
FUJITSU Sci. Tech. J., 39,2,p.214-223(December 2003)214

Security and Reliability for Web Services

v Takayuki Maeda     v Yoshihide Nomura     v Hirotaka Hara
                                          (Manuscript received June 22, 2003)

Web services are expected to become an important information technology (IT) in the
future.  There are, however, several security problems when Web services are used on
the Internet, for example, interception, disguise, and repudiation.  In this paper, we
describe the problems that cannot be resolved by traditional technology such as SSL
(Secure Socket Layer)/TLS (Transport Layer Security) and describe latest technolo-
gies such as XML digital signatures and XML encryption that can overcome these
problems.  We also show how these technologies are being used with Fujitsu’s Inter-
stage Application Server, which provides a CORBA (Common Object Request Broker
Architecture) and J2EE (Java 2 Enterprise Edition) compliant infrastructure that deliv-
ers the highest level of performance, robustness, and scalability.  Moreover, we de-
scribe our activities for establishing two standards for these new technologies: Web
Services Security and Web Services Reliability.

1. Introduction
The rapidly growing broadband Internet ser-

vices enable businesses to conduct large-scale
message exchanges for electronic commerce.  Web
services are very attractive for Internet message-
exchange systems in various business areas.
Because Web services are exposed over the Inter-
net and individual Web services are loosely
coupled via SOAP (Simple Object Access Proto-
col)1) communications, it is easy to integrate
multiple Web services and create a new business
process.

However, various problems arise when busi-
ness partners conduct business over the Internet
using Web services.  One of these problems is in-
terception and alteration on routers, proxies, and
gateways that exist between a sender and a re-
ceiver (Figure 1).  Two other problems are that
because HTTP (HyperText Transfer Protocol) is a
stateless protocol that does not guarantee mes-
sage delivery, SOAP messages can disappear or

be duplicated before they reach the receiver.  These
problems can lead to the problem of “repudiation,”
in which a sender has sent a message but denies
sending it or a receiver has received a message
but denies receiving it (Figure 2).

In this paper, we explain Fujitsu’s Web Ser-
vices Security solutions, which resolve these
problems and propose the Web Services Reliabili-
ty, which is a SOAP-based protocol for exchanging
SOAP messages with guaranteed delivery, no du-
plication, and guaranteed message ordering.  We
also describe an implementation of these technol-
ogies on Fujitsu’s Interstage Application Server,
which provides a CORBA (Common Object Re-
quest Broker Architecture) and J2EE (Java 2
Enterprise Edition) compliant infrastructure that
delivers the highest level of performance, robust-
ness, and scalability.

In Section 2, we describe some of the
problems that users encounter when they
communicate using SOAP over the Internet.  In



215FUJITSU Sci. Tech. J., 39,2,(December 2003)

T. Maeda et al.: Security and Reliability for Web Services

Section 3, we describe the Web Services Security
and Web Services Reliability technologies, which re-
solve the security problems described in Section 2.
In Section 4, we describe some security solutions
that implement the Web Services Security and
Web Services Reliability on Interstage Application
Server.  In Section 5, we introduce some standard-
ization activities in the OASIS (Organization for
the Advancement of Structured Information Stan-
dards).  In Section 6, we give our conclusions and
describe our plans for future work.

2. Security problems when using
SOAP on the Internet
SOAP is a lightweight protocol for exchang-

ing information in a decentralized, distributed

enviroment.  It is an XML (Extensible Markup
Language)-based protocol that has become the de-
facto standard for interaction between different
systems over the Internet.  If two parties want to
keep SOAP messages confidential while commu-
nicating over the Internet, they can use SSL (Secure
Socket Layer) 2)/TLS (Transport Layer Security)3)

to prevent malicious interception and alteration of
the data to be communicated.  SSL/TLS provides
a secure channel over which the sender’s data is
encrypted and decrypted by the receiver.  This is
an adequate solution when there are only two
parties in a communication.

However, SSL/TLS is not always adequate
for Web services.  For example, the SOAP specifi-
cations can define a SOAP intermediary between

Figure 1
Interception and alteration security problems with SOAP.

