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This paper describes elliptic curve cryptosystems (ECCs), which are expected to be-
come the next-generation public key cryptosystems, and also describes Fujitsu Labo-
ratories’ study of ECCs. ECCs require a shorter key length than RSA cryptosystems,
which are the de facto standards of public key cryptosystems, but provide equivalent
security levels. Because of the shorter key length, ECCs are fast and can be imple-

mented with less hardware.

First, we outline ECC and describe a typical digital signature algorithm. Then, we de-
scribe our technology for parameter generation of a secure ECC and the implementa-
tion of a fast ECC by software and by a digital signal processor. ECCs are expected to
enter widespread use as a base technology of electronic information services.

1. Introduction

Various services on open networks, for exam-
ple, electronic commerce; electronic shops for
music, video, and software; and CALS/EDI, are
expected to make life more convenient and effi-
cient. Encryption is a base technology used to
realize these services. There are two types of en-
cryption technology: secret key cryptosystems and
public key cryptosystems. In a secret key crypto-
system, a key for encryption and decryption is
shared between the sender and the receiver. In a
public key cryptosystem, the sender and the re-
ceiver use different keys. Some commonly used
public key cryptosystems are the RSA cryptosys-
tem (RSA)? and the ElIGamal cryptosystem;? these
were invented in 1978 and 1984, respectively.

The elliptic curve cryptosystem (ECC) was
invented by N. Koblitz® and by V. Miller® inde-
pendently in 1985 and is expected to become the
next-generation public key cryptosystem. A lot of
work is being done to learn about its security, and
standardization organizations such as the ISO,
IEEE, ANSI, and IETF are actively standardiz-
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ing ECC so it can be put to practical use.

2. Elliptic Curve Cryptosystems (ECCs)
2.1 Public key cryptosystems

A public key cryptosystem employs a pair of
different but associated keys. One of these keys
is released to the public while the other, the pri-
vate key, is known only to its owner. It is designed
to be computationally intractable to calculate a
private key from its associated public key; that is,
it is believed that any attempt to compute it will
fail even when up-to-date technology and equip-
ment are used.

With a public key cryptosystem, the sender
can encrypt a message using the receiver’s public
key without needing to know the private key of
the receiver. Therefore, they are suitable for com-
munication among the general public.

Public key cryptosystems can also be used to
make a digital signature. In the RSA, signature
generation is done by encrypting the message us-
ing the sender’s private key. The signature

verification is done by decrypting the signed mes-
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sage using the sender’s public key. If the received
message and decrypted message are the same, the
signature is correct and the integrity of the signed
message is assured. The merit of the signature in
a public key cryptosystem is that the verification
is processed using only the sender’s public key;
that is, the sender’s private key is not needed for
verification.

Public key cryptosystems provide an encryp-
tion and digital signature scheme without the need
to reveal a private key. Because of this feature,
these cryptosystems are considered to be indis-
pensable for secure communication and
authentication over open networks.

2.2 Elliptic Curve Cryptosystems

Elliptic curve cryptosystems (ECCs) include
key distribution, encryption, and digital signature
algorithms. The key distribution algorithm is used
to share a secret key, the encryption algorithm
enables confidential communication, and the dig-
ital signature algorithm is used to authenticate
the signer and validate the integrity of the
message.

ECCs are based on the addition of rational
points on a chosen elliptic curve. An elliptic curve
E over a Galois field GF(p), where p>3 and is
prime, is the set of all (x, y) (x, y UGF(p)) that sat-

isfy the following equation:

E:y*=x+ax+b

where a, b UGF(p), and 4a%+ 275%# 0.

The rational points on the elliptic curve E
are the points over GF(p) that satisfy the defin-
ing equation. Ifthe set of parameters {a, b, p} are
specified, the number of rational points on the el-
liptic curve is determined uniquely; this number
is called the order of the elliptic curve E and is
denoted by #E. It is known that rational points
form an additive group in the addition over the
elliptic curve shown in Figure 1.

