more effi-
cient and reliable business operation that leads to lower costs, protection from lost
revenues, and a sustainable competitive advantage.

1. Introduction
The pace of change in the business world

continues to increase, and in order to survive and
flourish, organizations and companies must make
strategic decisions and take business actions at
the right time. However, today’s business com-
plexity makes it difficult to analyze all the
business events that should be taken into account
for these decisions and actions.

In a complex analysis, examination of only a
single business event is usually not enough.
On-Line Analytical Processing (OLAP) groups
business events based on the values of “dimen-
sion” data and provides aggregations of “fact”
data. For example, OLAP for a Claim Manage-
ment process can promptly provide the number
of complaints per product per day or the number
of complaints per customer per week. This kind
of aggregated information can be very useful for
executive managers who need a global view of the
situation.

However, for more complex tasks, for in-

stance, the identification of customers who do not
seem to be satisfied, an analysis of the detailed
sequence of events is necessary. For example, in
the Claim Management process, the detection of
customers who made more than four complaints
about a product within a week after its purchase
or customers whose complaint interval is getting
shorter indicates potential cases of customer dis-
satisfaction and loss that should be promptly
handled. In such an analysis, an important fea-
ture is the sequential nature of the events. In
this paper we use the term “sequence” to refer to
events that are ordered due to a temporal rela-
tionship. Traditional relational databases provide
no abstraction of ordering in the data model, so
they cannot efficiently handle queries based on
logical sequentiality in the data.

In this paper, we present Event Sequence
Extractor, which is our solution for efficiently de-
tecting pre-specified sequential patterns of events
that represent situations that may affect a com-
pany’s business performance. Event Sequence

55FUJITSU Sci. Tech. J., 40,1,(June 2004)

K. Wakio et al.: Early Detection of Changes Using Event Sequence Extractor

Extractor integrates Fujitsu’s Interstage Naviga-
tor family of products, which provide fast and
effective Business Intelligence. By combining
Event Sequence Extractor with OLAP and data
mining, Fujitsu provides a complete Business
Intelligence solution that supports real-time
decision-making in response to changes in the
business environment and optimization of the
business processes of an entire organization.1)

This paper is organized as follows. In
Section 2 we briefly review the data model and
show how a pattern is specified in Event Sequence
Extractor. In Section 3 we introduce the algorithm
used in Event Sequence Extractor for efficiently
detecting the sequential pattern of events. This
algorithm dynamically constructs an on-memory
data structure that stores the events of a given
pattern by scanning the sequence of events only
once. In Section 4 we outline some example ap-
plications of Event Sequence Extractor, and in
Section 5 we show how Event Sequence Extractor
integrates the Interstage family of products. Fi-
nally, Section 6 presents some concluding remarks.

2. Pattern specification using
Event Sequence Extractor
Let R be a set of records composed of n at-

tributes {a1, a2, ..., an}. By specifying attribute ak

as the Group Coordinate (GC) and al as the Order
Coordinate (OC), where 1 ≤ k ≤ n, 1 ≤ l ≤ n, and
k ≠ l, R is partitioned according to the GC into a
set of partitions and the partition records are sort-
ed according to the OC. This results in a set of
sequences of events that are ordered on the al val-
ues, where there is one sequence for each value of
ak.

For each sequence of events, Event Sequence
Extractor searches for an m-pattern [e1 Θ1,2 e2 Θ2,3

e3 ... em-1 Θm-1,m em], where ei represents an event
and Θi,i+1 represents the distance relationship be-
tween consecutive events ei and ei+1. This distance
relationship specifies whether two consecutive
events ei and ei+1 of the pattern occur simulta-
neously, contiguously, or non-contiguously in the

input sequence of events. Specifically:
1) ei = ei+1 means that both events occur simul-

taneously.
2) ei − ei+1 means that the events are contigu-

ous; that is, ei+1 occurs immediately after ei.
3) ei < ei+1 means that ei+1 occurs after but not

immediately after ei.
Each event ei (1 ≤ i ≤ m) of the pattern satis-

fies some intra-event conditions; that is, some
conditions for the values of any of the attributes
aj of event ei (1 ≤ j ≤ n) that require only the
examination of the event itself. Besides these
intra-event conditions, there are also inter-event
conditions; that is, conditions that specify how
different events in the pattern are interrelated
with specifications for the values of any of the
attributes aj for 1 ≤ j ≤ n, j ≠ k, where ak is the GC.
A special inter-event condition gives the window
size ws of the pattern; that is, the maximum dis-
tance allowed between the first event e1 and the
last event em of the pattern: i.e., ws ≥ em.al − e1.al,
where al is the OC.

