
185FUJITSU Sci. Tech. J.,36,2,pp.185-192(December 2000)

UDC 002.5:681.32

High-performance XML Storage/Retrieval
System

VYasuo Yamane VNobuyuki Igata VIsao Namba
(Manuscript received August 8, 2000)

This paper describes a system that integrates full-text searching and database tech-
nologies for storing XML (eXtensible Markup Language) documents and retrieving
information from them while providing a uniform interface. Our main goal with this
system is to achieve high-performance, because there will be a large amount of XML
documents in the near future if XML becomes a standard for structured documents
and data exchange. We have therefore developed techniques for achieving high-
performance storage and retrieval of XML documents. For full-text searches, we im-
proved the Structure Index + Text Index model, which references both indexes alter-
nately at retrieval. In our improved method, a hierarchical structure query is converted
into a flat structure query by referencing just the structure index, then the optimized
query can be quickly processed using only the text index. For storage, we developed
an offset space, which is an address space in secondary memory that can compactly
store any structure, for example, a tree. We use the offset space to solve the problem
that occurs in other methods which store the analyzed result of XML documents as
multiple relations in an RDB. In our method, the analyzed result can be stored in a
single page in the best case. This makes it superior to other methods which store the
analysis results in multiple relations so that storage of N relations needs at least
N pages. As a result, generally, our method greatly reduces I/O costs.

1. Introduction
For various reasons, XML (eXtensible Mark-

up Language) is expected to become a standard
for structured documents and data exchange and
the next-generation HTML (Hyper Text Markup
Language). XML applications are evolving from
document exchange, which was XML’s first pur-
pose, to the storage, retrieval, and utilization of
documents.1) This evolution is occurring because
XML has the following characteristics:
1) Tractability: XML is text, not binary, so it can

be easily referenced and updated by humans.
2) Structure: XML is structured and informa-

tion can be added to it by adding tags.
3) Independence between data and style
4) Extensibility: XML can define new types of

tags.

5) Openness: XML is independent of specific
vendors.

6) XML can be used with Web technologies.
XML is especially favored as the next-

generation HTML because HTML does not have
characteristics 3) and 4) above. We therefore ex-
pect that, just as there is now a large volume of
accumulated HTML documents, there will be a
large amount of XML documents in the future.
In addition, as automatic tagging in natural lan-
guage processing technology becomes more
mature, it will become easier to reuse common
digital documents as XML documents and the
volume of XML documents will grow at a faster
rate. We therefore forecast that high-performance
retrieval and storage will be more necessary in
the near future.

186 FUJITSU Sci. Tech. J.,36, 2,(December 2000)

Y. Yamane et al.: High-performance XML Storage/Retrieval System

As shown in Figure 1, an XML document is
text, but it can include links to other types of data,
for example, multimedia data. Because of these
links, like HTML documents, an XML document
is inherently usable with other types of data.
Users should be able to use XML documents and
these other types of data in an integrated and
uniform manner. Otherwise, they will need to in-
tegrate certain systems and APIs to handle XML
documents and other types of data.

2. Problems to solve
Quick retrieval of information from a large

amount of XML documents requires a full-text
search technology which builds and uses indexes
consisting of pairs of keywords and document iden-
tifiers. However, because database systems
usually use a string search technology which pars-
es strings dynamically, they are very slow when
there is a large amount of strings and are there-
fore unsuitable for searching through a large
amount of XML documents. Historically, these two
technologies and the systems which implement
them have developed separately. We therefore
need to integrate the technologies of full-text
searches and databases to achieve high-
performance XML retrieval and storage. Also,

when integrating these two heterogeneous sys-
tems, it is desirable that the interface looks
uniform to users.

Regarding the storage of XML documents,
often XML documents are analyzed and then the
analysis results (hereafter, referred to as an “an-
alyzed tree”) are stored. To store the analyzed
trees, it has been proposed that they be stored in
an RDB.2) Various ways to store the trees in an
RDB can be considered; one of them is shown in
Figure 2. In this method, an analyzed tree is
stored among relations, and links between tuples
are traversed using indexes or these relations are
joined. That is, the analyzed tree of an XML doc-
ument is segmented and stored in many pages,
which makes the I/O costs high at retrieval. There-
fore, we think that the analyzed tree should be
stored in as few pages as possible.

Because ordinary full-text search engines can
only be used for plain text, they cannot exploit
XML’s ability to represent repetition and nesting.
Therefore, to achieve a high performance, we must
adapt these search engines to XML. We describe
this problem in detail in Section 4.2.

