
9FUJITSU Sci. Tech. J.,36,1,pp.9-16(June 2000)

UDC 621.3.049.771.14:681.325.65

Techniques for Effectively Applying Model
Checking to Design Projects

VTsuneo Nakata VSatoshi Kowatari VHiroaki Iwashita VKoichiro Takayama
(Manuscript received February 25, 2000)

This paper describes some techniques for applying model checking to actual design
projects. Because of the rapid growth of digital systems, logic verification will be a
main problem in the design flow. Although simulation-based verification has been
adopted, it is widely accepted that the evolutionary progress of simulation techniques
will not provide a solution to the verification crisis. We have been conducting research
on formal verification, especially on model checking. We have developed some ad-
vanced techniques that should work effectively on actual designs and have applied
our tool "BINGO" to some design projects. This paper compares model checking with
simulation-based verification. It also describes how to use model checking techniques
complementally with simulation.

1. Introduction
After continuous research over 10 years, sym-

bolic model checking is now considered to be an
effective method for verifying complex designs. It
is, however, only able to handle small designs with
a few hundred registers. The research on model
checking has been mainly focused on verification
of abstract design models rather than verification
of actual designs. Most designers regard symbol-
ic model checkers as effective tools for designs of
limited areas, although some research has been
conducted to overcome this situation.

This paper describes a set of fringe technolo-
gies for the application of symbolic model checking
to actual designs. To fill the gap between theory
and practice, we have to integrate technologies
that are mainly focused upon HDL manipulations.
In Chapter 2, symbolic model checking and its
recent extensions are presented. Chapter 3 de-
scribes some techniques for converting and
reducing design models into more effective ones,
and Chapter 4 describes some techniques for ex-
tracting properties for verification. In Chapter 5,

an actual application of these techniques is de-
scribed as a case study.

2. Symbolic model checking
Symbolic model checking1),2) is a method of

proving mathematically that a design satisfies a
given property such that:
• The design is expressed as a finite state

machine defined by a logic function.
• The property is expressed as a set of tempo-

ral logic expressions.
• The proof is done by an implicit state tra-

versal algorithm using binary decision
diagrams.3)

Symbolic model checking is suitable for ver-
ification of temporal relationships between
signals. Some typical examples of properties are:
• Deadlocks never occur.
• An Acknowledge signal should be asserted

within 12 cycles after a Request signal is
asserted.

• The value of a certain register should not be
updated until it is to be used.

10 FUJITSU Sci. Tech. J.,36, 1,(June 2000)

T. Nakata et al.: Techniques for Effectively Applying Model Checking to Design Projects

Logic simulation has been widely used as a
verification tool for hardware. However, while log-
ic simulation requires the input vectors of the
design and the quality of verification depends
heavily on the quality of the vectors, symbolic
model checking automatically investigates all pos-
sible behaviors and proves that the property is
satisfied. Since serious design errors can be hid-
den among the behaviors that designers cannot
easily check, symbolic model checking should,
therefore, be a powerful tool for hardware verifi-
cation.

The cost of computation in symbolic model
checking is very large. Theoretically, it is consid-
ered to grow exponentially with the number of
registers in the design. Currently available sym-
bolic model checking tools can handle designs
having up to a few hundred registers, but there
may be some cases when even a few hundred is
too large a number for these tools.

To overcome the exponential growth of com-
putation, research on the following has been
conducted:
• Model checking with bounded time frames.4)

• Model checking based on automatic test pat-
tern generation algorithms.5)

• Model checking based on satisfiability check
algorithms.6)

These three methods can handle larger
designs in some cases, but they also introduce
other constraints such as limits on the circuit or
properties.

3. RTL manipulation techniques
Most designers now use hardware descrip-

tion languages to design hardware, especially at
the register transfer level (RTL). Figure 1 shows
a typical verification flow for applying symbolic
model checking to RTL designs. This chapter fo-
cuses on the devices used to generate an effective
verification model from RTL descriptions.

