UDC 681.325.3

Code Generator for HPF Library on Fuijitsu

VPP5000

@ Matthijs van Waveren

@ Norman Brown

OCliff Addison

@®Pecter Harrison @Dave Orange

(Manuscript received October 23, 1999)

The Fujitsu VPP5000 supports the data parallel language High Performance Fortran
(HPF). The HPF Library gives a user access to intrinsic functions that are particularly
useful in a data parallel environment. The implementation of HPF Library presents the
challenge that all data types, all data kinds, all array ranks and all input distributions

need to be supported. The number of specific functions runs into the billions so it is

not feasible to code each individually. This paper presents a method to solve this
problem. We have developed a library generator, which consists of templates and a
template processor along with an interface to the HPF compiler. We show that instead

of implementing billions of specific functions, we only need to implement five

templates.

1. Introduction

The VPP5000 is the latest generation of
Fujitsu VPP supercomputers. The basic architec-
ture of the system is very similar to the
VX/VPP300/VPP700 discussed in Refs. 1), 2), and
3) in that it comprises a group of vector proces-
sors linked via a crossbar switch. There are,
however, several important differences, which are
listed in Chapter 2.

The VPP5000 supports the data parallel lan-
guage High Performance Fortran (HPF), version
2.0, which is based on Fortran 95. The language
specification of HPF 2.0 is described in Ref. 4),
and of Fortran 95 in Ref 5). The data parallel
programming model of HPF is single-threaded,
with a global name space, and loosely synchro-
nous parallel computation. HPF 2.0 consists of a
core language and approved extensions. One of
the notable approved extensions supported by the
Fujitsu HPF compiler is task parallelism, as
described in Section 9 of Ref. 4). The HPF/JA
extensions (Ref. 6) for optimisation of communi-

274

cation and for enlargement of description capa-
bility are also supported.

One of the language features of the core lan-
guage of HPF 2.0 is a library of intrinsic functions,
called HPF Library. These intrinsic functions
allow a user to develop portable data parallel im-
plementations of highly irregular problems, as
described by Hu et al. (Ref. 7) HPF Library con-
sists of 55 generic functions. The implementation
of this library presents the challenge that all data
types, data kinds, array ranks and input distribu-
tions need to be supported. For instance, more
than 2 billion separate functions are required to
support COPY_SCATTER when the full range of
data types, data kinds and array ranks is consid-
ered. The efficient support of these billions of
specific functions is one of the outstanding prob-
lems of High-Performance Fortran, as mentioned
by Professor Ken Kennedy at a recent HPF User
Group meeting.

This paper presents a method to solve the
problem of the astronomical number of specific

FUJITSU Sci. Tech. J.,35,2,pp.274-279(December 1999)

M. van Waveren et al.: Code Generator for HPF Library on Fujitsu VPP5000

functions. We have developed a library genera-
tor, which uses templates. The library generator
consists of a template processor and templates,
and has an interface to the HPF compiler. We show
that instead of implementing billions of specific
functions, we only need to implement five tem-
plates.

This paper consists of the following chapters:
Chapter 2 describes the Fujitsu VPP5000 Vector-
Parallel Processor; Chapter 3 describes the
functions in the HPF Library; Chapter 4 describes
the design of the Library Generator; Chapter 5
gives some examples of code generation; and
Chapter 6 is the conclusion.

2. Fujitsu VPP5000 Vector-Parallel
Processor
The differences between the VPP5000 sys-

tem and the VX/VPP300/VPP700, discussed in

Ref. 1) and 2) are:

e The clock pulse has been reduced to 3.3 ns
(300 MHz) and the width of the vector pipes
increased from 8 to 16, giving a single-node
performance of over 9.6 Gflops.

¢ To accommodate the increased processor
performance, the interconnect bandwidth
has been increased to over 1.6 Gbyte/s bi-
directional.

e The design of the vector processor has
changed with the number of vector pipes re-
duced from seven to four: a single load/store
pipe, a multiply and/or add pipe, a divide
and/or square root pipe and a mask pipe.

e The scalar processor has been substantially
enhanced, having a peak performance of
1.2 Gops and now including a 2 Mbytes
4-way set associative secondary cache.

¢ The memory system has been improved to
provide some degree of memory caching and
also includes special hardware to handle
efficiently certain data access patterns. Each
processor can be configured with up to
16 Gbytes of 45 ns SDRAM. The memory to
CPU bandwidth has increased to 72.8 Gbyte/s.

FUJITSU Sci. Tech. J.,35, 2,(December 1999)

e Toallow for the larger per-node memory size,
the operating system has full 64 bit address-
ing capability.