To increase the processing speed for the re-

Doc1

Doc2

Doc3

<person>
 <name>Matsuoka</name>
 <photo XML-LINK = “Simple”
 HREF = “matsuoka.jpg”/>
</person>

<person>
 <name>Ueda</name>
 <family>
 <wife>Shigeko</wife>
 </family>
 <photo XML-LINK = “Simple”
 HREF = “ueda.jpg”/>
</person>

<person>
 <name>Naganuma</name>
 <family>
 <wife>Takako</wife>
 <child>Taro</child>
 <child>Yoko</child>
 </family>
</person>

 Person relation

Id Name

Family relation

Id Wife

Attribute relation

Id X-Link HREF

1

2

Matsuoka

Naganuma

3 Ueda

Family

1
2

1

Shigeko

Takako

Photo

1

2

Simple matsuoka.jpg

2

1

Child

Child relation

Id Child

1
2

Taro
Yoko

Next

1

2

2 Simple ueda.jpg

Figure 1
An example of XML.

Figure 2
XML representation by relation.

187FUJITSU Sci. Tech. J.,36, 2,(December 2000)

Y. Yamane et al.: High-performance XML Storage/Retrieval System

trieval and storage of XML documents, it will be
necessary to solve the above problems.

3. Uniform interface and system
architecture
To present a uniform interface to users, we

selected relations (tables) which are almost the
same as the relations of a relational database3)

(Figure 3) and are easy to understand and use.
For the data types, we supported the array type
for multiple values and the XML type in addition
to the integer, string, and variable (variable
length) data types.

An XML document is stored into or retrieved
from an XML type field as text, so the contents of
such a field superficially look like text. However,
when it is stored, the contents are analyzed by an
XML parser and stored as an analyzed tree. Then,
when the contents are retrieved, the analyzed tree
is used to compose an XML document. Retrieval
operations on XML documents are performed as
a selection operation on the field. This makes it
possible to retrieve requested information as a set,
because generally there are multiple XML docu-
ments in a relation.

Figure 4 shows our system architecture for
implementing the interface mentioned above. The
Relation Engine (RE) performs basic operations
for relations and supports the basic operations of

database systems, for example, B-tree, buffering,
transaction, and recovery.

In the RE, each data type is an independent
module, and a new data type can be added. The
XML type was added using this mechanism. The
XML type includes a full-text search engine which
was improved to cope with the hierarchical char-
acteristics of XML documents. This full-text
search engine consists of a structure engine and
a text engine. The structure engine is used to
parse XML documents and manage structure in-
formation about them in the structure index. The
text engine searches the required XML documents
using the text index. The XML type also includes
the XML storage, which is used for storing and
retrieving the analyzed trees to and from the re-
pository. In the case of retrieval, a query is passed
to the XML type through the RE, the text search
engine searches for the required documents, and
the required parts of the required documents are
extracted by the XML storage from the analyzed
tree. Then, the result of the query is passed from
the XML type to the user through the RE.

4. Implementation
As mentioned in Chapter 3, full-text search

technology is built into the XML type and a uni-
form interface is realized by using a relational
interface. In this chapter, we explain the tech-

Id Name Hobby Profile Photo

1

2 Naganuma

Matsuoka
baseball

jazz

soccer

Integer String Array (String) XML Variable

<person>
 <name>Matsuoka</name>
 <photo XML-LINK = "Simple"
 HREF= "matsuoka.jpg"/>
</person>

<person>
 <name>Naganuma</name>
 <family>
 ...

Data type

3 Ueda
golf

tennis

<person>
 <name>Ueda</name>
 <family>
 ...

Figure 3
A relation as a user interface.

XML type module

Text search
engine

Structure
engine

XML
storage

Integer
type

module

String
type

module

Array
type

module

Structure
index

Text
index

Relation Engine

Repository

Figure 4
System architecture.

188 FUJITSU Sci. Tech. J.,36, 2,(December 2000)

Y. Yamane et al.: High-performance XML Storage/Retrieval System

niques we developed for high-performance XML
document storage and retrieval.

4.1 XML storage
To solve the RDB storage problem described

in Chapter 2, we identified two important require-
ments regarding the storage of analyzed trees.
1) Links must be traversed efficiently.
2) Analyzed trees must be stored in as few pag-

es as possible.
The basic idea is to construct a space, called

an “offset space,” which is similar to a main mem-
ory space on a secondary storage, and then use it
to store the analyzed tree.