Instead of giving a rigorous definition of the
addition of two rational points on an ECC over
GF(p), we will give an intuitive definition of addi-
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tion by using an illustrative model of an ECC over
real numbers.

When points A and B on the elliptic curve E
shown in Figure 1 are added, the result is defined
as the point D obtained by inverting the sign of
the y-coordinate of point C, where point C is the
intersection of E and the line passing through A
and B. If A and B are at the same position, the
line is the tangent of E at A.

Moreover, an ideally defined point O, name-
ly the point at infinity, is also recognized as a point
on E. The sum of the point at infinity and a point
P is defined as point P itself.

We define the % scalar multiplication of a
point G as the operation by which point G is add-
ed to itself £ times. We denote the resulting point
as kG. We can easily calculate W = kG from a
given k and G, but it is computationally difficult
to calculate the scalar & from points W and G. Ifa
prime p as large as 160 bits long is selected, we
cannot find £ within a reasonable time, even if we
use the most efficient algorithms known so far and
the world’s most powerful computers. The prob-
lem of calculating % from given points G and W is
called “the discrete logarithm problem over the
elliptic curve.” The security of ECC derives from
the difficulty of solving the problem.

Moreover, when a point G on an elliptic curve
E is given, there is a minimum positive integer n
such that nG = O. Integer n is called the order of

—<
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\Elliptic curve E

Figure 1
Addition rule over an elliptic curve.
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the point G. It is known that n is a divisor of the
order of the curve E.

Elliptic curves over a characteristic 2 finite
field GF(2™) which has 2™ elements have also been
constructed and are being standardized for use in
ECCs as alternatives to elliptic curves over a

prime finite field.

2.3 Signature algorithm

We now describe ECDSA® as an example of
a digital signature algorithm.

In a digital signature algorithm, the sender
sends a message with the sender’s own unique sig-
nature and the receiver validates the received
signature. Instead of providing a signature for
the entire message, the message is first shortened
to a fixed length by a hash function, then a short
signature that is valid over the whole message is
generated.

In ECC, the system parameters such as the
prime p, elliptic curve E, base point G = (x, y), and
order r of the point G need to be shared between
the sender and the receiver. Let s, where 1<s<r-1,
be the private key of the sender and W = sG the
public key of the sender.

The signature is generated as follows:
Hash the message, and obtain the hash value
f=hash(m).
Generate a random number u, where 1 <u <r-1.
Calculate V=uG = (x,,y,) and ¢ = x, mod r.
Calculate d = u™! (f + sc) mod r.
Output (¢, d) as a signature of m.

The sender then sends the message m and
the signature (c, d).

The signature is validated as follows:

The receiver receives the message m and the
signature (c, d). Then, the receiver performs the
following procedure to validate the signature:
Hash the message, and obtain the hash value
f =hash(m).

Calculate h = d"? mod r.
Calculate h, = fh mod r and A, = ch mod r.
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Calculate P = ~,G + h,W = (xp, yp) and ¢’ = xp mod 7.
Ifc = ¢, then the signature is valid. Otherwise, it
is invalid.

2.4 Merit of ECCs

The merit of ECCs is that compared with
RSA cryptosystems they can provide the same se-
curity level with a shorter key length. Because of
this mathematical property, ECCs are faster and
require less hardware than RSA. The security of
an ECC, however, depends not only on the length
of the key, but also on the elliptic curve parame-
ters. In general, it takes a long time to generate
secure parameters. So, faster parameter genera-
tion is important for practical implementation of
an ECC. We describe our research concerning the

security of parameters in the next chapter.

3. Security
3.1 Concept of security evaluation

In general, the security of a cryptosystem is
evaluated by the amount of time needed to break
it. “Breaking a cryptosystem” means finding the
private key used to encrypt a message. The meth-
od used to break a cryptosystem is called the
“attacking method.” Normally, the time needed
to break a practical cryptosystem is never actual-
ly obtained, because a cryptosystem that can be
broken in a reasonable amount of time would not
be considered for practical use.

