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A four-way Very Long Instruction Word (VLIW) geometry processor that can be applied
to PC-based CAD systems has been developed.  PC-based CAD systems require a
very high graphics performance and a very high cost effectiveness.  To achieve a high
performance, Single Instruction Multiple Data Stream (SIMD) instructions specialized
for geometry operations were implemented and a unique architecture called the
“software bypass mechanism” was adopted.  To reduce system cost, PCI and AGP
interface logics were implemented within the processor, so the processor can be
applied to PC-based systems without using bus interfacing LSIs.  The processor can
issue up to four instructions at a time based on a four-way VLIW architecture.  A
performance of 2.5 GFLOPS and 6.5 Mp/s (mega polygons per second) was achieved
at an operating frequency of 312 MHz.  The processor was fabricated with a 0.21 µm
CMOS process technology on a 9.18 mm × 9.11 mm die.1), 2)

1. Introduction
Recently, there has been an increase in the

need for high-performance 3D graphics systems
in graphics applications such as engineering CAD
systems and video games.  Because these applica-
tions require a lot of floating point calculations,
the floating point calculation capability of systems
must be greatly increased.  There are two ap-
proaches to improving floating point performance.
One of them is to increase the parallelization of
floating point calculations, and the other is to ac-
celerate the operating frequency of the system.

Increased parallelization can be realized by
constructing a system using multiple RISC pro-
cessors.3)  However, this approach needs a lot of
resources and is too expensive to adopt in a
PC-based system.  Another way to increase paral-
lelization is to add graphics-centric instructions
to a conventional RISC instruction set.  These
special instructions can effectively improve per-
formance if the instructions are prepared properly.

However, the previous work in this area has not
resulted in geometry processing with sufficient
performance.4)  This paper describes a 3D geome-
try processor that achieves excellent performance
through graphics-centric instructions that include
SIMD instructions and a VLIW architecture.

Accelerating the operating frequency is a
direct and simple approach to improving perfor-
mance.  We achieved a high operating frequency
in our new processor by using a new clock distri-
bution methodology and the latest process
technology.

Another important requirement in graphics
systems is to reduce the development time with-
out compromising performance.  Because 3D
graphics performance is expected to increase by a
factor of almost 8 every 18 months,5) the hardware
should be as simple as possible to make develop-
ment easy and also should have a high calculation
capability to meet the performance demand.  To
fulfill the requirement of a short development
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time, we chose the VLIW architecture for the pro-
cessor because it is logically and physically easy
to design.  Another reason for adopting the VLIW
architecture is that its instruction issue logic is
less complicated than in other architectures.

Achieving a high cost-effectiveness is also im-
portant, especially in PC-based graphics systems.
To provide this feature, the new processor has both
a core unit which executes the geometry process-
ing and a bus unit which can be connected directly
via a standard bus interface.  Consequently, the
processor can be applied to conventional PC-based
graphics systems without requiring additional
LSIs, and therefore high-performance graphics
systems can be created at minimum cost.

Chapter 2 of this paper describes the basic
architecture of the geometry processor, and
Chapter 3 describes the implementation of the
processor in detail.  Then, Chapter 4 describes the
clock design methodology of the processor,
Chapter 5 presents some evaluation results, and
Chapter 6 concludes the paper.

2. Basic architecture
2.1 Graphics system

Figure 1 shows the block diagram of a graph-
ics system that employs the 3D geometry
processor.  The bus unit receives polygon data from
the host CPU via an AGP interface and outputs
the geometry processing results to a rendering
system over a 66 MHz PCI interface.  The core
unit receives data from the bus unit, performs

geometry processing, and outputs the processed
data back to the bus unit.

2.2 VLIW geometry processor
The 3D geometry processor has a four-way

VLIW architecture.  One of the reasons we chose
a VLIW architecture is that it can provide a high-
ly parallel execution capability with a less
complicated instruction dispatch logic than other
architectures.  The VLIW architecture has this
advantage over other architectures because it does
not require scheduling logic to dispatch instruc-
tions to execution units in parallel.  Often, the
instruction dispatch logic is the most critical cir-
cuit-delay path, and in a non-VLIW processor such
as a superscalar processor, it is the most difficult
part to design logically.  Minimizing the circuit
delay and completing the logic design usually
takes a lot of time, so the VLIW architecture also
has the advantage of reducing design time with-
out compromising performance.  Furthermore,
because geometry processing has a lot of inherent
data parallelism, it can be performed very effi-
ciently using a VLIW architecture.

