
248 FUJITSU Sci. Tech. J.,35,2,pp.248-257(December 1999)

UDC 621.397.3:681.32

Development of Production Environment for
Motion Contents for Humans, Animals, and
Other Structures

VFumio Nagashima
(Manuscript received June 17, 1999)

This paper proposes an efficient method for producing contents which describe the
motions of complex structures, particularly humans and animals.  Previously, the sim-
ulation of human and animal animation was a time-consuming task that had to be
done by highly skilled people.  To make this process faster and easier, the authors
propose to use several motion dynamics techniques to generate smooth motions and
mechanisms for integrating these techniques.  This paper describes a system devel-
oped by the author that is based on this proposal and describes various key
technologies developed by the author’s recent research activities; namely, a general-
ized motion dynamics algorithm, an efficient collision analysis algorithm, and a
high-speed component software technique.

1. Introduction
Commercial CG modeling software that sup-

ports the creation of advanced static CG contents
fairly well is already available.  It is, however, still
difficult to create advanced dynamic CG contents.
Specifically, it is very difficult to create the dy-
namic motions of humans and animals because
these motions must be extremely smooth and fol-
low the laws of motion.

It is expected that difficulties in creating dy-
namic CG contents will be solved through a
dynamic simulation of natural motion based on
quick-response kinematic/dynamic algorithms in
which kinematic/dynamic concepts are applied to
the static CG world and dynamic modeling.  It is
also expected that elaborate combinations of dy-
namic simulations with data obtained from actual
human motions (derived from the latest measur-
ing instruments, for example, a motion capture
unit) will be able to create more natural motions.

2. Purpose
We decided to develop a PC-based production

environment that makes it easier for users to
produce contents that include the natural motions
of humans and animals.  Specifically, the project
aims at developing software tools, including soft-
ware packages, that enable the creation of natural
motions by merging dynamic simulations based
on quick response kinematic/dynamic algorithms
with measurement data of actual motions.  The
production of motion content requires several
kinds of technologies, a typical example of which
is the combination of motion capture data and
dynamics simulation.  Because there is often a
requirement for interactive 3-D motion contents,
our production environment makes it possible to
create motion contents in the form of an execut-
able computer program.  This paper describes the
software framework, motion integration functions,
general purpose dynamics functions, and collision
analysis functions of the production environment.



249FUJITSU Sci. Tech. J.,35, 2,(December 1999)

F. Nagashima: Development of Production Environment for Motion Contents for Humans, Animals, and Other Structures

3. Framework
3.1 Firstsight1)

The production environment is based on
Firstsight, which is a component software tool
developed by Fujitsu.  The basic concept of First-
sight is the software LSI, which is a new type of
componentware based on the concepts of object
orientation and data flow programming.  Software
LSIs bear many similarities to hardware LSIs, but
they represent a totally new approach to construct-
ing real-time applications.

There are two steps to creating an applica-
tion using Firstsight.  One is to develop an
algorithm using the process description language
C/C++ and wrapping that algorithm into a soft-
ware LSI using a software LSI builder.  The other
is to build an application using software LSIs us-
ing a wiring editor.  Figure 1 shows a screen shot
of software LSIs on a wiring editor, and  Figure 2
shows the concept of Firstsight.  The developed
software has the concept shown in Figure 3.  A
motion specialist creates software LSIs, and the
user uses them to create motion contents.

3.2 Function framework
Because the production environment is based

on Firstsight, it provides the user with software

Figure 1
Software LSIs.

Figure 2
Concept of Firstsight.

LSIs and LSI circuits.  The functions of the pro-
duction environment allow the user to construct
motion contents very flexibly because Firstsight
can combine functions by using software LSIs.
Formally, the user could not combine functions in
such a system.  The outcome of the project will
consist of six functions that are related to one
another as shown in Figure 4.  These functions
are described below.
1) Motion integration functions

These functions will read mechanism data
from a mechanism database as directed by the
user.  Also, they will create and update status data
and scenario information related to the specified
mechanism data and create an executable data
file.  The mechanism data describes structures of
humans, animals, and other linked systems.  The
status data describes physical properties at a par-
ticular moment.  These functions will also read
the executable data file, update status data for
each consecutive frame, and pass the updated sta-
tus data to the motion display functions.