ReceiverSender

Intermediary

SOAP
message

SOAP
message

SOAP serverSOAP
client

Router/Proxy
/Gateway

Interception

Alteration

Figure 2
Repudiation security problems with SOAP.

Receiver (supplier)Sender (manufacturer)

SOAP
message

SOAP server
SOAP
client

I sent the customer a bill for the 
goods, but the customer denies 
ordering them. There is no way 
to prove I received the order.

What I ordered hasn’t arrived.
But the supplier denies 
receiving my order.  There’s no 
way to prove I sent the order.



216 FUJITSU Sci. Tech. J., 39,2,(December 2003)

T. Maeda et al.: Security and Reliability for Web Services

the sender and the receiver and such an interme-
diary is vulnerable to man-in-the-middle attacks.
Additionally, SOAP over HTTP and SOAP over
SSL/TLS do not provide a message delivery guar-
antee function or a non-repudiation function.  In
the following sections, we describe why SSL/TLS
does not provide Web services a suitable method
of security, delivery guarantee, or non-repudiation
functionality.

2.1 Security problems when a SOAP
intermediary exists
When two enterprises conduct electronic

commerce using Web services, there may be in-
termediaries between them that, for example,
attach trusted time information or information
authenticating that the sender has made a pay-
ment.  In such a business model, even if an
encryption technology such as SSL/TLS is used
on the communication line, it is not possible to
prevent interception and alteration by the inter-
mediary.

In SSL/TLS, the certification authority issues
certificates that certify a sender and a receiver.
Then, the sender and receiver exchange their cer-
tificates before starting communications.  Because
the certificates certify that the public keys used
by the sender and receiver belong, respectively,
to the sender and receiver, the authentication and
encryption performed using the corresponding pri-
vate keys guarantees that these private keys
belong to the sender and receiver.

If SSL/TLS authentication is used, the send-
er and receiver can be authenticated in the
Transport Layer.  This can prevent other parties
from disguising the sender and receiver and also
prevent interception and Alteration over the
Transport Layer.  However, if there is an inter-
mediary, the authentication is performed between
the sender and intermediary and between the
intermediary and receiver; therefore, direct
authentication between the sender and receiver
is impossible.  Moreover, the intermediary needs
to decrypt the data sent by the sender, so it is

impossible for the sender and receiver to prevent
interception and Alteration by the intermediary
by using SSL/TLS.

2.2 Disappearance and duplication of
SOAP messages
Web services usually use SOAP over HTTP.

However, they do not provide a message delivery
guarantee function by themselves.  Therefore, a
SOAP message and the receiver’s responses to the
message may disappear over the communication
path.  Additionally, if a response message disap-
pears, the sender may send the same SOAP
message again and the receiver may process it
twice.  Moreover, multiple messages that the send-
er regarded as lost may reach the receiver multiple
times.

These problems can become critical, for
example, when Web services are used in B2B
(business-to-business) applications.  At present,
when developers are working on an application
that requires a message delivery guarantee func-
tion, they have to implement it by themselves.

2.3 Repudiation
Repudiation occurs when a sender denies

sending a message or a receiver denies receiving
a message.  Repudiation is dangerous because it
can lead to a contract being rescinded unilateral-
ly and intentional duplication of orders.
Fortunately, repudiation can be prevented by sav-
ing the communication data in a verifiable
manner.

To prevent repudiation by using SSL/TLS,
the communication data and handshakes in the
Transport Layer must be saved.  However, because
communication data is encrypted using a shared
key agreed on by handshakes, strictly speaking,
it is impossible to verify whether the sender or
receiver created the saved communication data.

3. Solutions to SOAP security
problems on the Internet
This section introduces Web Services Secu-



217FUJITSU Sci. Tech. J., 39,2,(December 2003)

T. Maeda et al.: Security and Reliability for Web Services

rity, which is a solution to the problems described
in the previous section that is being discussed in
OASIS.  Then, we propose Fujitsu’s Web Services
Reliability, which ensures that a SOAP message
is delivered to the intended receiver without be-
ing duplicated.  Web Services Reliability also
ensures that when a sender sends a message and
the intended receiver receives it, the sender can-
not repudiate sending it and the receiver cannot
repudiate receiving it.