An offset space is addressed using an offset
ranging from 0 to 2 G. Generally, as shown in
Figure 5, an offset space consists of multiple pag-
es whose sizes range from 4 KB to 1 MB. In this
regard, an offset space is very similar to a main
memory space; it also has characteristics common
to the file system of UNIX. We can obtain an area
in this space in a way similar to the way used for
main memory. Areas are obtained sequentially
starting from the top page to maintain clustering
(i.e., to keep them as close as possible on a disk).
When an offset space overflows, new areas are
obtained in the next page. Offsets are used as
pointers to link the data structures, so we can use
them to construct complex structures such as trees

and networks. Using this mechanism, our ana-
lyzed tree can easily be stored, as shown in
Figure 6. Part (a) of this figure shows the ana-
lyzed tree of Doc1 in Figure 1, and part (b) shows
the analyzed tree of Doc 2. Later, this analyzed
tree is improved further. Usually, the processing
to traverse these links by offsets is done in a page,
which makes the processing very fast and meets
the first requirement described above.

Our analyzed tree has a structure that re-
flects the hierarchy of XML; it consists of various
structures such as the node, content, attribute, and
string. A node corresponds to a tag, a content to
the content of a tag, and an attribute to an at-
tribute. A feature of this structure is that we can
store it in a single page in the best case. This
differs from the RDB method mentioned above,
achieves good clustering, minimizes I/O costs, and
meets the second requirement of storage in as few
pages as possible. We further improved the ana-
lyzed tree by:
1) Constructing the same types of structures as

an array,
2) using the number of an array element as a

link instead of an offset, then making a link
include the type of the linked structure, and

3) constructing node lists corresponding to the
kinds of tags.

0

4000

12 000

4 KB page

4 KB page

8 KB page

0

64

4400

person node

name node family node

string

Naganuma

string

Takako

Offset space

Taro Yoko

stringstring

wife node child node
child node

content

content contentcontent

person node

name node

attribute

string

Matsuoka

Offset space

content

(a) Analyzed tree of
Doc1

 (b) Analyzed tree of Doc2

photo
node

Figure 5
Offset space.

Figure 6
Representation using offset space.

189FUJITSU Sci. Tech. J.,36, 2,(December 2000)

Y. Yamane et al.: High-performance XML Storage/Retrieval System

That is, we improved the method shown in
Figure 6 (b) into the method shown in Figure 7.
The merit of improvement 1) described above is
that because areas are grouped together, they can
be quickly obtained.

On secondary storage, we often reconstruct
pages when many areas are deleted or clustering
is poor. The merit of improvement 2) is that it
makes it unnecessary to update the values of links
when moving structures and it enables us to com-
press the values of links. This is because when
links are implemented by offsets, the values of
links must be updated but the numbers of array
elements are invariable when the structures are
moved. An offset is represented by 4 bytes and
the number of an array element is usually a small
integer, so it is possible to compress them (4 bytes
to 1 byte in the minimum case).

When searching analyzed trees, there are
many cases where the specified tags must be ac-
cessed; for example, when the value of tag <child>
is requested. It is expensive to traverse from the
root of the analyzed tree every time this is request-
ed. Improvement 3) enables direct access to the
structure corresponding to the requested tag.
Often the same tags are repeated, which makes
this mechanism more effective.

If the analyzed tree is large, it is stored across
many pages, and it then becomes a problem how
to connect them. For example, if the pages are

linked in a list, the average I/O cost to access each
page is very large, but the space for links is very
small. On the other hand, for example, if we let
the first page have links to other pages, the aver-
age I/O cost is very small, but the size of the area
for the first page is decreased and may even be-
come too small to contain all the links. To solve
this problem, we adopted a method for connect-
ing pages as a hypercube as shown in Figure 8.
We chose a hypercube structure because it can
achieve a good balance between the number of
links and the average distance from the root page
to other pages. (The hypercube is used in parallel
computers for a similar reason; namely, because
it achieves a good balance between the average
distance and the number of links.)

4.2 Retrieval method of structured
document databases
In the field of information retrieval, research

has been done on retrieval methods for structured
documents since the Standard Generalized Mark-
up Language (SGML) appeared in 1986.

However, regarding the new retrieval
methods that have come from this research,
R. Baeze-Yates has stated that “They are not in
general as mature as the classical ones. Not only
they lack the long process of testing and matur-
ing that traditional models have enjoyed, but also
many of them are primitive as software systems,
having been implemented mainly as research

node

content

Naganuma

string

Takako

stringstring

[0] [1]

Tag index
for child

[2] [3]

[0] [1] [2] [3]

[4] [5]

YokoTaro

string

Figure 7
Improved stored analyzed tree.

1

3 4

2

87

65 11 12

10

9

1615

14
13

Figure 8
Hypercube structure of offset space.