3.1 Generation of finite state machines
from RTL descriptions
Verification models are expressed as finite

state machines (FSMs) in symbolic model check-
ing. Since the RTL descriptions describe data
transfers between registers, we can find a direct
mapping from an RTL description to an FSM. In
reality, since actual descriptions reflect the struc-
tures of hardware, the conversion from an RTL
description to a finite state machine is not
straightforward. There are three issues concern-
ing conversion:
• Asynchronous signals
• Multiple clocks
• Bi-directional signals

In RTL descriptions, we can assume that all
signals except reset should be synchronous. Since
a reset mainly sets registers to initial values, we
can eliminate the reset signal and assign a set of
initial states to the FSM. When the design uses
asynchronous signals, the transitions of the FSM
should also be asynchronous, which will raise the
computational complexity of verification signifi-
cantly.

If a design has only one clock, we can express
its behavior by a finite state machine that has
transitions synchronized with the clock. When a
design has two or more clocks, we have to define a
virtual clock as shown in Figure 2, with which
all of the actual clocks are synchronized. The vir-
tual clock drives the different sets of registers, and

RTL
description

Reduction

Error
correction Errors

identified

Counter-
examples

Properties

Logic simulation

Model checker

Verification
model

 case (state)
 IDLE:state = GO;
 TRNS:
if (cond ! = OK)
.....

 case (state)
 IDLE:state = GO;
 TRNS:
if (cond ! = OK)
.....

 $nil = signal(...)
 $target = signal...
 $path = find_path...
.....

Figure 1
Typical verification flow.

11FUJITSU Sci. Tech. J.,36, 1,(June 2000)

T. Nakata et al.: Techniques for Effectively Applying Model Checking to Design Projects

the enable logic guarantees that each set is trig-
gered correctly.

The FSM is composed of a set of registers and
combinational logic. The combinational logic spec-
ifies a function that describes the transitions from
the current states to the next states, and all sig-
nals in it should be unidirectional. If a design
contains a bi-directional signal, it should be con-
verted into a pair of unidirectional signals and
only one of these signals should be active at a time.

3.2 Reduction of RTL descriptions
As mentioned earlier, symbolic model check-

ing cannot be applied to large designs. Most
properties for verification, however, are highly lo-
calized, so we can restrict the symbolic model
checking of any particular property to the portion
of the circuit where the checking will work well.

The purpose of RTL reduction is to eliminate
the portions of the circuit that need not be consid-
ered for verification. Generally, symbolic model
checking focuses on the verification of temporal
dependencies between control signals. We can,
therefore, eliminate a large portion of the circuit
by ruling out most data path signals. Because
RTL reduction may yield a model that has a dif-
ferent behavior from the original one, the
reduction process should be done very carefully.

There are four basic types of reduction
procedures. These have been developed based on
experience with applying symbolic model check-
ers to actual designs. The four types are:
• Assignment and propagation of constant values

• Bit width reduction
• Full control of internal signals
• Reduction of items in enumeration data types

The first type forces the value of a signal to a
certain constant and then propagates its effect.
When a model has a set of exclusive behaviors,
we can fix the model’s behavior by setting some
control signals to constant values to get a smaller
model. This may cause under-approximations in
verification, which means that:
• If the verifier finds an error, it is an actual

error in the original model, and
• even if the verifier does not find an error, the

original model is not necessarily OK.
The bit width reduction is mainly applied to

data path signals. When the values on the multi-
bit data path do not affect the verification process,
the bit width can be reduced to 0 or 1 and the
related registers can also be eliminated. This may
cause over-approximations in verification, which
means that:
• If the verifier says OK, it means the original

model is also OK, and
• even if the verifier finds an error, we cannot

say the error will occur in the original model.
If we find that the value of a register can be

fully controlled from the primary inputs, we can
treat the output of the register as a pseudo pri-
mary input. This may result in full control of
internal signals and does not cause any approxi-
mation in verification.

Finally, the reduction of items in enumera-
tion data types means the amalgamation of items
that are equivalent under verification. In the case
of verifying pipelined control for microprocessors,
we do not distinguish between the ADD, SUB-
TRACT, AND, and OR instructions. We can
therefore merge these instructions to get a small-
er set, and the design size will also be significantly
smaller. However, this may also cause over-ap-
proximation.

The conversion procedures are implemented
as transformations of RTL descriptions. The com-
piler translates the RTL descriptions into an

Clock A

Clock B

Register triggered
by clock A

Virtual clock

Enable
logic

Register triggered
by clock B

Figure 2
Virtual clock.