3.1 XML digital signatures
XML digital signatures4) ensure the integri-

ty of an XML document; that is, they ensure that
a signed XML document has been approved by the
signer and has not been altered since it was
signed.  The Web Services Security specification
defines a method that associates an XML digital
signature with a SOAP message.

Figure 3 shows the mechanism of an XML
digital signature, and Figure 4 shows a SOAP
message to which an XML digital signature has
been attached.

The steps for generating an XML digital sig-
nature are as follows:

Figure 4
Example of SOAP message with XML digital signature.

(01) < SOAP-ENV:Envelope xmlns:SOAP-ENV=”http://...” 
xmlns:wsu=”http://...”>

(02)  < SOAP-ENV:Header>
(03)   <wsse:Security xmlns:wsse="http://...">
(04)    <wsse:BinarySecurityToken 

wsu:Id=”cert” Type="wsse:X509v3"
EncodingType=”wsse:Base64Binary>>

(05)     MIIEZzCCA9CgAWIBAg......
(06)    </wsse:BinarySecurityToken>
(07)    <ds:Signature xmlns:ds=”http://...”>
(08)     <ds:SignedInfo>
(09)      <ds:CanonicalizationMethod 

Algorithm=”http://.../xml-exc-c14n#"”/>
(10)      <ds:SignatureMethod Algorithm=”http://...”/>
(11)      <ds:Reference URI=”#body”>
(12)       <ds:Transforms>
(13)        <ds:Transform Algorithm="http://.../xml-exc-c14n#"/>
(14)       </ds:Transforms>
(15)       <ds:DigestMethod Algorithm=”http://...”/>
(16)       <ds:DigestValue>LyLsF0Pi4wPU...</ds:DigestValue>
(17)      </ds:Reference>
(18)     </ds:SignedInfo>
(19)     <ds:SignatureValue>DJbchm5gK...</ds:SignatureValue>
(20)     <ds:KeyInfo>
(21)      <wsse:SecurityTokenReference>
(22)       <wsse:Reference URI=”#cert”/>
(23)      </wsse:SecurityTokenReference>
(24)     </ds:KeyInfo>
(25)    </ds:Signature>
(26)   </wsse:Security>
(27)  </ SOAP-ENV:Header>
(28)  <SOAP-ENV:Body wsu:Id=”body” xmlns:wsu=”http://...”>
(29)   ...
(30)  </SOAP-ENV:Body>
(31) </ SOAP-ENV:Envelope>

Figure 3
Mechanism of XML digital signatures.

Private key

Public key

SOAP message
with digital signatureData Data

Digital
signature

Digital
signature

Signed information
Transform and 

calculate digest value

Transform and 
calculate digest value

Decrypt signature
value

(decryption)

Calculate digest value
Digest value

of data
Digest value

of data
Digest value of 

signed information
Digest value of 

signed information

Compare Compare

Digest value of data

Signed information

Digest value of
signed information

Calculate signature
value

(encryption)

Calculate digest value



218 FUJITSU Sci. Tech. J., 39,2,(December 2003)

T. Maeda et al.: Security and Reliability for Web Services

1) For each data object, apply transformations
and calculate the digest value of the result-
ing value.  These results are described in a
<Reference> element.  In the example shown
in Figure 4, the SOAP Body element refer-
enced by the <Reference> element in line (11)
is digested after canonicalization.

2) Create the signed information, which consists
of the algorithm identifiers for the canoni-
calization and the calculation of the signature
and the <Reference> element(s).  The signed
information in Figure 4 is the <SignedInfo>
element between lines (08) and (18).

3) Canonicalize and calculate the digest value
of the signed information, and then calculate
the signature value by using the sender’s pri-
vate key.

4) Construct the digital signature, which
includes the signed information, the
 information about the sender’s private key,
and the signature value.  The digital signa-
ture in Figure 4 is the <Signature> element.