Consider a simple example that searches for
customers who complained more than twice about
a product within a week after its purchase. As
illustrated in Figure 1, for a given set of purchase
and complaint events, by specifying customerID
as the GC and specifying day as the OC, we logi-
cally have two sequences of events. The pattern
of events [e1 < e2 < e3] that we want to detect has
to satisfy the following conditions:
1) Intra-event conditions:
• e1.type = “purchase”
• e2.type = “complaint”
• e3.type = “complaint”
2) Inter-event conditions:
• e1.productID = e2.productID = e3.productID
• window size ws = 7 days

Because of a lack of space, more detailed
descriptions of the data model and the query
language supported by Event Sequence Extrac-
tor will not be presented here. However, they can
be found in a previous publication.2) Figure 2
illustrates the Event Sequence Extractor’s Graph-

56 FUJITSU Sci. Tech. J., 40,1,(June 2004)

K. Wakio et al.: Early Detection of Changes Using Event Sequence Extractor

ical User Interface (GUI), which makes it easy to
specify the above pattern. The specification of the
intra-event conditions and the inter-event condi-
tions between e1 and e2 are shown in Figures 2(a)
and 2(b), respectively.

In the above example, customer1 has com-
plained about product1 only once. On the other
hand, customer2 has complained twice about prod-
uct1 within a week from its purchase but has not
complained about product2. Therefore, Event Se-
quence Extractor will detect {customer2, product1}
as the only potential case in which customer sat-
isfaction is not achieved.

3. Pattern detection using Event
Sequence Extractor
A naive approach for the search of events

composing the complex patterns specified by
Event Sequence Extractor would require multi-
ple scans of the entire sequence of events. Event
Sequence Extractor, however, can efficiently
detect those patterns by scanning the event’s se-
quence just once. Note that the patterns specified
by Event Sequence Extractor can be very complex.
They can specify conditions for multiple attributes,
and those conditions can have inter-relationships
with previous events in the pattern. Also, multi-
ple events can occur simultaneously (i.e., have the

Grouping Coordinate (GC)

Ordering Coordinate (OC)

customer ID
customer1
customer2
customer2
customer2
customer2
customer1

day
10/1
10/4
10/4
10/5

10/10
10/10

customer1
customer1

customer2
customer2
customer2
customer2

10/1
10/10

10/4
10/4
10/5
10/10

type
purchase
purchase
purchase
complaint
complaint
complaint

product ID
product1
product1
product2
product1
product1
product1

purchase
complaint

purchase
purchase
complaint
complaint

product1
product1

product1
product2
product1
product1

Figure 1
Transforming a set of events into two sequences of events.

 (a) Intra-event conditions

Figure 2
Pattern specification using Event Sequence Extractor's GUI.

(b) Inter-event conditions

57FUJITSU Sci. Tech. J., 40,1,(June 2004)

K. Wakio et al.: Early Detection of Changes Using Event Sequence Extractor

same OC value), and consecutive events of the
pattern do not necessarily occur contiguously in
the sequence. Therefore, previous approaches that
extend traditional string-matching algorithms3),4)

cannot be applied to searches for the more com-
plex patterns of events supported by Event
Sequence Extractor.

In order to detect these more-complex pat-
terns, Event Sequence Extractor dynamically
constructs an on-memory graph structure whose
nodes represent the events that satisfy the condi-
tions specified in the pattern. This algorithm is
basically composed of the following steps:
1) Filtering of an event that satisfies the pat-

tern conditions,
2) introduction of the filtered event as a node

in the graph structure,
3) output of a detected pattern, and
4) deletion of unnecessary nodes from the graph

structure.

Figure 3 presents a simplified pseudocode
for the detection of an m-pattern over a sequence
in which the events cannot have the same order
value and therefore Θei,ei+1 ∈ {−, <}. Except the
first event e1, which is specified by an intra-event
condition (i.e., e1 = fintra1(C1), where C1 is a con-
stant), each event ei can be specified by a
conjunction of intra-event and inter-event condi-
tions (i.e., ei = fintrai(Ci) AND finteri(ei-1), where 2 ≤ i ≤
m). A special inter-event condition that we will
consider separately is the maximum distance al-
lowed between two consecutive events ei and ei+1,
which we denote as ∆i,i+1. For instance, when the
OC attribute is the day attribute, then ∆i,i+1 ≥
ei+1.day − ei.day. When the distance ∆i,i+1 is not
specified, we take ∆i,i+1 as the window size ws.