3. HPF Library functions

The HPF Library is described in Section 7 of
the High Performance Fortran Language Specifi-
cation (Ref. 4). It consists of five groups of
procedures, as listed below.

The number of specific functions in the list
is calculated on the basis of data types, data kinds
and array ranks. The Fujitsu VPP5000 supports
4 kinds of INTEGER, 3 kinds of REAL, 3 kinds of
COMPLEX, 4 kinds of LOGICAL, and one kind of
CHARACTER. Fortran 95 specifies that the rank
of an array can have a maximum value of seven.
e Array Combining Scatter Functions. This

group consists of 12 generic functions. The

number of specific functions is approx. 10 billion

(9 680 449 961).

e Array Prefix Functions. This group consists
of 12 generic functions. The number of spe-

cific functions is 378 875.

e Array Suffix Functions. This group consists
of 12 generic functions. The number of spe-

cific functions is 378 875.

e Array Reduction Functions. If we include the

Fortran 95 array reduction functions (Chap-

ter 13 of Ref. 5) in this group, there are 11

generic functions. The number of specific

functions is 15 050.

e Array Sorting Functions. This group consists
of 4 generic functions. The number of specif-

ic functions is 1120.

The numerical algorithms used in the imple-
mentation of the HPF Library functions are
described in Ref. 8). The selection criteria are:

e Speed and scalability with respect to prob-
lem size on a single VPP5000 processor;

¢ Conducive to running in parallel on several
processors with minimal communications;

e Able to perform the operations on all required
data types, data kinds, array ranks, and
array distributions.

275

M. van Waveren et al.: Code Generator for HPF Library on Fujitsu VPP5000

This paper focuses on the method used to solve
the problem of the implementation of the billions

of specific functions.

4. Design of library generator

The library generator was designed to mini-
mise the number of templates, by making them
as independent as possible of type, kind, rank and
distribution. The consequence is that the devel-
opment cost is significantly reduced and the
product is easily maintainable.

4.1 Overview
The library generator consists of two main
components, as shown in Figure 1:
e Templates
e Template processor
When the HPF compiler encounters a call to
a HPF Library function in the user code, it calls
the library generator and passes the following in-
formation in the interface:
e Name of the required function.
e Type, kind, rank, upper bound and lower
bound of all dummy arguments.
e Arrangement of the processors.

e Distribution of the dummy arguments.

The template processor then reads in the
template corresponding to the required function
and generates the function code corresponding to
the properties of the dummy arguments. The func-
tion code is passed back to the compiler through
the interface.

4.2 Function templates

The function templates encapsulate the al-
gorithms for the HPF Library functions. They
contain the following language items:

o Fortran 95 code, as described in Ref. 5).

o HPF 2.0 directives, as described in Ref. 4).

o HPF/JA directives, as described in Ref. 6).

e CPP,C pre-processing, directives, as described

in Ref. 9).

° Template parameters.
e Template macros.

Only five templates are necessary for the
HPF Library, one for each of the five groups of
procedures listed in Chapter 3.

4.2.1 Template parameters

The template parameters correspond to the
properties of the dummy arguments. The template
parameters listed in Table 1 are implemented.
They start and end with an at-sign, in order for

Name of function
User HPF H dummy parameters : Template Procedure
- : :
code Compiler Generated ~———— processor Templates
function code '
Interface : Library generator
Figure 1

Overview of integrated HPF compiler-library generator system.

276

FUJITSU Sci. Tech. J.,35, 2,(December 1999)

M. van Waveren et al.: Code Generator for HPF Library on Fujitsu VPP5000

the template processor to distinguish them from
Fortran 95 variables.

4.2.2 Template macros

We have developed a set of template macros,
in order to generate instances of character strings
used to form the varying parts of the function code.
The following template macros are implemented:
e Generation of a list of characters, separated

by commas.
e Generation of a list of variable names:

— with or without a colon;

— between brackets;

— possibly omitting one;

— with a comma.
e Generation of a list of size specification

indexes:

— possibly omitting one;

— with lower and upper bounds;

— with a comma;
e Generation of a dimension attribute:

— possibly omitting one rank;

— with a list of colons.

¢ Generation of an index list for array syntax.

Table 1
List of template parameters.

e Generation of the first line of a multi-

dimensional FORALL construct.

4.2.3 Loops

The FDO construct has been introduced, in
order to generate lines of pseudo-code and to be
able to loop over the above-mentioned template
macros.

