
42 FUJITSU Sci. Tech. J.,37,1,pp.42-49(June 2001)

UDC 621.395.31:681.3

High-Performance IP Service Node with
Layer 4 to 7 Packet Processing Features

VTsuneo Katsuyama VAkira Hakata VMasafumi Katoh VAkira Takeyama
(Manuscript received February 27, 2001)

In this paper, we propose an IP service node that provides sophisticated, high-perfor-
mance IP packet control features. The proposed node processes not only layer 3 IP
packets but also those of layers 4 to 7 in the OSI (Open Systems Interconnection)
reference model. It can control application-oriented network services such as URL
(Uniform Resource Locaters) based server load balancing, contents routing, and end-
to-end QoS (Quality of Service) management, and it will play an important role in cre-
ating a new infrastructure in the mature IP age. An IP service node architecture closely
connected to a high-speed packet processing engine and software-based server func-
tions within the IP service node itself are discussed. An experimental system has
been developed, and the proposed architecture was evaluated with a server load bal-
ancing application. We confirmed that the IP packet control functions work well and
that the transfer speed is constant at about 800 k packets/s, which is about 10 times
that of a conventional server based on a general processor.

1. Introduction
Recently, the Internet traffic has been grow-

ing at a tremendous pace and various application
services provided on the Internet such as WWW
(World Wide Web) databases, mobile computing,
and electronic commerce (EC) are becoming in-
dispensable in our everyday life. However, to keep
up with the growing demand, the future Internet
must have a higher performance and must have a
sophisticated IP packet control functionality.

In this paper, we propose a new IP service
node that processes not only layer 3 packet data
but also higher layer information such as the pack-
et data of layers 4 to 7 in the OSI reference model.

Various studies indicate that optical trans-
mission technology has been growing successfully
and that transmission capacity is increasing ac-
cording to Guilder’s law,1) with a doubling in
performance every six months. Semiconductor
technology, on the other hand, continues to im-
prove according to Moore’s law, with a doubling

in performance only every 18 months. Because
the performance of an IP service node greatly de-
pends on semiconductor technology, this 6-month/
18-month difference in growth rates may cause
the IP service nodes to become network bottle-
necks. Furthermore, because IP service node
functions will often be added, changed, and inte-
grated according to the customer’s needs, a new
IP service node architecture to realize high-speed
packet data processing and flexible implementa-
tion is necessary. We believe that the network
processor, which processes IP packet data
efficiently by using micro-code, will be a key com-
ponent of future IP service nodes. The network
processor is a programmable semiconductor de-
vice designed for network applications such as IP
packet forwarding, routing, and higher layer pro-
cessing, including security features.

In this paper, we summarize the require-
ments of the IP service node and discuss the IP
service node development policy. Then, we pro-

43FUJITSU Sci. Tech. J.,37, 1,(June 2001)

T. Katsuyama et al.: High-Performance IP Service Node with Layer 4 to 7 Packet Processing Features

pose a new system architecture and high-speed
packet processing mechanism. Finally, we de-
scribe an experimental system that uses network
processors and evaluate its performance in a serv-
er load-balancing application.

2. Network services and the IP
service node

2.1 Direction of network service
enhancement
Current router networks only provide an IP

packet transfer capability and convey the user
packets by using IP address information. How-
ever, to execute application services more
efficiently, we think that the future network will
need to be controlled using a higher-level, for ex-
ample, by using application-oriented information.
Figure 1 shows the example network control task
of balancing multiple server loads. The same con-
tents are stored in multiple servers, and the loads
of the servers specified in the URL information
are managed so they are equal. The session in-
formation between individual users and servers
is also managed, and the packets from specific
users are transmitted to specific servers during
the session. The above-mentioned network func-
tions can control the network servers efficiently
and can smoothly execute application service pro-
cedures such as electronic commerce (EC). For
the load balancing service, higher-level informa-
tion such as XML (eXtensible Markup Language)

is expected to be useful.

2.2 Requirements of the IP service node
Before discussing the requirements of the IP

service node, we will give some background infor-
mation about packet processing functions and the
transfer flow of network devices. Generally speak-
ing, there are three types of IP services:
1) Packet transit services (type-1)

All of the incoming packets are transferred
to the outgoing ports without IP termination. A
typical example is a load balancing service.
2) Packet relay services (type-2)

As with a packet transit service, all of the
packets are transferred to the outgoing ports, but
the connections are terminated in the IP layer.
Typical examples of this type of service are a proxy
server and firewall server.
3) Connection termination services (type-3)

Packet flows are terminated in the TCP lay-
er, and not all of the incoming packets go out. A
typical example is a Web server.