Due to space limitations in this paper, we will
not present details of the extensions that are nec-
essary for the more complex case in which multiple
events can have the same order value (e.g., multi-

While there is a new input event r to process
 /* level 1 */
 If r satisfies fintra1(C1)
 Create a node e1 that represents r
 /* levels 2 to m-1 */
 For (i = 2, …, m-1)
 Take the newest node ei-1

 While r satisfies ∆ei-1,ei AND Θei-1,ei

 If r satisties fintrai(Ci) AND fintrai(ei-1)
 /*fintrai() and fintrai() = TRUE if not explicitly specified in the pattern */
 Create a node ei that represents r (if it does not exist yet), and link it to the node ei-1

 Take the previous node ei-1

 /* last level m */
 While the distance between r and the oldest node e1 is longer than the window size ws
 Discard the oldest node e1 and all nodes linked only to it
 Take the newest node em-1

 While r satisfies ∆em-1,em AND Θem-1,em

 If r satisties fintram(Cm) AND finterm(em-1)
 /* fintram() and finterm() = TRUE if not explicitly specified in the pattern */
 Create a node em that represents r (if it does not exist yet) and link it to the node em-1

 Take the previous node em-1

Output all patterns composed by the subgraph rooted at node em

Discard the node em

Figure 3
Simplified pseudocode for pattern detection.

58 FUJITSU Sci. Tech. J., 40,1,(June 2004)

K. Wakio et al.: Early Detection of Changes Using Event Sequence Extractor

ple simultaneous purchases) and therefore Θei,ei+1

∈ {−, <, =, ≤}. Basically, all simultaneous input
events must be checked once against each of the
pattern events ei and a check must be made to
prevent the same input event r from appearing in
different events ei of the pattern.

4. Application examples
Event Sequence Extractor can efficiently

detect changes in the business environment so
that timely adjustments and improvements can
be made by decision makers. As we illustrated
for the Claim Management process, by detecting
changes in customer behavior, prompt actions can
be taken to improve customer satisfaction. Next,
we present two examples in which Event Sequence
Extractor has been applied to promptly detect
sequences of events that were then appropriately
acted on by the decision maker.

4.1 Brand switch analysis
Detecting recent sales trends and changes

from purchase history data in early stages makes
it possible to promptly adapt to those changes, or
in unfavorable cases, to take actions to avoid and
repair those changes. When a user switches be-
tween brands in the same category, the user is
said to have made a “brand switch.”

In order to detect brand switching, we use
Event Sequence Extractor to search for the pat-
tern of events in which 1) the sales of one brand
increases and the sales of another brand decreas-
es over a specified number of consecutive months
and 2) the two brands in each of the brand pairs
that satisfy the above conditions have a difference
in sales below a given threshold value.

As a result, we detected brand-switching be-
havior for some brands of beer and also for some
brands of bottled water by analyzing the sales data
of a supermarket. A marketing group, for exam-
ple, could use this information in a sales campaign
to promote bottled water from which people have
switched.

 Interstage Navigator Explorer Server pro-

vides template queries for the described brand
switch analysis. Users can easily modify and
apply this template in their applications.

4.2 Clinical analysis
Electronic patient-records register informa-

tion concerning symptoms, drugs, clinical tests,
and results for patients. Analogous to business
process analysis, clinical process analysis is nec-
essary to, for example, determine the evolution of
a disease, the effectiveness of a treatment, and
the side effects of drug combinations. In this type
of analysis, the clinical information is treated in
sequential order and can be efficiently handled
by Event Sequence Extractor.

For instance, it is not rare that serious side
effects resulting from certain drug combinations
become public knowledge months or even years
after those drugs have been approved. As soon as
this information is released, it is important that
every patient who has taken one of those combi-
nations for more than the period believed to be
harmless is examined to check for side effects. We
found that these patients can be efficiently iden-
tified using Event Sequence Extractor. We are
now planning to apply data mining analysis to
identify which of these patients have side effects
caused by those combinations.

We have also used Event Sequence Extrac-
tor in the analysis of treatments adopted for some
diseases. The order in which the medications were
given and how they affected the test results were
analyzed. We are now planning to extend this
analysis to a broader range of diseases and
medications.

5. Event Sequence Extractor and
Fujitsu’s Business Intelligence
solution
Fujitsu’s Interstage Suite is a broad family

of modular and flexible software products. These
products are used to build applications that ac-
celerate business processes, maximize revenue,
lower operating costs, improve customer service

59FUJITSU Sci. Tech. J., 40,1,(June 2004)

K. Wakio et al.: Early Detection of Changes Using Event Sequence Extractor

and time-to-market, and help businesses react
quickly to changing market requirements and
customer trends.

The term “Business Intelligence” covers a
broad range of applications and technologies for
gathering, storing, analyzing, and providing ac-
cess to data in order to help enterprise users make
better business decisions. Companies are start-
ing to make use of Business Intelligence solutions
to understand their businesses better, identify
prospective customers and retain existing ones,
and keep inventories and production orders un-
der control. Business Intelligence solutions enable
them to not only respond to the ever-increasing
demands of today’s business environment, but also
to anticipate its trends.