The syntax of the FDO construct is as follows:

fdo-construct is FDO loop-control

fdo-block
END FDO
loop-control is fdo-var = const, const, const
const is signed-int-literal-constant
fdo-var is ~scalar-int-variable ®

The FDO construct is only allowed in tem-
plates. The fdo-block may contain any of the
language items allowed in templates. Nested FDO
constructs are allowed. The execution of the FDO
construct follows the same execution rules as the
Fortran 95 DO construct (Ref. 5).

Template parameter

Description

@type_xxx@ Type of parameter xxx
@kind_xxx@ Kind of parameter xxx
@rank_xxx@ Rank of parameter xxx

@lbound_n_xxx@

Lower bound in dimension n of variable xxx

@ubound_n_xxx@

Upper bound in dimension n of variable xxx

@function_name @

Unique name of the function

@rank_processors @

Rank of the PROCESSOR array

@Ilbound_n_processors @

Lower bound in dimension n of the PROCESSOR array

@ubound_n_processors @

Upper bound in dimension n of the PROCESSOR array

@name_template_xxx@

Name of the template for parameter xxx

@rank_template_xxx@

Rank of the template for parameter xxx

@Ilbound_n_template_xxx@

Lower bound in dimension n of the template for parameter xxx

@ubound_n_template_xxx@

Upper bound in dimension n of the template for parameter xxx

@format_n_template_xxx@

Format of the distribution in dimension n of the template for parameter xxx

@size_n_template_xxx@

Distribution blocksize in dimension n of the template for parameter xxx

@format_n_xxx@

Format of the distribution in dimension n for parameter xxx

@size_n_xxx@

Distribution blocksize in dimension n of parameter xxx

FUJITSU Sci. Tech. J.,35, 2,(December 1999)

277

M. van Waveren et al.: Code Generator for HPF Library on Fujitsu VPP5000

4.3 Template processor
The template processor has the following

processing sequence:

1) Obtain name of required function, properties
of the dummy arguments, and arrangement
of the nodes from the interface.

2) Convert the properties of the dummy argu-
ments into template parameters and/or CPP
predefines.

3) Generate a specific name for the function.

4) Read in the corresponding function template.

5) Process the CPP directives.

6) Expand the FDO loops.

7) Expand the template macros.

8) Substitute the template parameters.

9) Pass the generated code through the inter-
face to the compiler.

5. Examples of code generation

FDO'i"=1, 5, 1
@type_B"i"@fdo_dim{A, @rank_B"i"@} :: B"

END FDO
expand FDO loop

@type_B1@ fdo_dim{A, @rank_B1@} :: B1
@type_B2@ fdo_dim{A, @rank_B2@} :: B2
@type_B3@ fdo_dim{A, @rank_B3@} :: B3
@type_B4@ fdo_dim{A, @rank_B4@} :: B4
@type_B5@ fdo_dim{A, @rank_B5@} :: B5

expand fdo_dim macro

@type_B1@, dimension(size(A,1), size(A,2)) :: B1
@type_B2@ :: B2

@type_B3@, dimension(size(A,1)) :: B3

@type_B4@ :: B4

@type_B5@, dimension(size(A,1), size(A,2), size(A,3)) :: B5

substitute template parameters

integer, dimension(size(A,1),size(A,2)) :: B1

real :: B2

real, dimension(size(A,1) :: B3

complex :: B4

logical, dimension(size(A,1), size(A,2), size(A,3)) :: B5

Figure 2
Generation of declaration statements.

278

6. Conclusion

One of the major difficulties with High Per-
formance Fortran (HPF) is the efficient generation
of HPF Library functions. We have solved this
problem by developing a library generator so that
we only need to implement five templates, one for
each of the five groups of procedures of HPF
Library.

This paper describes the design of this library
generator. It consists of templates and a template
processor. The new language items of template
parameters, template macros, and the FDO con-
struct have been designed and implemented.
These language items lead to a significant reduc-
tion in the amount of code that needs to be written.

Our method leads to a significant reduction
in development cost and to an easily maintain-
able product.

Ihpf$ processors P(@lbound_1_P@:@uboound_1_P@)
#ifdef_SUBSET_

Ihpf$ subset P

#endif

Ihpf$ distribute vi(@format_1_v1@(@size_1_v1@)) onto P
Ihpf$ distribute v2(@format_1_v2@ (@size_1_v2@)) onto P

Y

CPP directive handling

hpf$ processors P(@lbound_1_P@:@ubound_1_P @)
'hpf$ subset P

Ihpf$ distribute vi(@format_1_v1@(@size_1_v1@)) onto P
Ihpf$ distribute v2(@format_1_v2@(@size_1_v2@)) onto P

Y

substitution of template parameters

Ihpf$ processors P(1:32)

hpf$ subset P

hpf$ distribute v1(block(256)) onto P
Ihpf$ distribute v2(cyclic(128)) onto P

Figure 3
Generation of HPF directives.