190 FUJITSU Sci. Tech. J.,36, 2,(December 2000)

Y. Yamane et al.: High-performance XML Storage/Retrieval System

prototypes.”4)

The retrieval methods proposed so far are
briefly described below.
• Hybrid model5)

This method divides the document into fields
and registers the field information in an in-
dex with a document ID and positional
information. Many full-text search engines
adopt this model because it is the simplest
technique and its implementation is also
easy. However, because the field is a flat
structure, the Hybrid model cannot support
a hierarchical structure search.

• Overlapped Lists model6)

This method registers structural area infor-
mation collectively referred to as a “region”
in an index, as well as the usual word infor-
mation. This method needs not only Boolean
algebra but also region algebra.

• Structure Index + Text Index model7)

This method has two kinds of indices: a struc-
ture index for the structure of documents and
a text index for the content of documents.
This method leads to a complex system con-
figuration and query processing, but it can
handle hierarchical structure queries.

4.2.1 Our system design goals
When we designed the structured document

search engine, we considered the following points.
• Large-scale document databases

The system should be able to support a large-
scale document database.
For instance, a retrieval method that uses
region algebra cannot be expected to achieve
high-speed retrieval in a large-scale docu-
ment because the number of comparisons of
positional information increases as the num-
ber of target documents increases.

• Hierarchical structured query processing
The system should support not only a flat doc-
ument structure, but also a hierarchical
document structure. The Structure Index +
Text Index model can process more complex

queries than the other methods.
• Ease of implementation

To make it easy to implement, the system
should use existing resources as effectively
as possible. The implementation cost can be
reduced if we can use the framework of a tra-
ditional full-text search engine without
modification.

4.2.2 Our model and indexing and
retrieval technique

We adopted the Structure Index + Text In-
dex model with certain modifications.

The problem with the unmodified model is
that the system configuration and processing be-
come complex, which results in a slow processing
speed. Especially, in retrieval processing, the sys-
tem needs to refer to the structure index and text
index alternately and store temporary data. Con-
sequentially, the retrieval speed is decreased.

We solved this problem by developing a tech-
nique by which a hierarchical structure query is
converted into a flat structure query by referenc-
ing just the structure index and then the optimized
query is quickly processed using only the text
index.8)

• Indexing technique
The basic idea of the indexing technique is

to allocate a field ID to each text data item of the
XML element and to register it in the structure
index and text index (Figure 9 (a)).

The structure index manages the hierarchi-

(a) Indexing

Structure index Text index

Text search
engine

Structure
engine

Structured
documents

Text data of
each element

 +
Field ID

(b) Retrieval

Structure index Text index

engine
Structure
engine

Hybrid
query

Hierarchical
structured query Results

register register refer refer

Text search

Figure 9
Structure Index + Text Index model.

191FUJITSU Sci. Tech. J.,36, 2,(December 2000)

Y. Yamane et al.: High-performance XML Storage/Retrieval System

cal structure of each field, and the text index man-
ages the field ID and document ID in which query
words appear.

The structure index is one big data tree and
represents the overlapped structure of documents
(Figure 10). Each node in the data tree corre-
sponds to a field. Overlapping of the structures
of documents is judged according to rules, for ex-
ample, rules about the positions of elements in a
document, element names, and brother elements.

The text index uses the same data structure
as the Hybrid model in a traditional full-text
search engine. It stores the document IDs and

field IDs in which query words appear.
• Retrieval technique

In retrieval processing, the system makes one
reference each to the structure index and text in-
dex (Figure 9 (b)). The retrieval procedure is as
follows.
1) The hierarchical structured query is ex-

pressed by the tree data. The structure of
the query is verified by matching the tree
data of the structure index.

2) A hierarchical structured query is converted
into a flat structure query (hybrid query)
using the field ID of the node in the struc-
tured index (Figure 11).

3) Sets of document IDs that match the query
using the text index are retrieved. This step
is the same as the last step of the Hybrid
model search engine.

5. Conclusion
As discussed above, we think that our sys-

tem can uniformly cope with various types of data,
including XML documents, by combining full-text
search technologies and database technologies.
Also, we think that it can process a large amount
of XML documents at high speed.

For high-performance retrieval, we developed
a technique in which the hierarchical structure
query is converted into a flat structure query by
referencing just the structure index and then the
optimized query is quickly processed using only
the text index. As Figure 11 shows, a processing
structured query created via hybrid query conver-
sion requires an OR execution of many terms,
which slows down the processing. However, our
experiment on actual data shows that, on aver-
age, the processing is only five times slower than
flat query processing. Our system can process 20
queries per second for a flat structure query of
1 GB of Japanese data. Considering the complex-
ity of structured query processing, we think our
approaches for structured queries is plausible.