Figure 3
Concept of developed software.

LSI builder

Local archive Wiring editor Application

Archive on LAN Archive on WAN

Existing software
resources

LA

Development
of element
technology

Element
technology

Motion contents
editing function

Motion
contents



250 FUJITSU Sci. Tech. J.,35, 2,(December 1999)

F. Nagashima: Development of Production Environment for Motion Contents for Humans, Animals, and Other Structures

2) General-purpose motion analysis
These functions will read status data creat-

ed with the motion contents editing functions
described in Chapter 4 and calculate what the sta-
tus data of each open or closed link (described in
Chapter 5) will be after the period ∆T.  This sta-
tus will depend on the information in the status
data that identifies open and closed links using
the algorithms described in Chapters 4 and 5.

The general-purpose motion analysis func-
tions will call the collision analysis functions and
the motion control functions internally, and instuct
them to calculate status data while taking into
account the collision force and joint torques based
on joint angle-oriented motion data.
3) Collision analysis

These functions will read status data updated
by the general-purpose motion analysis functions
to check for collisions between objects and calcu-
late the collision forces according to the algorithm
described in Chapter 6.
4) Motion control

These funcions will read status data updated
by the general-purpose motion analysis functions,
and convert the angular velocity-oriented motion
data in the status data to joint torque-oriented
motion data according to the open/closed link iden-
tification information in the status data using the

algorithms described in Chapter 5.  By making
these conversions, these functions will update the
status data so that it can be used by the general-
purpose motion analysis functions.
5) Display editing

These funtions will read status data updat-
ed by the motion integration functions, draw and
display three-dimensional CG images, and update
or modify the attributes (including the location
and color) of objects in a three-dimensional CG
space.
6) Database operation

These functions will enable new data to be
saved to the mechanism and motion databases.

3.3 Software framework
The developed software is based on Firstsight

and consists of a motion editing program, motion
execution program, and database program.  The
elementary software is built by LSI wrapper.  The
motion editing program generates an LSI circuit.
The motion execution program is an LSI circuit.
Table 1 shows the framework of the developed
software.
1) Motion contents editing program

Figure 5 shows the block diagram of the
motion contents editing program.  The program
consists of an event dispatcher LSI class, motion
data interpolation class, motion data retrieval LSI
class, executable data generation LSI class, and
integration data handling LSI class.
2) Motion contents execution program

Figure 6 shows the block diagram of a
typical motion contents execution program.  The
program consists of a content execution LSI class,
general purpose motion analysis LSI circuit, exe-
cution control LSI class,  motion control LSI
circuit, and collision analysis LSI circuit.
3) Database program

Figure 7 shows the block diagram of the da-
tabase program.  The program consists of sections
for mechanism data interpolation, motion data
combination, intermediate motion, and measure-
ment data conversion.

User

Editing screen

Information

Menu

Parameter

Menu

Parameter

Display
editing

General-purpose
motion analysis

Status
data

Motion control

Collision
analysis

Motion integration

Mechanism
data

Motion
data

Database operation  

Figure 4
Relations between functions.



251FUJITSU Sci. Tech. J.,35, 2,(December 1999)

F. Nagashima: Development of Production Environment for Motion Contents for Humans, Animals, and Other Structures

Program name Purpose

Motion contents editing program

Event control LSI class

Motion data retrieval LSI class

Motion interpolation LSI class

Executable generation LSI class

Integration data handling LSI class

Motion contents execution program

Database program

Executing LSI class

Executable data retrieval LSI class

Execution control LSI class

Motion control LSI circuit

General purpose dynamics LSI class

Collision analysis LSI class

Mechanical data processing program

Motion data processing program

Measured data processing program

Generating motion contents for humans and animals

Controlling the display and window system

Retrieving and expanding motion data for scenario

Interpolating motion

Generating an executable data file

Handling of integration file which contains entire information of contents

Executing the executable file generated by motion contents editing program

Executing LSI circuit

Retrieving and expanding the executable data to an LSI circuit

Controlling display and windows during execution

Controlling the motion

Calculating forward dynamics 

Detecting collisions and calculating collision forces

Handling of motion contents data

Combining two sets of mechanical data

Generating motion data from other structure motion data

Handling measured data

Table 1
Software framework.

