
35FUJITSU Sci. Tech. J., 40,1,p.35-41(June 2004)

Middleware for Ubiquitous and Seamless
Computing Environments

V Morihisa Kawai V Ikuo Takekawa V Yuji Wada
V Nobutsugu Fujino

(Manuscript received February 2, 2004)

The wide distribution of the Internet and wireless communication technologies is cre-
ating ubiquitous environments in which many users can access a variety of services
anytime and anywhere. In this paper, we describe middleware that provides users
with seamless and ubiquitous environments for computing and communication. This
middleware automatically provides users with the optimum computing and communi-
cation facilities for their current environments. We introduce three key technologies
for realizing this middleware: seamless roaming, Mobile IP, and Plug-and-Service.

1. Introduction
Recently, many hardware facilities for real-

izing a ubiquitous computing environment, for
example, wireless Local Area Networks (LANs)
and the third-generation (3G) public mobile
infrastructure, have been rapidly developed. Now,
the Internet can be accessed with ease from
almost anywhere using a variety of methods.

However, these hardware facilities only pro-
vide a path to the Internet for e-mail and Web
browsing. They do not provide any intelligence to
help users find a network or set up a user access
environment.

The drawbacks of the current system include
the following:
1) Setting up the functions for making network

connections is complicated.
2) Services are interrupted when users change

location.
3) There is no easy way to determine which kind

of services a network supports.
In this paper, we introduce several mecha-

nisms for connecting and receiving services from
a network automatically and securely, without
requiring any knowledge about the network. The

main features of these mechanisms are as follows:
1) Automatic selection of the most suitable

access media among currently available
networks; for example, wireless LAN or
cellular phone (optimum network selection).

2) Seamless continuation of applications, even
when the terminal transfers from one net-
work to another (seamless roaming).

3) Automatic discovery and execution of locally
provided services from the currently access-
ed network (Plug-and-Service).
Section 2 of this paper describes the func-

tions of optimum network selection and seamless
roaming. Section 3 describes seamless roaming
using Mobile IP1),2) technology. Section 4 describes
the Plug-and-Service mechanism, which enables
a user to dynamically and securely use local ser-
vices that suit the user’s preferences.

2. Optimum network selection
To select the most suitable network and au-

tomatically connect to it, the currently available
networks must be identified and it must be
decided how to connect to the most suitable net-
work for the user’s preferences.

36 FUJITSU Sci. Tech. J., 40,1,(June 2004)

M. Kawai et al.: Middleware for Ubiquitous and Seamless Computing Environments

1) Currently available networks
To select a network, it is necessary to deter-

mine which networks are currently available.
This includes determining which network devic-
es are attached to the mobile node (note PC,
Personal Digital Assistant [PDA], etc.) and wheth-
er the node is within the network’s service area.
2) User’s preferences

When selecting a network, the type of net-
work the user wants to connect to must be
considered. For example, some users want to con-
nect to a fast network, while others want to
connect to a low-cost one.
3) How to connect to a network

The methods available for connecting to a
network may be limited depending on the user’s
location and the target network. For example, to
connect to a company’s intranet with a dial-up, a
user can call directly to the company’s access point
or to an Internet Service Provider (ISP). Howev-
er, connecting to an intranet via the Internet
usually requires Virtual Private Network (VPN)
software.

2.1 Network selection with an agent
A software agent can select the most suit-

able network more effectively than a user. We
have developed seamless roaming software that
features automatic network selection with agents.
Figure 1 shows the configuration of the software
in a mobile node. The software is composed of
two agents: Personal Agent and Network Agent.

Personal Agent is an agent for controlling
connections to a network and the load of applica-
tions instead of users. It holds a user profile
containing user preferences and authentication
information for network access. It monitors user
applications and requests Network Agent to ac-
cess a network when those applications are loaded.

Personal Agent informs Network Agent about
the user’s preferences such as the network con-
nection priority (e.g., select the fastest network
first or the cheapest network first) and requests
Network Agent to select the most suitable net-

work. Likewise, it receives information about the
network that Network Agent has selected and
starts an application if the network qualities
match the ones that an application requires.

Network Agent is an agent for making a net-
work virtual and hiding complicated network
set-up options and operations from users and ap-
plications. Network Agent stores the bandwidth
that a network can provide, accounting informa-
tion, and access-point information in a network
profile, and monitors which network devices are
attached to a mobile node and whether the node
is in a service area.