5) Attach the <Signature> to the <Security>
header defined in OASIS Web Services Se-
curity.  This header can contain security
information such as security tokens, a digi-
tal signature, and/or the details of an
encryption algorithm for the receiver.  In this
example, the <Security> header has a
<BinarySecurityToken> element that in-
cludes the signer’s X.509 certificate and is
referenced by <KeyInfo> in the <Signature>
element.
The steps for verifying the XML digital sig-

nature are as follows:
1) Extract the digital signature from the SOAP

message.
2) Validate the <Reference> element(s) in the

signed information using the following steps:
Step1: For each <Reference> element, obtain

the data object, apply transforma-
tions, and then calculate the digest
value of the resulting value.

Step2: Compare the generated digest value

with the digest value in <Reference>.
If there is any mismatch, validation
fails.

3) Canonicalize and calculate the digest value
of the signed information.

4) Compare the generated digest value with the
digest value obtained by decrypting the sig-
nature values with the public key included
in the sender’s X.509 certificate.
If the signed SOAP message has been altered,

the difference between the digest value in the sig-
nature and the value calculated by the receiver is
detected and the receiver recognizes that the
SOAP message has been altered.

Additionally, when the signer signs the SOAP
message, the signer uses information known only
to the signer (e.g., the X.509 certificate), or infor-
mation known only to the signer and the verifier
who verifies the XML digital signature (e.g., the
username and password).  Without this informa-
tion, an intermediary positioned between the
sender and the receiver of the signed SOAP mes-
sage will not be able to alter the digested value
and pretend to be the sender.

3.2 XML encryption
XML encryption5) ensures the confidentiali-

ty of an XML document.  The Web Services
Security specification defines a method that as-
sociates XML encryption elements with a SOAP
message.

Figure 5 shows the mechanism of the XML
encryption, and Figure 6 shows an example of
an encrypted SOAP message.

The steps for encrypting data are as follows:
1) Generate a secret key, if one has not already

been exchanged between the sender and re-
ceiver.

2) Encrypt the data using the secret key.
3) Construct an <EncryptedData> element that

includes the encryption algorithm and the en-
crypted data, and then replace the original
data with it.  In the example shown in
Figure 6, the contents of the SOAP Body have



219FUJITSU Sci. Tech. J., 39,2,(December 2003)

T. Maeda et al.: Security and Reliability for Web Services

been replaced with the <EncryptedData> el-
ement.

4) If required, encrypt the secret key by using
the receiver’s public key.

5) Construct an <EncryptedKey> element that
includes the encrypted secret key, and attach
it to the <Security> header.

The steps for decrypting the data are as fol-
lows:
1) Decrypt the secret key in the <Encrypted-

Key> element by using the receiver’s private
key, if this element exists.

2) Decrypt the encrypted data in the <Encrypt-
edData> element by using the secret key.

3) Replace the <EncryptedData> element with
the decrypted data
Only the possessor of the private key corre-

sponding to the certificate used by the encryptor
can decrypt this encrypted data.  Even if there
are intermediaries between the sender and the
receiver, they cannot decrypt the encrypted data
in the SOAP message without knowing the pri-
vate key.  Therefore, the sender and receiver can
keep part of the SOAP message confidential.  Ad-
ditionally, the sender can encrypt arbitrary
elements, contents of the elements, or attachment
data of the SOAP message and thereby keep one
part of the message confidential but reveal an-
other part to an intermediary.

3.3 Reliable messaging function
The reliable messaging function guarantees

delivery of SOAP messages without duplication.
This function has a non-repudiation function that
can prevent repudiation by the sender and the re-
ceiver.  The function also offers a bi-directional
delivery guarantee using SOAP between a client
and a server.  This function enables SOAP mes-
sages to be exchanged between clients and Web

Figure 6
Example of encrypted SOAP message.