Event

Editing control 
LSI class

Event 
dispatcher 
class

Event

Event

Geometry data 
display class

View control 
class

Layout
editing class

Appearance 
editing class

Kinematics data 
retrieval class

Scenario track LSI 
class

Motion data 
interpolation LSI class

Motion data retrieval 
LSI class

Motion data

Geometry 
data

Kinematics 
data

Scenario 
information

Integration data 
handling LSI class

to motion
contents
execution
program

Integration
data

Executable
data

Status data

generate

Executable data 
generation LSI class

Figure 5
Motion contents editing program.

Content execution
LSI class

Event dispatcher
class

View control LSI
class

Geometry model 
display LSI class

Kinematics data 
retrieval LSI class

Motion contents

Execution
Repeating execution

Kinematics data Geometry data

Motion data

Status data

retrieve

Motion data

Update

Execution
control
LSI class

From Motion contents
editing program

Creation and execution

Executable data expansion LSI class

View control

General purpose motion analysis
LSI circuit

•Open link forward dynamics
•Closed link forward dynamics
•Integration calculation LSI class

Motion control
LSI circuit

•Jacobian
•Open link torques
•Closed link torques 

Collision 
analysis LSI
circuit

•Collision check
•Collision force

Motion duet to
Collision

Figure 6
Motion contents execution program.



252 FUJITSU Sci. Tech. J.,35, 2,(December 1999)

F. Nagashima: Development of Production Environment for Motion Contents for Humans, Animals, and Other Structures

Menu display

Menu display

Data name input

Menu display

Data name
and mixture

Menu display

Data name input

Motion
database

Measurement
data

Input/output

Input

Input

Input/output

Output
Input

Input

Mechanism data
interpolation

Intermediate motion

Measurement data
conversion

Motion data combination

User

Data name
and mixture

Mechanism

Input/output

Figure 7
Database program.

4. Motion integration functions
The motion integration functions create mo-

tion contents in the form of software LSIs.  These
functions are as follows.
1) Motion contents editing functions

These functions will read mechanism and
motion data from the mechanism and motion
databases to create an executable data file for the
motion contents execution function.
2) Scenario editing function

This function will create scenario informa-
tion to generate an executable data file.  The user
can assign a start and end time for each charac-
ter motion.  A scenario consists of a group of
motions specified for the characters being animat-
ed.  The motion specified for an individual
character is called an editing track.  All opera-
tions are made using a mouse.  Figure 8 shows
an example screen of this function.
3) Motion contents execution function

The execution of motion contents is done
using a Firstsight LSI circuit.  The Firstsight in-
terpreter reads an executable data file and
executes it.  Firstsight uses a general purpose dy-
namics function, collision analysis function,
motion control function, and display function that
are realized with one or more LSIs.  Figure 9
shows an example screen of the motion contents
execution function.

5. General purpose dynamics function
This function determines the accelerations

of joints from their torques.  The positions and

Figure 8
Screen of scenario editing function.

Figure 9
Screen of motion contents execution function.

Figure 10
Open and closed links.

attitudes of links are calculated by the motion in-
tegration function.  The general purpose dynamics
function can generate a natural motion without a
full description of the motion.  Formally, the mo-
tion contents creator had to give a full description
of a motion being generated.