12 FUJITSU Sci. Tech. J.,36, 1,(June 2000)

T. Nakata et al.: Techniques for Effectively Applying Model Checking to Design Projects

internal data structure called the “control-data
flow graph (CDFG),” which contains control flows,
data flows, and their relationships. Figure 3
shows an example CDFG and its reduction. In
Figure 3 (a), a statement in an RTL description is
converted into a CDFG structure by the compiler.
The control flow graph contains a branch node
(BR), two assignment nodes (S), and a merge node
(MG), which express the structure of the state-
ment.

If we assume that signal X should not affect
the properties, we can apply reduction procedures
to this statement. First, the statements on the
assignment to X in the data flow graph and the
related nodes in the control flow graph are elimi-
nated by bit width reduction (3-(b)) because signal
X does not affect verification. This will leave a
meaningless control flow graph that contains only
a branch node and a merge node. If we erase the
graph, then the related condition statement is also
unnecessary (3-(c)). The entire CDFG, therefore,
is eliminated.

The reduction procedures are implemented

on our HDL compiler, and the user proceeds with
the reduction step-by-step using the compiler's
GUI. Although automatic reduction is strongly
expected, current technology does not allow it. De-
signers are responsible for the overall reduction
process, and the computer applies the designated
conversion correctly.

4. Extraction of properties
One of the keys to successful verification is

to find a good set of properties. In symbolic model
checking, a property is a formula of the Computa-
tion Tree Logic (CTL).2) The CTL is a temporal
extension of propositional logic. Although it is the-
oretically sound, most designers think it is
non-intuitive and hard to learn. Designers usu-
ally use time diagrams to express temporal
dependency among signals and derive properties
from them.

To describe properties, we introduced Path
Set Expressions (PSEs),7),8) which are regular
expressions for characterizing state transition
sequences.note 1) A PSE matches an infinite
sequence only when it includes the “**” operator.
A list of available forms of PSEs are shown below
arranged in order from the highest to lowest pre-
cedence:
• “^” matches one of the initial states.
• “.” matches arbitrary single-step sequences.
• “[f]” matches the single-step sequence at

which propositional logic formula f is true.
• “P**” matches the infinite sequences that are

matched by P an infinite number of times,
where P must not match any infinite sequence.

• “P{n, m}” matches the sequences that are
matched by PSE P at least n times but not
more than m times.

• “P{n,}” matches the sequences that are
matched by P at least n times.

• “P+” is equivalent to “P{1,}”, “P*” is equiva-
lent to “P{0,}”.

note 1) Theoretically, model checking for PSEs is
classified as a variety of language contain-
ment checking.9),10)

(a)

(b)

(c)

Original description
CDFG

CFG DFG

BR

MG

if(A == 1)begin
 X = 0;
end else begin
 X = 1;
end

S
S

(A==1)

BR

MG

(A==1)

X = 0
X = 1

T F
BR

MG

S
S

(A==1)

X = 0
X = 1

T F

T F

(A==1)BR

MG

(A==1)T F

Figure 3
Example CDFG and its reduction.

13FUJITSU Sci. Tech. J.,36, 1,(June 2000)

T. Nakata et al.: Techniques for Effectively Applying Model Checking to Design Projects

Figure 4 shows the intuitiveness of the PSE
properties. This time diagram expresses a prop-
erty such that if signal p is asserted, then signal q
should be asserted accordingly. To compose a PSE
property, the total interval is divided into four
subintervals according to the values of p and q.
The first subinterval means “signal p is deassert-
ed, and signal q can have an arbitrary value,”
which is written as “[~p]” in a PSE. A similar pro-
cess is applied to the rest of the subintervals, and
we can get the final PSE as shown in the figure.
While this expression directly corresponds to the
time diagram, the PSE can include more informa-
tion than the time diagrams can do. If the interval
between the assertions of p and q is 3 to 5 cycles,
the PSE expression should be “[~p][p][~q]{3,5}[q].”
In the time diagram, we have to add an informal
comment to express this information, while the
PSE can express this formally. If we use CTL for
properties, we have to write the formula shown in

Figure 4. Errors are likely to be made when we
derive such a complex formula from this time dia-
gram because it is quite a difficult task.

The PSEs, therefore, provide a quick and easy
way to form properties systematically from speci-
fications expressed as time diagrams and/or
natural languages.

5. Case study: multimedia processor
We have developed a symbolic model check-

er called “BINGO” and an HDL reduction system
and have applied them to the design projects
shown in Table 1. This chapter describes the ap-
plication of BINGO to a multimedia processor.11)

The block diagram of the processor is shown in
Figure 5. Since the processor contained more
than 10 000 registers and could not be handled
by symbolic model checkers, we focused on a por-
tion of the circuit and verified with the following
steps.