IP service nodes provide type-1 and type-2
services. These nodes play a key role in the IP
network because many packets pass through
them. Therefore, the loads of the IP service nodes
become very high. Considering that these servic-
es require complex packet processing, rather than
layer 3 packet processing, there is a strong possi-
bility that the IP service nodes will become a
serious bottleneck in the network. Therefore, it
is very important to improve their performance,
and this requires the use of high-speed transit/
relay packet processing.

Another important requirement is to main-
tain the current OS interface so that servers can
be used in an open-standard environment; there-
fore, when we designed the new IP service node,
we decided to make a new functional configura-
tion without changing the OS kernel.

2.3 Development policy
Figure 2 shows the general packet process-

ing functions. The IP additional function unit

User 1
IP network

User 2

User 3

Application servers

IP service node Server 1

Server 2

Server 3

User 4

User 5

User 6

Figure 1
Network control example: balancing multiple server loads.

44 FUJITSU Sci. Tech. J.,37, 1,(June 2001)

T. Katsuyama et al.: High-Performance IP Service Node with Layer 4 to 7 Packet Processing Features

between the device driver and TCP/IP unit per-
forms IP header conversion and TCP connection
status management without IP protocol termina-
tion. The hardware-based packet engine below
the driver layer provides the network interface.
This functional block, which plays an essential role
in realizing high performance, is described below.

The IP header address translation of each
packet is a basic function of the load balancing
service. This function is performed by the IP ad-
ditional function unit. A comparatively simple
packet header translation and connection status
control for all packets is executed almost in the
same way as for other services in the IP addition
module. Therefore, a basic requirement is to en-
sure that the IP additional unit has a high
performance. To achieve this, we concentrate on
improving the performance of the IP additional
unit through hardware assistance; that is, we de-
cided to off-load the function. If the unit can be
constructed with a hardware packet engine, a big
increase in performance can be expected. When
some of the packets cannot be processed by the
packet engine, we expect to obtain a high-
performance by processing some of the packets
passing through a TCP connection by hardware
assistance. This method is called the “short-cut
method” and is described in Section 3.2.

There are three ways to improve perfor-
mance.2)-4) The first one, the most common method,
uses a co-processor for exclusive packet level pro-

cessing. This method enables easy and flexible
implementation of complex functions, but because
of the software processing it involves and the rel-
atively slow growth in computing power that can
be expected according Moore’s law, it is too slow.
The second method uses ASICs that are specially
designed for use in an IP service node. This meth-
od can provide a high performance, but it is too
inflexible. The last method uses a network pro-
cessor. We believe that the network processor
approach can provide the performance and flexi-
bility needed for new service functions, because
its packet-processing functions are written in soft-
ware and can be implemented using hardware
assistance.

3. System architecture
3.1 Function configuration

Figure 3 shows the proposed functional con-
figuration. The packet engine performs packet
header translation and management of the TCP
status and provides the increase in processing
speed. This translation and management is
achieved by the network processor. The addition-
al function unit in Figure 3 performs the
remaining complex functions such as the analy-
sis of XML tag information and URL addresses
and also provides some of the functions needed to

Application

TCP/IP

O
S

 kernel

IP additional
function unit

Device driver

Packet engine

Figure 2
Packet processing functions in proposed IP service node.

Application

Library
Open APl

System call
(Open)

sockfs

DLPI : Data link provider interface
W-TCP : Wireless profiled TCP
NAT : Network address translation
NIC : Network interface card

◊Logical interface same
 as universal NIC
◊High-speed switching
 for network during
 blockages
◊Delivery of high-speed
 data

◊Shortcut
 process
 (XML tag,url
 address analysis,
 etc.)

◊Arbitration of
 resource access

◊Header translation
 (NAT, etc.)
◊TCP status analysis
◊Connection detection
◊Detection of specific
 service condition
◊Packet transfer control
◊Counting

Additional
function unit

Control driver

ioctl()
TCP

IP

DLPI

Stream module

Device driver

Packet engine

W-TCP

Figure 3
Functional configuration.