The processor has the four-way VLIW archi-
tecture reported in Ref. 6).  A VLIW instruction is
120 bits long and consists of four 30-bit instruc-
tion elements.  The position of an instruction
element in a VLIW instruction is called a “slot.”
Operations executed by an instruction element are
defined according to the slot where the element is
located.  There are four slots: Slots A to D.  Slot A
and Slot C execute floating point operations.  Slot
B and Slot D execute integer operations, includ-
ing memory address calculations.  To provide the
parallel floating point execution capability re-
quired in geometry processing, floating point
instructions located in Slot A and Slot C can be
executed simultaneously.  The implementation of
the floating point execution unit is discussed in
the next section.
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3. Implementation
3.1 Floating point unit

Because the floating point data format is used
in geometry processing and a very high perfor-
mance is required by the target applications, the
processor should have strong floating point par-
allel execution capabilities based on the VLIW
architecture and SIMD instructions.  Figure 2
shows the block diagram of the processor’s core
unit.  The core unit has four floating point pipe-
lines (Fpipes 0 to 3), an integer pipeline, a 64 KB
code RAM, two 8 KB data RAMs, two floating point
registers, and an integer register.  Each Fpipe con-
sists of a multiplier and an adder and can execute
multiply-accumulate instructions, which is very
effective for improving geometry processing per-
formance.  The Fpipes are tightly coupled in pairs
that form two sub-units.  The Fpipes in each pair
share a floating point register file and data RAM.
Instruction elements in Slot A can manipulate
FR 0 and Data RAM 0 and can activate Fpipe 0
and Fpipe 1.  Instruction elements in Slot C can
manipulate FR 1 and Data RAM 1 and can acti-

vate Fpipe 2 and Fpipe 3.  By adopting this clus-
tered and symmetrical structure, the numbers of
register file ports and cross-bar switches on the
data bus line can be reduced to roughly one half
of the numbers in conventional non-clustered
structures, which greatly reduces the delays in the
circuits and wires of register files and switches.
Consequently, the register file access time and
critical path delay can be reduced.

The block diagram of an Fpipe is shown in
Figure 3.  The output of the multiplier is con-
nected to the adder as well as to the floating point
register for writing back.  When a floating point
multiply-accumulate instruction (called an fmac
instruction) is executed with this block, two
operands are fed into the multiplier and the mul-
tiplication result is sent to the adder and then
added to the data stored in a register for accumu-
lation.  Multiplication and addition each take two
stages, consequently, an fmac takes four stages.
The Fpipes support the standard IEEE 32-bit
single precision floating point data format.
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Core unit of 3D geometry processor.
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Figure 4 shows the block diagram of an
Fpipe multiplier.  Stage E1 consists of a Wallace
tree and a Booth decoder.  To adjust the circuit
delay for a target cycle time, only the lower
25 bits of the sum and carry outputs from the Wal-
lace tree are added in the Stage E1 mantissa
adder.  The input check block generates input op-
erand types that are used for setting constants
and exception flags.  In Stage E2, the upper 27
bits of the sum and carry outputs and the carry
from the lower 25 bits are added.  The results are
then normalized by a right shifter and an expo-
nent adder.

Figure 5 shows the block diagram of an
Fpipe adder.  In Stage E1, there are two right
shifters, two mantissa adders, a data packer, a zero
filler, an input checker, and various other blocks.
The two mantissa adders generate addition and
subtraction results, and the 2’s complementer gen-
erates the complement for data format conversion
instructions between an integer and a floating
point.  In Stage E2, the correct result is selected
according to the instruction being executed and
various flags generated in Stage E1.

Newton’s method was adopted for division op-
erations in the processor.  The processor has four
ROMs which store approximate reciprocal values
for iterative calculation of Newton’s method.  Each
Fpipe has its own ROM and can execute an inde-

pendent divide operation from other Fpipes simul-
taneously.  The latency of the divide operation is
14 clock cycles.  For square root operations, the
processor has ROMs which store approximate re-
ciprocal values of the operations.  The approximate
values are precise enough to apply them to geom-
etry operations directly.  The latency of the ROM
look-up instructions is two cycles for division and
square root operations.