Figure 4
Expression of properties.

PSE

CTL

[¬p] [p] [¬q] * [q]

[¬p] [p] [¬q] * [q]

AG (¬p AX (p AX AF q))

Table 1
Applications of BINGO.

Multiprocessor system

Network switch for servers

Multimedia processor

Switchboard subsystem

Embedded processor

VLIW processor

Behavior

Behavior

RTL

RTL

RTL

RTL

Cache coherence protocol

Bus protocol

Bus arbitration

Clock synchronization

Memory/bus control

Cache control

Guaranteed correctness of protocol

Guaranteed no livelocks

Revealed incomplete correction against bus arbitration errors

Revealed malfunction in initialization

Revealed possibility of register leakage

Revealed malfunction in cancellation of instructions

Verification resultsTarget of verificationDesign
levelDesign

Figure 5
Multimedia processor.

External
I/O

Internal
I/O

Graphic
controller

Accelerator

Multimedia
processor BB-? : Bus bridges

CPU

BB-H

BB-I BB-S SDRAM
I/F

BB-M

SDRAM

14 FUJITSU Sci. Tech. J.,36, 1,(June 2000)

T. Nakata et al.: Techniques for Effectively Applying Model Checking to Design Projects

• Define target
The advantage of symbolic model checking
is that it can be used to check complex con-
trols exhaustively. In this case, the target
was the bus arbitration algorithm, which is
very complex and highly parallel. The pro-
cessor has four types of busses, which are
connected via bus bridges.

• Extract a portion of the design
To verify the algorithm for arbitration be-
tween the bridges, the verification model had
to include the four bridges and the SDRAM
interface. The other units could simply be
eliminated by the “full control to internal sig-
nals” reduction procedure. The original
description had 60 000 lines of Verilog-HDL
code and more than 10 000 registers. The
extracted description had 15 000 lines and
4000 registers.

• Reduce the verification model
Since we focused on the arbitration, the data
path part was completely independent of the
verification. Then, we could eliminate the
signals and registers related to the data path
by the “bit width reduction” reduction proce-
dure. The resultant description had 9000
lines and 500 registers.

• Extract properties
The eight properties were extracted from the
specification related to bus accesses. For ex-
ample, the data must be returned when the
processor sends a request for data to SDRAM.
This task is also crucial in simulation-based
verification. While we have to specify a
complete behavior for simulation-based ver-
ification, we can concentrate on essential
information in symbolic model checking. The
detailed behavior is explored automatically.

• Apply BINGO
We applied the properties to the original de-
sign, which contained several design errors,
and to the corrected design. In BINGO, the
properties, the script for verification, and the
formatting of the results are written in Perl.

We obtain the verification results by running
the Perl script as a form of Yes or No and
obtain counterexamples in addition when the
results are No.

• Analyze the results
BINGO revealed the known design errors in
the original design and proved that they no
longer survived in the corrected design with
one exception that still caused a malfunction
in bus arbitration. This information was re-
ported to the designers, and the error was
corrected before fabrication. The number of
states traversed in this verification process
exceeded 1013; a number which logic simula-
tion is unlikely to be able to cover.
The time required for this verification pro-

cess was as follows:
• Two person-months for understanding the

design
• Two person-months for reduction
• Two person-months for verification (includ-

ing diagnosis)
We could not prepare automatic reduction

tools in time for the reduction. However, based
on the experience we gained, we estimate we will
be able to halve the amount of work in the future.
As shown in this case study, the application of
symbolic model checking to a large design takes a
long time. The most work, however, was devoted
to understanding the design. If the verification
team knows the design well, they will get the first
verification results within a month. Logic simu-
lation can do almost nothing with the verification
of complex behaviors when units work interactive-
ly. Symbolic model checking will be a sole solution
in these cases and will provide results that justi-
fy the required person-months.

6. Conclusions
We have described the effectiveness of sym-

bolic model checking for the verification of large
designs. To accomplish successful results, it is
mandatory to introduce RTL manipulation tools
and the methodology of property extraction.

