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Integration of High-Performance
Transistors, High-Density SRAMs, and
10-level Copper Interconnects into a
90 nm CMOS Technology

This paper presents a 40 nm-gate-length transistor, an ultra-high-density 6T SRAM cell,
10-level Cu interconnects, and very-low-k (VLK) dielectrics for high-performance mi-
croprocessor applications.  The key process features are 1) 193 nm lithography with a
phase shift mask (PSM) and optical proximity correction (OPC) that enables us to fab-
ricate a 40 nm-long gate and a sub-1 µm2 SRAM cell, 2) a unique transistor feature
called a sidewall-notched gate that enables optimal pocket implant placement and
suppresses variations of the notch width much better than a poly-notched gate struc-
ture, 3) a 1.1 nm-thick nitrided oxide to achieve a high drive current and a reduced
thermal budget to suppress boron penetration, and 4) an SiC-capped Cu/SiLKTM struc-
ture in 0.28 µm-pitch Metal 1-4 layers that realizes a keff of 3.0.1)

v Satoshi Nakai     v Tsutomu Hosoda     v Yoshihiro Takao
(Manuscript received December 13, 2002)

1. Introduction
As CMOS technology is scaled down to the

90 nm generation, the full integration of
high-performance devices, multilevel Cu intercon-
nects with low-k dielectrics, and high-density
SRAMs will become a major challenge.  Transis-
tors having 65 to 45 nm gate lengths for 90 nm
technologies for high-performance applications
have been reported,2)-9) and we have achieved
40 nm-gate-length transistors for a 90 nm tech-
nology.  Moreover, we have fabricated 10 levels of
Cu interconnects, which is the largest number of
Cu layers among reported technologies, and for
intermediate layers we have applied an
SiC-capped Cu/SiLKTM structure which realizes a
keff of 3.0.

2. FEOL integration
By using a notched gate, we can achieve an

optimal pocket implant placement, and in partic-
ular, suppress the channel impurity
concentration.10),11) However, variations in the

notch width of the poly-notched gate (convention-
al notched gate) are difficult to control so that they
match the manufacturability criteria.  We have
therefore developed a new notched gate structure
called the sidewall-notched gate.  The sidewall-
notched gate is formed as shown in Figure 1.
After gate formation, a thin CVD-oxide and
CVD-nitride are deposited (Step A).  Then, the
nitride is dry etched (Step B) and the oxide is wet
etched (Step C).  Figure 2 shows a cross-sectional
TEM photograph of the sidewall-notched gate.
This method provides good controllability of the
notch width because it is defined by the thickness-
es of the CVD films.  Figures 3 (a) and (b) show
the threshold voltage as a function of gate length
for sidewall-notched transistors and poly-notched
transistors, respectively.  These figures clearly
demonstrate that the sidewall-notched gate struc-
ture suppresses variations in the threshold voltage
better than the poly-notched structure.  Figure 4
shows the threshold voltage as a function of gate
length for sidewall-notched transistors and con-
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ventional (notchless) transistors.  Because of the
advantages that can be gained by using a notched
gate, we propose a 40 nm transistor with a
sidewall-notched structure.

We use a 1.1 nm-thick, nitrided oxide for the
gate insulator to achieve a high drive current.
This particular nitrided oxide was selected from
among other experimental ones we developed be-
cause it had the best nitrogen profile.  Figure 5
shows the nitrogen profiles of this nitrided oxide

Figure 1
Sidewall-notched transistor fabrication.
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Figure 2
Cross-sectional TEM photograph of  sidewall-notched tran-
sistor.
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Figure 3
Threshold voltage as a function of gate length (pMOS).  Sidewall-notched gate structure suppresses variations of thresh-
old voltage.
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(Type B) and a typical example (Type A) of the
other experimental nitrided oxides.  Type B is
much better than Type A in terms of nMOS driv-
ability, as is clearly shown in Figure 6.  Also,
although Type B increases the boron penetration
in pMOS, we suppressed the penetration by using
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Figure 6
Ioff-Ion plots for nMOS when supply voltage is 1.0 V.  See
Figure 5 for Type A and B.

1E-09

1E-08

1E-07

1E-06

1E-05

1E-04

600 700 800 900 1000 1100 1200

nMOS

Type A

Type B

O
ff 

cu
rr

en
t (

A
/µ

m
)

Drain current (µA/µm)

Figure 7
Threshold voltage distributions.  At the higher tempera-
ture anneal, threshold voltage varies for the boron pen-
etration.
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Figure 5
Nitrogen profile in nitrided oxide and substrate.
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Figure 4
Improved roll-off characteristics of transistors with
sidewall-notched gate electrode.
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a lower temperature activation anneal.  Figure 7
shows the threshold voltage distributions under
the annealing conditions of this technology and

those of the 130 nm-node technology.12)  Figure 8
shows Ioff-Ion plots for a supply voltage of 1.0 V.
At an off-current of 100 nA/µm, the on-current is
890 µA/µm for nMOS and 380 µA/µm for pMOS.
At an off-current of 300 nA/µm, the on-current is
960 µA/µm for nMOS and 435 µA/µm for pMOS.
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A 40 nm gate length is achieved with 193 nm
lithography.  In addition, by using OPC and local
interconnects (LIs), we have fabricated a
sub-1 µm2 SRAM cell (0.999 µm2).  Figures 9 (a)
and (b) show SEM photographs of an array of
these SRAM cells.