3.2 SIMD instructions
Because a multiply-accumulate instruction

involves two operations and because two SIMD
instructions can be executed simultaneously, a
total of eight floating point operations can be
executed simultaneously.  To activate four sets of
floating point pipelines simultaneously, SIMD type
instructions need to be implemented.  One pair of
Fpipes, for example, Fpipe 0 and Fpipe 1, is
activated by an SIMD type instruction.  The mul-
tipliers and adders in the Fpipes are activated by
an fmac instruction.  Therefore, if two SIMD type
fmac instructions are executed, the processor could
perform eight floating point operations simulta-
neously.

Figure 6 shows a diagram of 4 × 4 array
multiplication using an SIMD type fmac instruc-
tion called “qfmac.”  This type of multiplication is
quite common in 3D graphics processing, for
example, coordinate transformations.  To execute
the array multiplication, 16 multiplications and
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12 additions are necessary.  However, as shown in
Figure 6, it can be performed by using only eight
qfmac instructions.  In this example, the x and z
values are calculated in Fpipe 0 and Fpipe 1.  The
calculation is as follows:

x' = a0*x + a1*y + a2*z + a3*w
z' = c0*x + c1*y + c2*z + c3*w

The first qfmac operation calculates the
values of a0 times x' and c0 times x' and stores
the results in the ACC simultaneously by using
Fpipe 0 and Fpipe 1, respectively.  The second
qfmac operation calculates the values of a1 times
y' and c1 times y' and adds the values stored in
each ACC.  The third and fourth operations are
identical to the second.  Consequently, the x and z
values can be calculated by using four qfmac op-
erations in Fpipe 0 and Fpipe 1.  In Fpipe 2 and
Fpipe 3, the values of y and w are calculated in
the same way.  Therefore, the four-way VLIW
architecture and the SIMD type multiply-accumu-
late instructions make it possible to perform an
array multiplication in only 10 clock cycles.

3.3 Software bypass
The software bypass is a unique feature of

this chip.  This mechanism enables the compiler
to control hardware bypass lines, which, in
conventional microprocessors are controlled by the
hardware at runtime.  Figure 7 shows the
bypass logic and a simple example of the assem-
bler notation for its operation.  The difference
between the processor we propose and other pro-
cessors is that, in our processor, the compiler
selects which data is fed into the buffer register.
In most other processors, this is done by the hard-
ware.  As shown in Figure 7, each multiplexer has
five inputs, but it is not necessary to implement
hardware logic to control the inputs.  This mecha-
nism made it possible to eliminate 20 000 gates
from the bypass control logic compared with a
previous design we made.7)  As a result, logical
verification and critical path timing optimization
of the bypass control logic were not required, which
reduced the development time.

3.4 Clipping
Clipping is one of the basic operations in 3D

geometry processing.  The operation determines
whether objects to be displayed are inside a dis-
play screen.  To do this, 21 conditions have to be
checked for each independent triangle polygon
formed by the vertices of the displayed object.  To

from Register file

Load bypass

Stage D Stage E Stage N Stage W

A
D

D

to Register file
E bypass
N bypass
W bypass

D E N W

D E N W

D E N W

D

add

add

add

add E N W

Pipeline

add r2, r4, r5

add r3, r2@E, r6

add r4, r2@N, r7

add r5, r2@W, r8

@E : from E bypass
@N : from N bypass
@W : from W bypass

Assembler notation

Figure 7
Software bypass logic and example assembler notation
for its operation.

Figure 6
4 × 4 array multiplication.

x’
y’
z’
w’

x
y
z
w

a0 a1 a2 a3
b0 b1 b2 b3
c0 c1 c2 c3
d0 d1 d2 d3

16 multiplications and 12 additions

Fpipe 0/Fpipe 1

Executed by 8 SIMD ‘fmac’ (qfmac) instructions

10 τ for the matrix multiplication

E1 E2 E3 E4

E1 E2 E3 E4
qfmac

E1 E2 E3 E4

E1 E2 E3 E4
qfmac

E1 E2 E3 E4

E1 E2 E3 E4
qfmac

E1 E2 E3 E4

E1 E2 E3 E4
qfmac

Fpipe 2/Fpipe 3
E1 E2 E3 E4

E1 E2 E3 E4
qfmac

E1 E2 E3 E4

E1 E2 E3 E4
qfmac

E1 E2 E3 E4

E1 E2 E3 E4
qfmac

E1 E2 E3 E4

E1 E2 E3 E4
qfmac

=



44 FUJITSU Sci. Tech. J.,36, 1,(June 2000)

H. Kubosawa et al.: Four-way VLIW Geometry Processor for 3D Graphics Applications

accelerate the clipping operation, the processor
sets the 7 bits of a condition code register (CCR)
and the 14 bits of two condition code backup reg-
isters (CCBRs), which hold the two immediately
preceding CCR values (see Figure 8).  The branch

condition generator decides whether the object to
be displayed is inside the display screen by check-
ing whether the contents of the CCR and CCBRs
are all zero.