FUJITSU Sci. Tech. J.,35, 2,(December 1999)

M. van Waveren et al.: Code Generator for HPF Library on Fujitsu VPP5000

References

D

2)

3)

4)

5)

6)

7)

8)

9)

N.Uchida: Hardware of VX/VPP300/VPP700
series of vector-parallel supercomputer
systems. Fujitsu Sci. Tech. J., 33,1, pp.6-14 (1997).
Y. Koeda: Operating system of the VX/
VPP300/VPP700 series of vector-parallel su-
percomputer systems. Fujitsu Sci. Tech. <.,
33, 1, pp.15-24 (1997).

E. Yamanaka and T. Shindo: Parallel
Language Processing System for High-
Performance Computing. Fujitsu Sci. Tech.
J., 33, 1, pp.39-51 (1997).

High Performance Fortran Forum: High Per-
formance Fortran Language Specification.
Version 2.0, 31 January 1997.

ISO/IEC 1539-1: 1997 Information Technology
— Programming Languages — Fortran.
Japanese Association for High Performance
Fortran: HPF/JA Language Specification.
Version 1.0, 1999.

Y.C. Hu, S.L. Johnsson, and S.-H. Teng: High
Performance Fortran for Irregular Problems.
in Proceedings of the 6 ACM SIGPLAN
Symposium on Principles and Practice of
Parallel Programming, Las Vegas, Nevada,
June 1997.

M. van Waveren, C. Addison, P. Harrison,
D. Orange, and N. Brown: HPF Library on
the Fujitsu VPP5000. Proceedings of the
HPF User Group 99, Redondo Beach, CA,
USA, August 1999.

ISO/IEC 9899:1990 Information Technology

— Programming Languages — C.

Matthijs van Waveren received the
Ph.D. degree in Computational Phys-
ics from the University of Amsterdam,
the Netherlands, in 1989. He worked
at the SARA Computer Centre in
Amsterdam as a consultant, and at
Schlumberger/Geco-Prakla R&D in
Delft and the University of Groningen
as a researcher. He joined the Fujitsu
European Centre for Information Tech-
nology, United Kingdom, in 1996 as a

Senior Researcher, where he is currently engaged in the devel-
opment of software libraries for Fujitsu supercomputers. He is
member of the programming language standardization commit-
tees ISO WGS5, NCITS J3, and NNI NC38122.

FUJITSU Sci. Tech. J.,35, 2,(December 1999)

Cliff Addison was born in Canada and
gained his Ph.D. at the University of
Toronto in 1980. He was a post-
doctoral fellow at Manchester, United
Kingdom, and has worked at the
University of Alberta, Canada, CMI
Bergen, Norway, and the University of
Liverpool, United Kingdom, primarily in
the fields of programming environments
and parallel numerical algorithms. He
joined the Fujitsu European Centre for

Information Technology, United Kingdom, in 1996 as a Research
Manager, where he has managed several development projects
on behalf of Fujitsu, including the HPF Library project.

Peter Harrison received a B.Sc. in
Applied Physics from Hull University,
United Kingdom, in 1994. He then
received an M.Sc. (with distinction) in
Advanced Scientific Computation from
the University of Liverpool, United
Kingdom, in 1996. He joined the
Fujitsu European Centre for Information
Technology, United Kingdom, in 1997
as a Researcher, and was involved in
the design and production of numerical

software libraries for Fujitsu supercomputers. He has recently
taken up the role of System Administrator at the same company.

Dave Orange received the Ph.D. de-
gree in Computer Science from the
University of Liverpool, United Kingdom,
in 1993. He worked at the University of
Liverpool as a lecturer until 1995. In
this year he joined NASoftware Ltd.,
Liverpool, where he has the position of
Software Engineer, and is engaged in
compiler design and network operating
systems.

Norman Brown received the Ph.D.
degree in Computational Mathematics
from the University of Liverpool, United
Kingdom, in 1980. He worked at
Liverpool Polytechnic as a lecturer, at
LDRA as a director, and at the Univer-
sity of Liverpool as a deputy director of
the Centre of Mathematics Software
Research. He joined NASoftware Ltd.,
Liverpool, in 1992, where he has the
position of Managing Director.

279