45FUJITSU Sci. Tech. J.,37, 1,(June 2001)

T. Katsuyama et al.: High-Performance IP Service Node with Layer 4 to 7 Packet Processing Features

control a large storage.
In the case of the type-1 services described

in Section 2.2, all packets can be processed by the
packet engine block. On the other hand, in a
type-2 service, some of the packets are transferred
to the additional function unit from the packet
engine and conventionally processed by software-
based processing. Once the additional unit
analyzes the data in the packets, the succeeding
packets are processed solely by the packet engine,
because they only contain user data.

3.2 Packet processing mechanism
Figure 4 shows the functional architecture

and data flow of the proposed IP service node pack-
et engine. The main task of the packet engine is
fast packet transfer with packet classification, ad-
dress translations, and buffer scheduling. To
enhance the performance of the IP service node,
the packet engine performs a relatively simple
protocol, for example, layer 3 or layer 4, without
using forwarding server processors. The server
processors above the packet engine in Figure 3
perform relatively complex tasks that cannot be
performed by the packet engine alone.

As shown in Figure 4, the IP service node
has two tables: a policy table and a session table.
The policy table contains information used to de-
termine the packet handling methods such as the
filtering rule and traffic control rule for load bal-
ancing. If the packet engine was able to input

rules in the policy table, there could be an incon-
sistency in the total system. Therefore, the packet
engine can reference the policy table but not write
to it and the rules in the policy table are written
by the server processors. The session table con-
tains the session identifier, session status, and
processes required to manage sessions, for exam-
ple, address translation.

We will now describe the functional blocks
and packet flow in the packet engine. After check-
ing its check sum value for validation, the session
of an incoming packet is identified. That is, layer
3 and layer 4 header information such as the
source/destination IP addresses and source/des-
tination port numbers is used as a key to identify
the session. Then, the session table is checked to
see if the session has been registered or is a new
one. If the session is new one, the policy table is
accessed to determine how to handle the new ses-
sion. Then, the selected process identifier is
registered in the session table, unless the session
has already been registered in the session table.
If the process identifier for the session has already
been registered, it is not necessary to pass the
packet to the handling classification block.

After it has been determined how to handle
the packet, it is forwarded to the packet process-
ing block, where practical processes such as
address translation and encapsulation are per-
formed. If it is necessary to redirect the packet to
the server processor, for example, at the begin-
ning of an HTTP session, the packet is forwarded
to the protocol processing block in the server pro-
cessor, for example, to analyze the URL address.
If the packet can be handled in the packet engine,
for example, when the packet is for address
translation, encapsulation, filtering, or the deter-
mination of the destination for load balancing, the
packet is processed in this functional block with-
out accessing the server processors. The final
functional block is the outgoing block, where frag-
mentation, CRC, and scheduling are done.

The load of the server processors can be re-
duced by introducing the packet engine, which,

Server processors
Policy setup

Policy table

Session table

Path-through

Packet engine
(Network processor)

Protocol
processing

Middleware
services

 Incoming
◊Header
 analysis

 Session
 recognition
◊Detection/
 Release
◊State
 monitoring

Packet process
◊Address
 translation
◊Encapsulation

 Outgoing
◊Fragmen-
 tation
◊CRC
◊Scheduling

 Handling
 classification
◊Decision based
 on policy
◊Session
 registration

Figure 4
Functional blocks and data flow of packet engine.

46 FUJITSU Sci. Tech. J.,37, 1,(June 2001)

T. Katsuyama et al.: High-Performance IP Service Node with Layer 4 to 7 Packet Processing Features

as described above, can handle all lower layer pro-
tocol procedures. Figure 5 shows a connection
level judgment processing called “shortcut process-
ing.” In URL load balancing, for example, after
the network server receives a required URL ad-
dress and analyzes it, the Web server address to
which the bunch of packets should be sent is de-
termined. The analysis is done in the IP additional
function unit of the server processor. As a result,
the software on the server processor does not par-
ticipate any more. Usually, in Web services, about
20% of the packets are processed by the software
unit, so a performance improvement of several
times can be expected from load balancing. In
general, the same method can be applied in proxy
services, where the IP service node terminates the
session instead of the IP host or application serv-
er. That is, after the server processor determines
how to process the session, the packets, which con-
sist of TCP connections, are handled in the packet
engine.

4. Evaluation
4.1 Experimental system

To evaluate the system architecture we pro-
pose, we developed an experimental system based
on a UNIX server. The PCI bus connects the serv-
er processors with the packet engine, which is
realized by a network processor. The experimen-

tal IP service node system has two 1-Gigabit Eth-
ernet interfaces.