15FUJITSU Sci. Tech. J.,36, 1,(June 2000)

T. Nakata et al.: Techniques for Effectively Applying Model Checking to Design Projects

Since we cannot expect a drastic advance in
the research on symbolic model checking based
on BDD techniques any time soon, we have to in-
tegrate some complementary techniques with the
current symbolic model checking to achieve ro-
bustness in the verification of large circuits.
Possible candidates are symbolic model checking
based on automatic test pattern generation and/
or satisfiability check technologies with more ad-
vanced HDL manipulation techniques. Design
methodologies are also important in verification.
Design for verifiability will be a key issue in re-
search and development in the near future.

References
1) K. L. McMillan: Symbolic Model Checking,

Kluwer Academic Publishers, 1993.
2) E. Clarke et al.: Model Checking, MIT Press,

1999.
3) R. E. Bryant: Graph Based Algorithm

for Boolean Function Manipulation. IEEE
Transactions on Computers, C-35(8), pp. 677-
691 (1986).

4) Biere et al.: Symbolic Model Checking with-
out BDDs. TACAS ’99, 1999.

5) V. Boppana et al.: Model Checking Based on
Sequential ATPG. CAV’97 Computer-Aided
Verification, pp.418-430, Springer, 1999.

6) A. Biere et al.: Symbolic Model Checking us-
ing SAT Procedures Instead of BDDs. Proc.
36th Design Automation Conference, 1999,
pp.317-326.

7) H. Iwashita et al.: CTL Model Checking
Based on Forward State Traversal. Proc.
Int’l Conf. Computer-Aided Design, 1996,
pp.82-87.

8) H. Iwashita et al.: Forward Model Checking
Techniques Oriented to Buggy Designs. Proc.
Int’l Conf. Computer-Aided Design, 1997,
pp.400-404.

9) H. J. Touati et al.: Testing Language Contain-
ment for ω-automata Using BDD’s. Proc.
1991 International Workshop on Formal
Methods in VLSI Design, 1991.

10) The VIS Group: VIS: A System for Verifica-
tion and Synthesis. Proc. 8th Conference on
Computer Aided Verification, 1996, pp.428-
432.

11) K. Takayama et al.: An Approach to Verify a
Large Scale System-on-a-Chip Using Sym-
bolic Model Checking. Proc. ICCD-98, 1998.

16 FUJITSU Sci. Tech. J.,36, 1,(June 2000)

T. Nakata et al.: Techniques for Effectively Applying Model Checking to Design Projects

Satoshi Kowatari received the B.S.
and M.S. degrees in Electrical and
Computer Engineering from Nagoya
Institute of Technology, Nagoya, Japan
in 1991 and 1993, respectively. He
joined Fujitsu Laboratories Ltd.,
Kawasaki, Japan in 1993 and then
moved to Fujitsu Ltd., Kawasaki, Japan
in 1995. He has been engaged in
research and development of comput-
er-aided design systems. His research

interests include design methodology and verification of system
level design.

Koichiro Takayama received the B.E.
and M.E. degrees in Electronic Engi-
neering from Osaka University, Osaka,
Japan in 1985 and 1987, respectively.
He joined Fujitsu Laboratories Ltd.,
Kawasaki, Japan in 1987. His research
interests include VLSI CAD systems
and design methodologies. He is cur-
rently working with Fujitsu Laboratories
of America.

Hiroaki Iwashita received the B.S. and
M.S. degrees in Electronic Engineering
from Osaka University, Osaka, Japan
in 1989 and 1991, respectively. He
joined Fujitsu Laboratories Ltd.,
Kawasaki, Japan in 1991 and has been
engaged in research and development
of computer-aided design. He spent
one year as a Visiting Scholar at
Carnegie Melon University from 1996
to 1997. He is a member of the Infor-

mation Processing Society of Japan (IPSJ). His research
interests include verification of VLSIs, especially model check-
ing techniques.

Tsuneo Nakata received the B.S. de-
gree in Electronic Engineering and the
M.S. and Ph.D. degrees in Information
Engineering from the University of
Tokyo, Tokyo, Japan in 1981, 1983, and
1986, respectively. He joined Fujitsu
Laboratories Ltd., Kawasaki, Japan in
1986 and has been engaged in re-
search and development of computer-
aided design. He spent one year as a
Visiting Scholar at the University of

California at Berkeley from 1993 to 1994. He is a member of the
IEEE and the Information Processing Society of Japan (IPSJ).
His research interests include design methodology and verifica-
tion of VLSIs.