3. BEOL integration
The interconnect scheme consists of four

layers of Cu/SiLKTM (k = 2.65), four layers of
Cu/SiOC, two layers of Cu/USG, and an Al top lay-
er with a W plug (Figure 10).  The design rules
and inter-level dielectrics of this scheme are sum-
marized in Table 1.  We optimized the dielectric

Figure 8
Ioff-Ion plots when supply voltage is 1.0 V.
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Table 1
Key design rules.

stacks of each layer to achieve excellent electrical
properties, mechanical strength, and reliability.

For Metal 1-4 (intermediate layers), a dielec-
tric stack consisting of SiLKTM with an SiC barrier
and an SiO2/SiC dual hard mask are used in a
dual damascene scheme.13)  The line pattern is
etched in the SiO2 hard mask using ArF resist.
The hole pattern is made by an ArF tri-level re-
sist process to pre-planarize the trench hard-mask
steps.  Rule-based OPC and simulation-based OPC
are adopted for the line and via lithography, re-
spectively (Figure 11).   SiLKTM trenches are
etched using patterned SiO2 hard masks.  Cu elec-
troplating and low-pressure Cu CMP is tuned to
prevent dishing and erosion, as shown in
Figure 12.  Dishing and erosion are both con-
trolled within 30 nm.  The 4 M via chain resistance

Figure 9
SEM photographs of high-density SRAM cell array.
Cell size is 0.9 × 1.11 µm2 (< 1 µm2).

(a) After sidewall etch (b) After local interconnect etch

Figure 10
SEM image of 11 layers of interconnects.
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Figure 11
Effects of OPC in via patterning.  Via shape is corrected
from oval to circular by simulation-based OPC.
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Figure 13
Via chain resistance of intermediate layer.
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Figure 14
Line pattern resist at top of via.

Poisoned Normal

distribution is ±9%, and the yield is 100%, as
shown in Figure 13.  This structure provides a
keff of 3.0.

For Metal 5-8 (semi-global layers), a dielec-
tric stack consisting of SiOC is used in a dual
damascene scheme.  Pre-planarization of the di-
electric by CMP can be eliminated because of the
low roughness at the lower layer.  Vias and lines
are produced by KrF lithography.  The critical is-
sue in integration is resist poisoning caused by
N-H species.  To prevent such poisoning, a newly
developed wet cleaning scheme is applied
(Figure 14).  Metallization and Cu CMP are the
same as for intermediate layers.  The 1.35 M via

chain resistance distribution is ±13%, and the
yield is 100% (Figure 15).

For Metal 9-10 (global layers), a dielectric
stack consisting of ARL-SiN and USG with an SiC
barrier and ESL are used in a dual damascene
scheme.  The 270 K via chain resistance distribu-
tion is ±8%, and the yield is 100% (Figure 16).
We use the Al top metal layer for bonding pads,
bump pads, fuses, and wiring as an interface lay-
er for realizing SIPs (Systems In a Package).  One
of the main issues in low-k, integrated
multilevel metallization is the mechanical
strength during assembly processes such as dic-

Figure 12
Cu electroplating structure without dishing and erosion.

0.14 µm
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Figure 17
Results of wire bonding shear test.
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ing, wire bonding, and bump connection of flip-
chip packages.  Generally, low-k materials have a
poor mechanical strength compared to USG and
FSG.  Figure 17 shows the results of wire bond-
ing shear tests for samples with and without
global layers.  The figure shows that the USG glo-

Figure 15
Via chain resistance of semi-global layer.
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Figure 16
Via chain resistance of global layer.
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bal layer and Al wiring layer reduce the damage
to the low-k layers.

To investigate the reliability of 12-layer in-
terconnects (LI, 10-level Cu, and top Al), we
performed a high-temperature storage (HTS) test
and EM test on a via chain structure.  In the HTS,
as shown in Figure 18, there were no failures in
any of the narrow-line or wide-line linked via layers
after storage for 1000 hours at 200°C.  Figure 19
shows some EM results for the intermediate lay-
er via chain.  From measurements, we obtained
an activation energy of 0.81 eV and a current co-
efficient of 1.33.  The calculated maximum current
density is over 5E5 A/cm2 at 110°C.

4. Conclusion
We have developed a high-performance,

90 nm CMOS technology.  By using 193 nm lithog-
raphy with a PSM and OPC, we have fabricated a
40 nm-long gate and a 0.999 µm2 SRAM cell.
A transistor with a sidewall-notched gate sup-
presses variations in threshold voltage much
better than a poly-notched one.  At an off-current
of 100 nA/µm, the on-current is 890 µA/µm for
nMOS and 380 µA/µm for pMOS.  At an off-cur-
rent of 300 nA/µm, the on-current is 960 µA/µm
for nMOS and 435 µA/µm for pMOS.  We realized
a Cu/SiLKTM structure using 193 nm lithography.
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Figure 19
EM results of M1-M2 via chain.
(Tj = 275°C, J = 2.1E6 A/cm2)
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By using SiC as a cap film, we obtained a keff of
3.0.  We also realized highly reliable, 10-level
Cu interconnects.
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(b) HTS test results of M5-M6 via chain.
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