Also, by storing the analyzed tree of XML doc-
uments in an offset space, we solved the problem

doc1

doc2

doc3

wife

doc1
doc2

doc3

Overlapping

: Element Name
: Field ID

name

person

photo

HREF
person

name

wife

family

child child

person

name photo

HREFwife

family

name
2

person
1

photo
4

HREFfamily

child
6

child
7

wife
5

family
3

HREF
8

photo
4

Hierarchical
structured query

(XML-QL style)

Convert

WHERE
<family>
 <wife>Takako </>
 <child>Yoko </>
</>

Takako in 5
AND

(Yoko in 6 OR Yoko in 7)

Hybrid query

(Search Term in Field ID)

Find documents that have at least one <family> element
whose <wife> element is equal to “Takako”
and whose <child> element is equal to “Yoko”.

Figure 10
Example of a structure index.

Figure 11
Query conversion.

192 FUJITSU Sci. Tech. J.,36, 2,(December 2000)

Y. Yamane et al.: High-performance XML Storage/Retrieval System

that occurs when they are stored in an RDB. If
an analyzed tree is stored in N relations, it can
cost more than N pages to retrieve it; however, in
our method, retrieval costs a single page in the
best case, which we think leads to good efficiency.
The merit of using an RDB is that it enables the
use of mature technology, for example SQL. As
yet, our method has been implemented only at the
function-level and is primitive. A future task,
therefore, will be to make our system easier to
use.

References
1) H. Ishikawa: XML and Databases – Expan-

sion from Exchange to Storage and Query.
(in Japanese), IPSJ Magazine, 41, 1, pp.68-
73 (2000).

2) J. Shanmugasundaram et al.: Relational Da-
tabases for Querying XML Documents:
Limitations and Opportunities. 25th Intl.
Conf. on VLDB, pp.302-314, 1999.

3) E. F. Codd: A Relational Model of Data for
Large Shared Data Banks. Comm. ACM, 13,
6, pp.377-387, 1970.

4) R. Baeze-Yates and G. Navarro: Integrating
Contents and Structure in Text Retrieval.
ACM SIGMOD Record, 25, 1, pp.67-79 (1996).

5) R. Baeze-Yates: A Hybird Query Model for
Full Text Retrieval System.
Technical Report DCC-1994-2, Dept. of Com-
puter Science, Univ. of Chile, 1994.

6) C. Clarke, G. Cormack, and F. Burkowski: An
Algebra for Structured Text Search and a
Framework for its Implementation. The
Computer Journal, 38, 1, pp.43-56 (1995).

7) G. Navarro and R. Baeza-Yates: Proximal
Nodes: A Model to Query Document Databas-
es by Content and Structure. ACM Tras. On
Information System, 15, 4, pp.400-435 (1997).

8) N. Igata and I. Namba: A Method of Index-
ing and Searching for Large Scale Structured
Document Database. (in Japanese), Labora-
tory report of Information Processing Society
of Japan, 2000-FI-57, pp.9-16, 2000.

Yasuo Yamane received the B.S. de-
gree in Pure and Applied Science and
the M.S. degree in Coordinated Science
from Tokyo University, Japan in 1979
and 1981, respectively.
He joined Fujitsu Laboratories Ltd.,
Japan in 1981 and has been engaged
in research and development of distrib-
uted databases, parallel databases,
object-oriented databases, and docu-
ment repositories. He is a member of

the Information Processing Society of Japan (IPSJ) and a mem-
ber of the Institute of Electronics, Information and Communica-
tion Engineers (IEICE) of Japan.

Nobuyuki Igata received the B.S.
degree in Mechanical Engineering and
the M.S. degree in Information Scienc-
es from Tohoku University, Sendai,
Japan in 1993 and 1995, respectively.
He joined Fujitsu Laboratories Ltd.,
Kawasaki, Japan in 1995 and has been
engaged in research and development
of natural language processing and in-
formation retrieval systems. He is a
member of the Information Processing

Society of Japan (IPSJ).

Isao Namba received the B.S. and M.S.
degrees in Linguistics from Kyoto Uni-
versity, Kyoto, Japan in 1987 and 1989,
respectively. He joined Fujitsu Labora-
tories Ltd., Kawasaki, Japan in 1989
and has been engaged in research and
development of natural language pro-
cessing and information retrieval sys-
tems. He is a member of the IEEE and
ACM.