As illustrated in Figure 4, Interstage Navi-
gator is Fujitsu’s Business Intelligence software
platform and one of the core applications of Inter-
stage Suite. Interstage Navigator was created to
facilitate efficient and speedy analysis with OLAP
technology. Interstage Navigator Central Server
provides data warehouse (DWH) building func-
tions such as aggregation of operational data and
XML data importing. Interstage Navigator con-
sists of interrelated components that closely
collaborate to offer complete and integrated Busi-

ness Intelligence solutions, for example, OLAP
and data mining solutions, as well as efficient
sequential event detection provided by Event
Sequence Extractor.

Event Sequence Extractor makes use of In-
terstage Navigator data-access functions that can
collect and provide operational data through In-
terstage Navigator. End users do not need to know
Structured Query Language (SQL) or software
programming to retrieve and filter the input data.
All they need to do is drag-and-drop the desired
dimensions into a report layout using a
WYSIWYG interface. As we described in Section
2, Event Sequence Extractor also provides a GUI
that makes it easy to specify a pattern of interest.
By using the pattern detection algorithm present-
ed in Section 3, Event Sequence Extractor can
efficiently detect a specified pattern in the se-
quence of events provided by Interstage Navigator.

6. Conclusions
In this paper we presented Event Sequence

Extractor, which is a Fujitsu solution for efficiently
searching for patterns in sequences of events so
that changes in the business environment can be
quickly detected. Event Sequence Extractor can
be used to monitor business processes. When

Legacy
system

Other
sections

In
te

rs
ta

ge
 C

ol
la

bo
ra

tio
nR

in
g Interstage Navigator

Central Server
Interstage Navigator Server
Standard Edition
Interstage Navigator Server
Enterprise Edition
Interstage Navigator
Explorer Server

DWH
ROLAP

Repository
of contents

Integration middleware

Interstage Navigator

Mining

Users

Event sequence
extractor

OLAP

Data mining
Text mining

Sequential event
detections

ROLAP: Relational On-line Analytical Processing

Figure 4
Fujitsu's Interstage Navigator.

60 FUJITSU Sci. Tech. J., 40,1,(June 2004)

K. Wakio et al.: Early Detection of Changes Using Event Sequence Extractor

Event Sequence Extractor detects a specified pat-
tern, it can promptly notify the decision maker
through an alarm and automatically perform fur-
ther analyses. To enable timely decision-making,
Event Sequence Extractor is integrated into the
Interstage Navigator family of products, which
provide Business Intelligence. This integration
results in lower costs, protection from lost reve-
nues, and a sustainable competitive advantage for
a business organization.

We plan to provide a real-time monitoring
framework for detecting changes in a future
version of the Interstage family of products.
Real-time monitoring functions will be implement-
ed by applying Event Sequence Extractor to
real-time data.

References
1) M. Nakagawa: Business Process Management

with Web-Service Integration Technology.
FUJITSU Sci. Tech. J., 40, 1, p.17-21 (2004).

2) L. Harada et al.: Event Analyzer: a Tool for Se-
quential Data Processing. Proceedings of 12th

ACM International Conference on Information
and Knowledge Management (CIKM2003), New
Orleans, November 2003, p.172-174.

3) L. Harada: An Efficient Sliding Window Algo-
rithm for Detection of Sequential Patterns.
Proceedings of 8th International Conference on
Database Systems for Advanced Applications
(DASFAA2003), Kyoto, IEEE Computer Society,
March 2003, p.73-80.

4) R. Sadri et al.: Optimization of Sequence Que-
ries in Database Systems. Proceedings of the 20th

ACM SIGMOD-SIGACT-SIGART symposium on
Principles of Database Systems (PODS2001),
Santa Barbara, May 2001, p.71-81.

Koji Wakio received the B.S. degree in
Human Science in 1980 from Osaka
University, Japan. He joined Fujitsu
Limited, Numazu, Japan in 1980, where
he has been engaged in development
of Business Intelligence software prod-
ucts, beginning with DSS software
products.

Naoki Akaboshi received the B.S. de-
gree in Electrical Engineering in 1989
and the M.S. degree in Computer Sci-
ence in 1991 from Kyoto University,
Japan. He joined Fujitsu Laboratories
Ltd., Kawasaki, Japan in 1991, where
he has been engaged in research and
development of database systems. His
research interests include data mining
and data stream analysis. He is a
member of the Information Processing

Society of Japan (IPSJ), the IEEE Computer Society, and the
ACM.

Toru Yoshibayashi received the B.S.
degree in Electrical Engineering in 1994
and the M.S. degree in Electrical
Engineering in 1996 from Waseda
University, Japan. He joined Fujitsu
Limited, Numazu, Japan in 1996, where
he has been engaged in development
of Fujitsu middleware products for
Business Intelligence.