Instead, the amount of time needed to break
a cryptosystem is a theoretical estimate of the av-
erage time needed to break a cryptosystem by a
given attacking method. If there are multiple at-
tacking methods, the time required by the most
efficient method would be taken as the time need-
ed to break the cryptosystem.

A security evaluation based on the theoreti-
cal estimate of average time is valid for the general
case, but it is clear that such an evaluation is in-

valid for special cases.

3.2 General attack for ECCs
As described in Section 2.2 the security of an
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ECC depends on the difficulty of solving the
discrete logarithm problem over elliptic curves.
Two general methods of solving this problem are
known. One is the square root method, which is a
general method for the discrete logarithm prob-
lem. The other is the Silver-Pohlig-Hellman (SPH)
method,®” which factors the order of a curve into
small primes and solves the discrete logarithm
problem as a combination of discrete logarithms
for small numbers.

The square root method is the most general
attacking method for the discrete logarithm prob-
lem, and its computation time is proportional to
the exponent of half the key length; that is, the
computation time varies exponentially with re-
spect to the key length. A public key cryptosystem
is regarded as being very secure against an at-
tack if the attack takes an exponential amount of
time with respect to the key length. From this
criterion, we can say that ECCs are very secure
against the square root method.

The SPH method is effective only when the
order of the curve is expressed as a product of
small primes. Otherwise, the computation time
is equivalent to that of the square root method.
Therefore, for an ECC, if we select the order of
the elliptic curve to be a prime or nearly a prime
whose factors include a large prime, the compu-
tation time needed to break the ECC will vary
exponentially. Therefore a high level of security
can be achieved.

Now we will compare the security of ECCs
with that of RSA. The security of RSA lies in the
difficulty of factoring large numbers. The num-
ber field sieve is the most effective known method
for factoring large numbers, and it takes a sub-
exponential amount of computation time with
respect to the key length to do that task. There-
fore, the best-known attack against RSA takes a
sub-exponential amount of time with respect to
the key length. An attacking method with a sub-
exponential time/key-length relationship takes
less time than one with an exponential relation-
ship (and more time than a method with a
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polynomial relationship). This is why the securi-
ties of 1024-bit RSA and 160-bit ECC are

equivalent.

3.3 Evaluation by special attack

The security evaluation of a general attack
against an ECC given above is based on the aver-
age computation time. However, we cannot
evaluate special cases with this evaluation. In
fact, special attacks were found by using the spe-
cial characteristics of special elliptic curves.®?
The special characteristics are determined by the
order of the elliptic curve. These special attacks
are much stronger than the square-root method.

3.4 Generating a secure curve
parameter

Because of the threat of special attacks, it is
essential to obtain the parameters of elliptic
curves that meet the following basic requirements:
¢  The order of the curve must be prime or near-

ly prime.
¢ The curve must be immune to special attacks.

Both of these requirements concern the or-
der of the curve, #E. That is, the security of an
elliptic curve depends primarily on its order.
Therefore, to make an ECC secure, we must first
find curves which have an order satisfying the
above requirements. At present, two methods!®-1V
are proposed to find good curves:

1) Generate a curve randomly, count its order,
and select a curve satisfying the criteria.

2) Select an order satisfying the requirements,
and then generate a curve of the selected order.

For method 1), the Schoof algorithm'? is used.
Theoretically, the computation time for the Schoof
algorithm is polynomial with respect to the key
length. However, in practice it takes a long time
to calculate if we implement it directly in the
present computational environment.

For method 2), the complex multiplication al-
gorithm (CM algorithm)!¥ is used. The order of
computation for the general CM algorithm is ex-
ponential with respect to the key length, so it is
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hard to calculate. Therefore, in practice, the
order of the curve is selected to have special char-
acteristics so that it can be calculated efficiently.
However, as described in the previous section,
there is the possibility of attacks using the spe-
cial characteristics. We think it doubtful that
curves generated by method (2) above will be safe
in the future. We therefore adopted method (1)

and improved Schoof's algorithm.