When connectivity to the currently accessed
network is predicted to be discontinued, Network
Agent looks for another suitable network using
the network profiles and user profile stored in
Personal Agent.

For example, if a user prefers a low-cost net-
work, Network Agent uses its network profiles to
select the network with the optimum combination
of network cost and ISP cost.

Likewise, Network Agent uses its network
profiles to detect the network to which a mobile
node currently belongs. If a mobile node needs
to connect to an intranet, Network Agent judg-
es whether VPN software must be used, loads
the software if necessary, then connects to the
intranet.

Figure 1
Configuration of terminal-side software.

Application

User
profile

Network
profile

Network

Personal Agent

Network Agent

37FUJITSU Sci. Tech. J., 40,1,(June 2004)

M. Kawai et al.: Middleware for Ubiquitous and Seamless Computing Environments

2.2 Automatic connection with an agent
After a network has been selected as de-

scribed above, in most cases, to connect to a
network a user will need to provide authentica-
tion information such as an ID and password.
Sometimes, additional information will be re-
quired to use VPN software. However, if users
need to input information at each network roam-
ing, the service is not seamless.

Our seamless roaming software can automat-
ically connect to a network by using the automatic
authentication mechanisms of a software agent.

Currently, public wireless LAN services have
their own authentication mechanisms and employ
different VPN software from each other. Person-
al Agent can automatically cooperate with these
mechanisms to realize smooth network connec-
tions and seamless network roaming.

Usually, authentication information is se-
curely encrypted and stored inside a terminal, but
it is possible to store this information in a secure
external device such as a Universal Serial Bus
(USB) key token or a Subscriber Identity Module
(SIM) card.

3. Seamless roaming
An important technology for realizing seam-

less roaming is Mobile IP. When a mobile node
transfers from one network to another, its IP ad-
dress changes. If this address change occurs
while the mobile node is communicating, the com-
munication is terminated. In many cases, an
application running on the mobile node will have
to be restarted because of this address change.
As its name indicates, Mobile IP enables a mobile
node to transfer within an IP layer. It provides a
mechanism that makes the movement of a mo-
bile node invisible from upper layer applications.
Mobile IP makes it unnecessary to restart an ap-
plication and enables a mobile node to continue
communicating with another node even if the
mobile node transfers to another network.

Figure 2 shows the general procedures of
Mobile IP. The network that a mobile node usu-

ally connects to is called the home network. The
home network allocates one fixed IP address to
each mobile node, which is called the home ad-
dress. In a home network, there is at least one
node that controls the movements of each mobile
node, and these nodes are called home agents. In
a network to which a mobile node transfers (called
a foreign network), there is usually a node called
a foreign agent that handles the mobile node. The
processes of Mobile IP are described below.
1) A mobile node transfers to a foreign network.
2) An IP address is allocated to the mobile node

in the foreign network. This address is called
a care-of-address.

3) The mobile node registers the care-of-address
with its home agent every time the care-of-
address is changed.

4) The home agent controls the care-of-address
of the mobile node and receives all packets
for the mobile node at its home address in-
stead of the mobile node.

5) The home agent encapsulates the packets
with the care-of-address of the mobile node
and sends them to the foreign agent.

6) The foreign agent receives and decapsulates
the packets and sends them to the mobile
node.
A foreign agent can be implemented inside a

mobile node, and this mode of operation is called
co-located mode. Co-located mode operation is es-
sential for Mobile IP, because a foreign agent is
not required in a foreign network. In addition,
there is another operation mode in which a mo-
bile node registers its care-of-address with not only
a home agent but also the target node for the in-
tended communication. In this case, the mobile
node can directly communicate with the target
node.

By making Mobile IP cooperate with Network
Agent, a mobile node can keep communicating
when it transfers to another network.

38 FUJITSU Sci. Tech. J., 40,1,(June 2004)

M. Kawai et al.: Middleware for Ubiquitous and Seamless Computing Environments

4. Plug-and-Service
One of the most important technologies for

achieving ubiquitous services in ubiquitous net-
works is Plug-and-Service. Jini3) and OSGi4)

provide a Plug-and-Play function for services.
However, in these frameworks, the services need
to be implemented in Java. Because of this re-
striction, ubiquitous service providers cannot
freely choose the implementation language of their
services. Our Plug-and-Service technology allows
providers to implement their services in many
different ways by encapsulating all the compo-
nents needed to use a set of services in a
self-contained service package. Users can then
use the services simply by obtaining the service
package. For example, a service package can
encapsulate the programs and data that imple-
ment the services.