(01) <SOAP-ENV:Envelope xmlns:SOAP-ENV=”http://...”>
(02)  <SOAP-ENV:Header>
(03)   <wsse:Security xmlns:wsse="http://...">
(04)    <enc:EncryptedKey xmlns:enc=”http://...”>
(05)     <enc:EncryptionMethod Algorithm=”http://...”/>
(06)     <ds:KeyInfo xmlns:ds=”http://...”>
(07)      <wsse:SecurityTokenReference>
(08)       <wsse:KeyIdentifier EncodingType=”wsse:Base64Binary”

ValueType=”wsse:X509v3”>
(09)        MIGfMa0GCSq...
(10)       </wsse:KeyIdentifier>
(11)      </wsse:SecurityTokenReference>
(12)     </ds:KeyInfo>
(13)     <enc:CipherData>
(14)      <enc:CipherValue>...</enc:CipherValue>
(15)     </enc:CIpherData>
(16)     <enc:ReferenceList>
(17)      <enc:DataReference URI=”#body”/>
(18)     </enc:ReferenceList>
(19)    </enc:EncryptedKey>
(20)   </wsse:Security>
(21)  </SOAP-ENV:Header>
(22)  <SOAP-ENV:Body>
(23)   <enc:EncryptedData Id=”body” 

xmlns:enc=”http://...” Type=”http://...”>
(24)    <enc:EncryptionMethod Algorithm=”http://...”>
(25)    <enc:CipherData>
(26)     <enc:CipherValue>...</enc:CipherValue>
(27)    </enc:CIpherData>
(28)   </enc:EncryptedData>
(29)  </SOAP-ENV:Body>
(30) </SOAP-ENV:Envelope>

Figure 5
Mechanism of XML encryption.

Encrypted SOAP message

Encrypt data

Secret key Secret key

Private keyPublic key

DataData

Decrypt keyEncrypt key

Decrypt data



220 FUJITSU Sci. Tech. J., 39,2,(December 2003)

T. Maeda et al.: Security and Reliability for Web Services

servers over a firewall with guaranteed reliability.
The reliable messaging function automatical-

ly adds headers to SOAP messages (Figure 7).
The additional SOAP headers indicate the

message type, message ID, sender ID, and receiv-
er ID.

The message ID is a unique string that
prevents duplication of messages.  Also, the
confirmation message sent by the receiver pre-
vents loss of messages.

When using the non-repudiation function, a
SOAP digital signature is added to the sending

message and confirmation message.  Figure 8
shows an example of the non-repudiation message
flow.  Because each message that is sent has a
digital signature, the SOAP messages stored by
the sender and receiver prevent repudiation of the
transmissions.  We call this function a PUSH
model protocol.

Our protocol also prescribes the PULL mod-
el protocol for transmitting a message to a client
from a server.  Figure 9 shows a PULL model
message flow example.  In the PULL model, the
client sends an inquiry message to the server and
then the server sends a response message to the
client.  The client sends a confirmation message
to the server as another HTTP request.

With this mechanism, even if a client does
not have a Web server or is behind a firewall, the
client can receive a message from a server reli-
ably.

4. Deploying and performing
security and the reliable
messaging function of Web
services on Interstage
Application Server
The security solutions described in the pre-

vious sections are implemented on Fujitsu’s
Interstage Application Server, which provides the
Web server function and Java execution
environments that support the latest standard

Figure 7
Example header added to SOAP message by reliable
messaging.

(01)   <SOAP-ENV:Envelope xmlns:SOAP-ENV="http://..">
(02)   <SOAP-ENV:Header>
(03)   <SSRS:MessageHeader 

xmlns:SSRS="http://xml.fujitsu.com/2001/ssrs/reliable">
(04)    <SSRS:From>
(05)     <SSRS:PartyId>urn:duns:123456789</SSRS:PartyId>
(06)    </SSRS:From>
(07)    <SSRS:To>
(08)     <SSRS:PartyId>urn:duns:123456789</SSRS:PartyId>
(09)    </SSRS:To>
(10)    <SSRS:Service>order</SSRS:Service>
(11)    <SSRS:MessageData>
(12)     <SSRS:MessageId>m012345projecta@jp.fujitsu.com

</SSRS:MessageId>
(13)     <SSRS:Timestamp>2001-02-15T11:12:12Z

</SSRS:Timestamp>
(14)   </SSRS:MessageData>
(15)   </SSRS:MessageHeader>

Figure 8
Message flow of reliable messaging and non-repudiation.