3.5 Our technology for generating

good ECC parameters

We devised an efficient method, called the
ICS method, to calculate the order of an elliptic
curve.'?® Then, we developed software based on
this method that can deal with two major types of
finite fields (i.e., prime fields and characteristic 2
finite fields) and can produce a set of elliptic curve
parameters for an ECC. To use an ECC in prac-
tice, the bit length of the base field should be from
160 to 240 bits. Our software calculates these
parameters within a reasonable time. Table 1
shows the measured times for parameter genera-
tion on a Pentium IT 400 MHz PC running under
Windows NT 4.0 and Risa/Asir.'¥

With this technology, we can generate as
many secure curves as we need, so it is easy to
construct an ECC system.

4. Implementation

To be of practical use, an ECC must have a
high operating speed. In this chapter we briefly
describe how we achieved a fast ECC system
through software and hardware.

4.1 Software engine

Various methods for achieving an efficient
ECC have been proposed, and basic ECC algo-
rithms are described in various standards. We
developed a general-purpose software engine for
the server which can deal with an ECC with any
elliptic curve parameters. The engine has been
made fast using various speed-up techniques and
conforms with IEEE P1363,” characteristic
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2 finite fields (normal base and polynomial base),
and prime finite fields.

Moreover, our library can operate on elliptic
curve cryptosystems having arbitrary bit lengths
up to the memory limit of the platform and can
deal with any elliptic curve parameters. The per-
formance of our software engine on a Pentium Pro
200 MHz PC running under Windows NT 4.0 is
shown in Table 2.

4.2 Hardware engine

For server systems, we have developed an
efficient hardware ECC engine based on a digital
signal processor (DSP) and devised new, fast im-
plementation methods suitable for the DSP.*» We
improved modular multiplication (i.e., multiplica-
tion with large moduli) and elliptic doubling (i.e.,
doubling of a point on an elliptic curve) to speed
up the implementation. For modular multiplica-
tion, we devised a new implementation method
for Montgomery multiplication'® that is suitable
for pipeline processing. For elliptic doubling, we
devised an improved method for computing the
number of multiplications and additions. We have
implemented ECDSA using the latest DSP; it
works on an elliptic curve cryptosystem having

Table 1
Parameter generation time.

Characteristic 2 Prime finite fields

finite fields (p=2"a)
(Polynomial base)
Bit length 160 239 160 224

Generation time (s) 266 3783 367 2566

Table 2
Performance of software library.

Prime finite |Characteristic 2 finite fields
fields polynomial base| normal base

Bit length 160 | 239 | 163 | 239 | 162 | 191

Base field

Signature generation (ms) | 4.1 10 8.4 17 7.7 10

Signature verification (ms)| 18 | 43 34 66 30 37
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an arbitrary bit length of up to 320 bits over a
prime finite field. In addition, this hardware en-
gine can work on elliptic curves with arbitrary
curve parameters in the same way that the soft-
ware library does. The main specifications of the
hardware engine are shown in Table 3.

5. Discussion

Special attacks for special elliptic curves are
constantly being discovered, and the security of
special curves has been actively discussed in re-
cent years. Especially, we think that whether the
curves generated by the CM method are secure
should be examined intensively. In addition, we
should keep in mind that the evaluation of secu-
rity changes when a stronger attack is found,
because the currently evaluated security level is
based on the currently known attacks. Therefore,
it is desirable to construct a theoretical evalua-
tion that also considers unknown attacks.

Before ECC comes into widespread use in
electronic commerce protocols and various servic-
es, we can expect that discussions will be held to
decide on its specifications, format, and other
details.

6. Conclusion

We have briefly described ECC, which is a
promising candidate for the next-generation pub-
lic key cryptosystem. Although ECC’s security has
not been completely evaluated, it is expected to
come into widespread use in various fields in the
future because of its compactness and high per-
formance when it is hardware-implemented.

Table 3
Specifications of hardware engine.
DSP TMS320C601
Clock 200 MHz
Firmware size 32 Kbytes
Signature 160-bit 1.1ms
generation | 239.pjt 2.7 ms
Performance
Signature 160-bit 3.8 ms
verification 239-bit 10 ms
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