We have built a network using the experi-
mental IP service node system in order to evaluate
how our architecture improves the performance.
We evaluated the performance improvement in
two types of services: the packet transit services
and packet relay services described in Section 2.2.
We assumed that the IP service node was being
used to perform the typical task of balancing the
load among multiple application servers (Figure 6).
The client accesses the Web servers using a sin-
gle IP address assigned to the IP service node. The
IP service node recognizes the load of each appli-
cation server to distribute traffic equally. The IP
service node uses a WRR (Weighted Round Rob-
in) algorithm for buffer scheduling. When a new
session is established, the IP service node selects
an application server and sets the address trans-
lation from the designated IP address and the IP
address for the selected application server. Next,
the packets of the session are forwarded based on
the address translation by the packet engine with-
out processing in the server processor of the IP
service node. Therefore, the dominant factor in
the packet forwarding performance is the perfor-
mance of the network processor’s packet engine
and we can expect a significant improvement in
this performance area.

Distributing packet
by recognition of
session / upper
layers

Client can access by
indicating address
10.1.1.1

IP service node Application servers

Client

IP address:10.1.1.1

Web server
IP address:1.1.1.10

HTTP session

HTTP session

HTTP se
ssi

on

Web server
IP address:1.1.1.11

Web server
IP address:1.1.1.12

IP middleware

Packet engine

Network server software

Figure 6
Performance evaluation system.

Figure 5
Shortcut method (for TCP).

Server processor Client IP service node
Application

server

End
Proxy

TCP shortcut

(Ratio of number of packets
in a and s =1 : 5)

Packet engine

End

Typical sequence of TCP
shortcut (HTTP)

SYN

SYN

SYN-ACK

SYN-ACK

ACK

ACKACK

FIN-ACKFIN-ACK

ACK

ACK

ACKACK

FINFIN

ACK

GET

GET

DATA

DATA
DATA

DATA

DATA

DATA

a

s

TCP/IP

proxy a
P

acket E
ngine s

47FUJITSU Sci. Tech. J.,37, 1,(June 2001)

T. Katsuyama et al.: High-Performance IP Service Node with Layer 4 to 7 Packet Processing Features

4.2 Performance evaluation
The packet forwarding evaluations for pack-

et transit services are shown in Figures 7 and 8.
These figures show the packet forwarding perfor-
mance of a single interface whose throughput is
1 G bits/s during a session when packets are load-
ed by the packet generator. Note that these are
not the performance figures during the session es-

tablishment phase, when other processes such as
looking up the policy table are included in packet
forwarding. In Figure 7, when the packet is long,
the throughput is high. For example, when the
packet length is 128 bytes (1024 bits), the through-
put is 800 M bits/s, which means that the packet
forwarding capability of the packet engine is con-
stant at about 780 k packets/s. This performance
is about 10 times better than the performance
without a packet engine, when all packets are
processed by software on the UNIX server’s four
300 MHz SPARC64 CPUs. This result confirms
that the proposed architecture improves the per-
formance by reducing the load of the server
processors. The upper bound of the throughput
is 1 G bits/s due to the bit-rate limitation of the
interface. In Figure 8, when the input load is high,
the throughput is also high. However, if the packet
is very short, the throughput is limited. For ex-
ample, when the packet length is 128 bytes, the
throughput is limited to 800 M bits/s. This is due
to the performance limit (780 k packets/s) of the
network processor packet engine.

Figure 9 shows the evaluation results for
session processing in a proxy type service. We
compared the number of sessions that the IP
service node can handle in two cases. In the first
case, all processes were done by software on a serv-
er processor. In the second case, the packet engine
was used after the server processor decided how
to process the session. The evaluated application
was a request and response by HTTP. The num-

500
400
300
200
100

0
0 50 150100 200 250 300

Se
ss

io
n

le
ve

l p
er

fo
rm

an
ce

 (s
es

si
on

/s
)

Number of packets

Using packet engine
All processes by software

Figure 9
Evaluation of session-level performance in proxy services.

Throughput (Mb/s)

Packet length (bytes)

1000

800

600

400

200

0

0 40 80 120 160 190 210

Figure 7
Performance evaluation result (1).

Throughput (Mb/s)

Input load (Mb/s)

1000
Packet length

64 bytes

128 bytes

518 bytes

800

600

400

200

0

0 200 400 600 800 1000

Figure 8
Performance evaluation result (2).