Server B

Reliable server

Storesautomatically

Inside of firewall

Reliable client

Client A

Stores 

automatically
SOAP

Message transmission 
from client to server

Proof to prevent
repudiation of receiver

Proof to prevent
repudiation of sender



221FUJITSU Sci. Tech. J., 39,2,(December 2003)

T. Maeda et al.: Security and Reliability for Web Services

technologies such as SOAP, UDDI (Universal De-
scription, Discovery, and Integration),6) and WSDL
(Web Service Definition Language).7)  In addition
to these functions, our SOAP security solutions
make it possible to quickly and easily make se-
cure and reliable SOAP communications over the
Internet.

On Interstage Application Server, the Web
services are implemented using JAX-RPC (a
Java™ API [Application Program Interface] for
XML-based Remote Procedure calls) and JAXM
(a Java™ API for XML messaging), which are the
standard APIs for implementing Web services in
a Java environment.  After the Web services have

been implemented, the SOAP signature and en-
cryption environment are set using the GUI
(Graphical User Interface) shown in Figure 10.
Figure 11 shows the GUI for the reliable mes-
saging function.  If the SOAP signature option is
turned on using the GUI, a component of the se-
curity function is invoked automatically and
attaches or verifies the security information at
execution time.  Because the implementer of the
Web services does not need to change the applica-
tion program to use the security function, the
implementer can easily and quickly use the lat-
est security solutions for the Web services.

The reliable messaging function for SOAP

Figure 11
GUI for setting the PUSH model environment.

Figure 10
GUI for setting the signature and encryption environment.

Figure 9
PULL model message flow.

Server B

Reliable server

Storesautomatically

Inside of firewall

Reliable client

Client A

Stores 

automatically

SOAP

SOAP

Message transmission 
from server to client

Proof to prevent
repudiation of sender

Proof to prevent
repudiation of receiver



222 FUJITSU Sci. Tech. J., 39,2,(December 2003)

T. Maeda et al.: Security and Reliability for Web Services

messages can be used on Fujitsu’s Interstage Ap-
plication Server by using the JAXM Profile API.
Therefore, by making some minor changes to a
messaging application created using the JAXM
API, we can turn it into a reliable messaging func-
tion.

5. SOAP security standards
Web services and Web service communica-

tions conducted using SOAP are exposed on the
Internet.  Since these Web services are indepen-
dent of the platform, operating system, and
programming language being used, it is impor-
tant to standardize the various technologies
associated with Web services in order to ensure
application interoperability.  In this section, we
describe the standardization activities of Web ser-
vice technologies.

5.1 The Web Services Security
specification
The Web Services Security Technical Commit-

tee (WSS TC) of OASIS is currently discussing a
specification called Web Services Security.  Fujitsu
is participating in the standardization activity of
this specification as a member of this technical
committee.

Web Services Security provides mechanisms
that prevent various threats in the SOAP mes-
sage layer.  It mainly consist of the following
technologies:
1) Security tokens
2) Digital signatures
3) Encryption
4) Other security considerations

A security token represents a collection of
claims, which are statements that a client makes
and describe other security mechanisms, for
example, X.509 certificates, Kerberos tickets,
usernames, and passwords.

The digital signature ensures the integrity
of a SOAP message so it can be verified that it
was sent by the possessor of the security token,
and the encryption keeps the SOAP message con-

fidential.  Additionally, Web Services Security pro-
vides mechanisms that prevent replay attacks
using timestamps or nonces.

5.2 SOAP reliable messaging
Fujitsu, Hitachi, NEC, Oracle, Sonic Soft-

ware, and Sun Microsystems have jointly proposed
the reliable messaging protocol described in this
paper to OASIS to promote WS-Reliability (Web
Services Reliability).8)

IBM and other companies have recently pub-
lished another reliable messaging protocol called
WS-ReliableMessaging.9)  However, it has not been
standardized yet.