4.1 Service packages
Ubiquitous services should be available in all

ubiquitous networks. Moreover, these services
should be usable even when the user is discon-
nected from a network. As mentioned in the
previous section, in our framework, ubiquitous ser-
vices are distributed in the form of self-contained
service packages. After obtaining a service pack-
age, a user can use the encapsulated services
anytime and anywhere.

As shown in Figure 3, a service package con-
sists of three descriptions. The use condition
description defines which types of users can ac-
cess the services encapsulated in the service
package. The use condition description can be
used, for example, to define that users who have
a specific member license can use a specific set of
the encapsulated services. The service startup
description gives the service codes, initialization

Figure 2
Outline of Mobile IP.

Home agent

Home network

Corresponding
node

Internet

Mobile node Foreign agent

(6) Decapsulate packets

(4) Send packets

(5) Encapsulate packets

(1)

(3)

(2)

(1) Mobile node transfers
(2) Care-of-address is allocated
(3) Care-of-address is registered

Foreign
network

39FUJITSU Sci. Tech. J., 40,1,(June 2004)

M. Kawai et al.: Middleware for Ubiquitous and Seamless Computing Environments

procedures, and other information needed to
launch the services. The service content descrip-
tion provides the service codes and service data
that are required to offer the services.

The use condition description can be regard-
ed as a mapping from the users’ profiles to the
service names. In Figure 3, the first mapping spec-
ifies that a user can use service “Service1” only if
the user has attribute “AttributeA.” By using this
description, a service provider can control who
uses the services encapsulated in a service pack-
age without a central server.

The service startup description can be re-
garded as a mapping from service names to the
methods used to provide the corresponding
services. In Figure 3, the description specifies that
service codes “svc.Service1,” “svc.Service2,” and
“svc.Service3” must be executed for services “Ser-
vice1,” “Service2,” and “Service3,” respectively. By
using this description, a service provider can spec-
ify which service codes must be executed to offer
a service, which method or function must be
invoked to initialize them, and which values must
be passed as arguments for the initialization.

The service content description specifies

what is needed to offer the encapsulated services.
In Figure 3, the description states that service code
“service.jar” and service data “service1.html,”
“service2.html,” and “service3.html” are required
for the encapsulated services. By executing the
service code, the services encapsulated in the ser-
vice package can be used and the service data can
be used by the service code.

Figure 4 shows an example description of a
service package. The use condition description
defines that a user can use service “Print” if the
user has attribute “Print”; otherwise, the user can
use service “NoPrint.” The service startup descrip-
tion states that service “Print” requests that
service code “Print.PrintSvc” be executed and ini-
tialized by invoking method “setFileName” with
“print.htm” as its argument. It also states that
service “NoPrint” requests that service code

Use Condition

AttributeA => Service1
AttributeB and AttributeC => Service2
AttributeD or AttributeD => Service3

Service Startup

Service1: svc.Service1
Service2: svc.Service2
Service3: svc.Service3

Service Content

Code: service.jar
Data1: service1.html
Data2: service2.html
Data3: service3.html

Figure 3
Service package structure.

Figure 4
Example description of service package.

<!-- Service Package -->
<POLICY NAME="Print">
 <RULES NAME="Print rules">
 <RULE>
 <CONDITION>
 <EQ ATTRIBUTE="Print" VALUE="yes"/>
 </CONDITION>
 <ROLE_NAME NAME="Print"/>
 </RULE>
 <RULE>
 <CONDITION>
 <NOT> <EQ ATTRIBUTE="Print" VALUE="yes"/> </NOT>
 </CONDITION>
 <ROLE_NAME NAME="NoPrint"/>
 </RULE>
 </RULES>
 <ROLES NAME="Print roles">
 <ROLE>
 <ROLE_NAME NAME="Print"/>
 <CLASS_PATH PATH="Print.PrintSvc"/>
 <INIT METHOD_NAME="setFileName">
 <ARG>print.htm</ARG>
 </INIT>
 </ROLE>
 <ROLE>
 <ROLE_NAME NAME="NoPrint"/>
 <CLASS_PATH PATH="Print.NoPrintSvc"/>
 </ROLE>
 </ROLES>
 <CONTENTS NAME="Print contents">
 <CONTENT NAME="print.htm" PATH="print.htm"/>
 <CONTENT NAME="ng.htm" PATH="ng.htm"/>
 <CONTENT NAME="code" PATH="print.jar"/>
 </CONTENTS>
</POLICY>

40 FUJITSU Sci. Tech. J., 40,1,(June 2004)

M. Kawai et al.: Middleware for Ubiquitous and Seamless Computing Environments

“Print.NoPrintSvc” be executed.