48 FUJITSU Sci. Tech. J.,37, 1,(June 2001)

T. Katsuyama et al.: High-Performance IP Service Node with Layer 4 to 7 Packet Processing Features

ber of packets from the application server to the
client varied from 1 to 300. When all processing
was done by software, the number of sessions fell
as the number of packets increased. For exam-
ple, when the number of packets was 200, the
number of sessions was less than 10% of the num-
ber when there was only one packet. However,
when the packet engine was used, the number of
sessions the IP service node could handle was
roughly constant because the load on the server
processor did not change. That is, when the num-
ber of packets was very small, introducing the
packet engine made little difference to the ses-
sion performance because the load on the server
processor remained basically the same. Howev-
er, when the number of packets was large, the
packet engine greatly improved the session per-
formance because it significantly reduced the load
on the server processors.

5. Conclusion
An IP service node that processes not only

layer 3 packet data but also the packet data of
layers 4 to 7 in the OSI reference model will be a
key component for controlling end-to-end user-
requested services. The key technologies here are
high-speed IP processing mechanisms and
software-based service control functions. We pro-
posed an IP service node architecture that closely
connects a high-speed packet processing engine
and software-based server functions within the
IP service node to improve system performance.

In the proposed architecture, the user packets are
forwarded to a software-based server processor at
session establishment to analyze the service re-
quirements and the remaining packets of the
session are handled in the same way as in high-
speed IP processing.

To evaluate our IP service node architecture,
we developed an experimental system based on
UNIX servers connected to a network processor-
based packet engine via the server’s PCI busses.
We confirmed that the packet level and the con-
nection level functions performed well. We also
confirmed that the transfer capability of the pack-
et engine was constant at about 800 k packets/s,
which is about 10 times the capability of a con-
ventional server based on a general processor.

References
1) G. George: Telecosm? How Infinite Band-

width will Revolutionize our World. 2000,
Free Press.

2) P. Gupta, S. Lin, and N. McKeown: Routing
lookups in hardware at memory access
speeds. Proc. of IEEE INFOCOM’98, March
1998.

3) S. Keshav and R. Sharma: Issues and trends
in router design. IEEE Commun. Magazine,
pp.144-151 (May 1998).

4) A. K. Parekh and R. G. Gallager: A general-
ized processor sharing approach to flow
control the single node case. Proc. of IEEE
INFOCOM’92, pp.915-924, March 1992.

49FUJITSU Sci. Tech. J.,37, 1,(June 2001)

T. Katsuyama et al.: High-Performance IP Service Node with Layer 4 to 7 Packet Processing Features

Tsuneo Katsuyama received the B.S.
and M.S. degrees in Instrumentation
Engineering from Keio University,
Yokohama, Japan in 1974 and
1976, respectively. He joined Fujitsu
Laboratories Ltd., Kawasaki, Japan in
1976 and has been engaged in research
and development of communication sys-
tems/services and Internet middleware.
He is a member of the Institute of
Electronics, Information and Communi-

cation Engineers (IEICE) of Japan and ACM.

Masafumi Katoh received the B.S. and
M.S. degrees in Information Engineering
from Yokohama National University,
Yokohama, Japan in 1979 and 1981, re-
spectively. He joined Fujitsu Laboratories
Ltd., Kawasaki, Japan in 1981 and has
been engaged in research and devel-
opment of network architecture and traf-
fic control of ISDN, ATM, and IP
networks. He is a member of the Insti-
tute of Electronics, Information and

Communication Engineers (IEICE) of Japan.

Akira Takeyama received the B.E. and
M.E. degrees in Electrical Engineering
from Keio University, Yokohama, Japan
in 1975 and 1977, respectively.
He joined Fujitsu Laboratories Ltd.,
Kawasaki, Japan in 1977 and has been
engaged in research and development
of network architecture and computer
network systems.
He is a member of the Institute of
Electronics, Information and Communication

Engineers (IEICE) of Japan and the Information Processing
Society of Japan. He received the OHM Technology Award in
1990.

Akira Hakata received the B.S.
and M.S. degrees in Instrumentation
Engineering from Keio University,
Yokohama, Japan in 1977 and 1979, re-
spectively.
He joined Fujitsu Laboratories Ltd.,
Kawasaki, Japan in 1979 and has been
engaged in research and development
of broadband network systems.
Currently, he is a Vice General Manag-
er of the Advanced Photonic Network

Systems Development Div., Transport Systems Group. He is a
member of the Institute of Electronics, Information and
Communication Engineers (IEICE) of Japan.