These two specifications are expected to be
unified into a single specification in the near fu-
ture.

6. Conclusions
Web services are expected to become an

important information technology.  There are,
however, several security problems when Web ser-
vices are used on the Internet, for example,
disguises and repudiation.

In this paper, we described some advanced
technologies for solving these problems, for exam-
ple, XML digital signatures and XML encryption.
We also showed how Fujitsu’s Interstage Applica-
tion Server employs these technologies.  In the
future, we expect that the security provided by
these technologies will encourage businesses to
make extensive use of Web services.

It is important to establish standards for
these new technologies.  Fujitsu has been contrib-
uting to the activities of OASIS, for example, we
have proposed the Web Services Reliability spec-
ification, and we will continue to make such
contributions.

References
1) Simple Object Access Protocol (SOAP) 1.1,

W3C Notes, May 2002.
http://www.w3.org/TR/SOAP/

2) The SSL Protocol Version 3.0, November



223FUJITSU Sci. Tech. J., 39,2,(December 2003)

T. Maeda et al.: Security and Reliability for Web Services

1996.
http://wp.netscape.com/eng/ssl3/draft302.txt

3) The TLS Protocol Version 1.0, January 1999,
IETF standard.
http://www.ietf.org/rfc/rfc2246.txt

4) XML-Signature Syntax and Processing, W3C
Recommendations, February 2002.
http://www.w3.org/TR/xmldsig-core/

5) XML Encryption Syntax and Processing,
W3C Recommendations, December 2002.
http://www.w3.org/TR/xmlenc-core/

6) UDDI Version 2 Specifications / UDDI Ver-
sion 3 Specification OASIS standards.

7) Web Services Description Language (WSDL)
Version 1.2, W3C Working Draft, July 2002.
http://www.w3.org/TR/wsdl12/

8) Colleen Evans, Dave Chappell, Doug Bunting,
George Tharakan, Hisashi Shimamura,
Jacques Durand, Jeff Mischkinsky, Katsutoshi
Nihei, Kazunori Iwasa, Martin Chapman,
Masayoshi Shimamura, Nicholas Kassem,
Nobuyuki Yamamoto, Sunil Kunisetty,
Tetsuya Hashimoto, Tom Rutt, and Yoshihide
Nomura: Web Services Reliability (WS-
Reliability) Ver1.0, January 2003.
http://xml.fujitsu.com/en/about/WS-
ReliabilityV1.0.pdf

9) Specification: Web Services Reliable Messag-
ing Protocol (WS-ReliableMessaging), March
2003.
http://www-106.ibm.com/developerworks/
webservices/library/ws-rm/

Takayuki Maeda received the B.E. de-
gree in Mechanical Engineering and the
M.S. degree in Information Sciences
from Tohoku University, Sendai, Japan
in 1996 and 1998, respectively.  He joined
Fujitsu Ltd., Kawasaki, Japan in 1998,
where he was engaged in development
of Global Server until 2001.  Since then,
he has been engaged in research and
development of middleware for Web ser-
vices.

 

Yoshihide Nomura received the B.E.
and M.E. degrees in Engineering from
Aoyama Gakuin University, Tokyo,
Japan in 1996 and 1998, respectively.
He joined Fujitsu Laboratories Ltd., Ka-
wasaki, Japan in 1998, where he has
been engaged in research and devel-
opment of Web application frameworks
and middleware.  He is a member of the
Information Processing Society of Ja-
pan (IPSJ).

 

Hirotaka Hara received the B.S. degree
in Information Science in 1984 and the
Ph.D. in Information Engineering in
1992 from the University of Tokyo,
Tokyo, Japan.  He joined Fujitsu Labo-
ratories Ltd., Kawasaki, Japan in 1984,
where he has been engaged in research
and development of artificial intelligence
and distributed enterprise systems.  He
is a member of the IPSJ.  He received
the IPSJ Convention Award and the

JSAI Annual Conference Award in 1993.

 