4.2 Plug-and-Service architecture
The functional architecture of Plug-and-

Service is shown in Figure 5. The architecture
consists of five functions: service search, service
negotiation, service download, service customiza-
tion, and service launch.

The service search function searches for ser-
vices that satisfy the user’s preferences. The
service negotiation function determines which of
those services can be executed on the user’s ter-
minal. The service download function obtains the
service packages that encapsulate the executable
services. These three functions require coopera-
tion between the user’s terminal and the service
server. As shown in Figure 5, the Plug-and-
Service platforms of the user’s terminal and the
service server have these three functions.

After downloading a service package, the
Plug-and-Service platform on the user’s terminal
performs the remaining two functions. The ser-

vice customization function selects the appropri-
ate services for the user based on the user’s profile.
The service launch function starts the services
selected by the service customization function.
The service codes for the selected services can be
on the user’s terminal beforehand or encapsulat-
ed in the downloaded service packages.

5. Conclusion
In this paper, we described a middleware

solution for ubiquitous computing environments.
Our solution can help users obtain services any-
time and anywhere, without needing to perform
any operation.

We are currently supplying a middleware
product called “Seamlesslink,” which is a middle-
ware platform that enables easy and seamless use
of networks. The Plug-and-Service function de-
scribed in this paper extends “Seamlesslink” to
enable easy and seamless use of ubiquitous ser-
vices anytime and anywhere. In the near future,
we will release a new version of a front integra-

Figure 5
Functional architecture of Plug-and-Service.

User terminal

Service
repository

Profile
database

Service server

Plug-and-Service

Service search

Service negotiation

Service download

Service customization

Service launch

Profile management

Search request

Service IDs

Negotiation request

Download request

Service package

Locations of
 service packages

Plug-and-Service

Service search

Service negotiation

Service download

Service information
database

Negotiation logic
database

Service package
database

41FUJITSU Sci. Tech. J., 40,1,(June 2004)

M. Kawai et al.: Middleware for Ubiquitous and Seamless Computing Environments

tion middleware that integrates Seamlesslink and
the Plug-and-Service function.

Part of the Plug-and-Service function de-
scribed in this paper is supported by the New
Energy and Industrial Technology Development
Organization (NEDO) of Japan.

Yuji Wada received the B.S. and M.S.
degrees in Information and Computer
Systems Engineering from Osaka Uni-
versity, Osaka, Japan in 1990 and 1992,
respectively. He joined Fujitsu Labora-
tories Ltd., Kawasaki, Japan in 1992,
where he has been engaged in research
and development of algorithm anima-
tion, parallel systems, distributed sys-
tems, and agent/multi-agent systems.
He is a member of the Information Pro-

cessing Society of Japan (IPSJ).

Morihisa Kawai received the B.S.
degree in Physics from Rochester
Institute of Technology, NY, U.S.A. in
1996. He joined Fujitsu Ltd., Yokohama,
Japan in 1997, where he has been en-
gaged in research and development of
software for mobile computing.

Ikuo Takekawa received the B.S.
degree in Mathematics from Nihon Uni-
versity in 1985. He joined Fujitsu Ltd.,
Yokohama, Japan in 1985, where he
has been engaged in research and de-
velopment of software for Internet and
mobile networks.

Nobutsugu Fujino received the B.S.
and M.S. degrees in Electronics
Engineering from Osaka Prefecture
University, Osaka, Japan in 1984 and
1986, respectively. He joined Fujitsu
Laboratories Ltd., Kawasaki, Japan in
1986, where he has been engaged in
research and development of radio
communication systems and mobile
computing technology. He is a mem-
ber of the Information Processing

Society of Japan (IPSJ).

6. References
1) C. Perkins et al.: IP Mobility Support for IPv4.

RFC3344, August 2003.
2) D. Johnson et al.: Mobility Support in IPv6; draft-

ietf-mobileip-ipv6-24.txt. December 2003.
3) Jini.org.

http://www.jini.org/
4) OSGi Alliance.

http://www.osgi.org/