These features are helpful for the clipping
operation because the operation is usually applied
to strips of triangles and we have to check seven
conditions for each vertex of the triangles to de-
cide whether they are inside the display area.  In
the conventional approach to the clipping opera-
tion, combinations of subtraction, move, and
logical OR instructions are used.  As a result, 20
steps would be required to check seven conditions
for one vertex.  With the features we propose, it is
possible to check whether a vertex is inside the
screen in only seven steps.  Moreover, by using
CCBRs, the load/store operations needed for the
conventional approach can be eliminated.  This is
possible because three sets of comparison results
corresponding to the three vertices of a triangle
are already held in the CCR and CCBRs.  Conse-
quently, by using these features, it is possible to
determine whether a triangle is inside the screen
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Branch condition generator logic.
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in only 25 steps.  Without these features, it would
require 69 steps.  Figure 9 compares the code
required for clipping in the conventional method
and the new method.

4. Clock design methodology
The clock design methodology is a key factor

in designing high-performance processors in a
short time.  For the bus unit, the ability to set the
clock signal early or late is a highly requested fea-
ture because the AC specification of the AGP is
very tight.8)  Figure 10 shows the block diagram
of the bus clock tree we adopted.  To fulfill the
requirements of the hold time, a through latch is
used between input I/O and FFs so that the latch
can hold valid data until the first half of the clock
period.  Therefore, it is necessary to input an ear-
ly clock to the latches.  On the global clock
distribution, the clock trunks are automatically
jogged to make them equidistant.  On the local
clock distribution, the clock buffers are automat-
ically inserted by a CAD tool.  A single-level buffer
is inserted for the latch clock, and multi-level buff-
ers are inserted for the FF clock.  In this way, the
clock skew between the latch clock and FF clock

is automatically established.
The only part of the bus clock tree requiring

manual adjustment is the propagation delay of the
delay line connected to the reference signal input
of the PLL.  This delay line delays the reference
signal by the average of the clock propagation de-
lay from the PLL output to the latches and the
propagation delay from the PLL output to the FFs.
Because the delayed clock is in phase with the
External AGP clock, the timing relationship shown
in Figure 11 is established.  This clock design
methodology enabled us to quickly design this
high-performance processor because only the PLL
block had to be optimized manually.

5. Evaluation
To evaluate the 3D geometry performance in

terms of polygons per second, we hand-coded a
program for use as a benchmark.  The input for
this program was an x, y, z coordinates value and
its normal vector with respect to the vertex it be-
longed to.  For this input, the benchmark program
performs transformation of the vertex coordinates
by parallel projection, normal coordinate transfor-
mation, and lighting, which is a typical geometry-
related execution sequence for a polygon to be
displayed on the screen.  We ran this program on
a software simulator6) and found that it took only
48 cycles to complete the program.  This result
corresponds to a performance of 6.5 M polygons
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per second when this chip is running at a 312 MHz
clock frequency.  Figure 12 shows a Shmoo plot
obtained by applying the test vector for activat-
ing the critical path estimated by static timing
analysis of this chip.  The plot predicts 312 MHz
(3.2 ns cycle time) operation for the chip at 2.5 V.
Table 1 lists the technology-related features and
die characteristics.  Figure 13 shows a photo-
graph of this chip.

6. Conclusion
A geometry processor for 3D graphics sys-

tems has been developed.  The processor has a
four-way VLIW architecture with a software by-
pass mechanism and uses SIMD instructions.  A
performance of 2.5 GFLOPS and 6.5 M polygons
per second has been achieved at 312 MHz.  The
processor has special condition registers and a
branch condition generator which successfully
reduces the number of instruction steps for clip-
ping operations.  An automatic clock delay tuning
methodology is used to achieve a high clock fre-
quency in a short design time.  The processor has
been implemented with a 0.21 µm, 2.5 V, three-
layer metal CMOS technology on a 9.18 mm ×
9.11 mm die.
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