There are two types of link system: an open
link system and a closed link system (see
Figure 10).  An open link system does not have a



253FUJITSU Sci. Tech. J.,35, 2,(December 1999)

F. Nagashima: Development of Production Environment for Motion Contents for Humans, Animals, and Other Structures

loop of links.  Many industrial robots belong to
this group.  A closed link system has one or more
loop links.  Some example of members of this group
are the playground swing and certain parallel-
mechanism industrial robots.  In motion contents,
there are many closed link systems.  For example,
when a human grabs something by both hands,
the link system containing the hands is a closed
link system.  The treatment of closed link systems
is therefore important when creating a motion
content.

Open link system dynamics have been stud-
ied in detail2),3) and many simulation systems can
calculate their behavior.  Closed link systems
however have not been studied well and many sim-

ulation systems cannot calculate their behavior
efficiently.  Our algorithm for closed link systems,
which is highly efficient, is described below.
1) Expression of link system

A link is defined using four pointers.  Table 2
shows the functions of the pointers.  Figure 11
shows an example system of links.  The virtual
link in Figure 11 is used for closed links.
2) Forward dynamics

The equation for the motion of a link system
is as follows:

τ = A(q)q̈  + b (q, q̇ ), (1)

where τ is the torque in the joint, q is the general
coordinates of the link system, A(·) is the inertia
matrix of the system, and b(·) is a nonlinear term.
To determine q̈   using τ requires forward dynam-
ics.  However, because the inverse dynamics are
generally easier to solve than the forward dynam-
ics, the forward dynamics are calculated by the
inverse solution method using inverse dynamics.
Then, we determine q̈   using τ by inversely solving
the inverse dynamics.  The forward dynamics are
therefore solved as follows:
a) Obtain b(·) by setting the acceleration of all
joints to zero.
b) Obtain each column of  A(·) by setting the
acceleration of all joints to unity.
c) Obtain q̈   using the following equation:

q̈   = A-1(q)(τ - b(q, q̇ )) . (2)

Because this method can be applied to open
links and to closed links, it is not necessary to dis-
tinguish between an open link and closed link
system.
3) Inverse dynamics of closed link system

Because the inverse dynamics of an open link
system have been established in previous papers,4)

we will show a way to solve the inverse dynamics
of a closed link system.  Nakamura’s method is
known as an efficient method for solving the be-
havior of a closed link system.5),6)  This method

Pointer name Function

Represents the highest-hierarchy link. 
This link is nearest to the base link. 

Represents the lowest-hierarchy link.
This link is farthest from the base link.

Represents the brother link connection.

Distinguishes a virtual link from a real link.

Parent pointer

Child pointer

Brother pointer 

Virtual pointer

Table 2
Link structure pointers.

Base

LinkDv

LinkD

LinkE

LinkC

LinkB

LinkA

Real link

Brother

Base

: Virtual link

Child

LinkA

LinkB

LinkC

LinkE

LinkD
Link name

Parent

Figure 11
Example link system.



254 FUJITSU Sci. Tech. J.,35, 2,(December 1999)

F. Nagashima: Development of Production Environment for Motion Contents for Humans, Animals, and Other Structures

proceeds as follows:
a) Determine the general coordinate system θG

to express the state of the closed link system.
b) Cut some joints to transform the system to
an open link system, and name the cut joints θOpen.
c) Calculate the Jacobian W between θG and
θOpen.
d) Calculate the Jacobian S between θG and θAct,
where θAct is the real joint value in the closed sys-
tem.
e) Obtain general force τG using the following
equation:

τG = WTτOpen . (3)

f) Calculate driving force τAct using the follow-
ing equation:

τG = STτAct . (4)

The method for determining the Jacobian W
and S is not known except for a simple plane
figure structure and certain other structures.
However, natural structures, including humans
and animals, are not simple.  We therefore need a
general method to determine the Jacobian W and
S.  The method used in our software to determine
the Jacobian W and S is described below.
4) Calculation of W and S

Our method for calculating W and S is as
follows:
a) Calculate the matrix which represents the
constraint condition of the closed link system.  This
matrix is determined by the equal condition of
virtual link velocities and real ones.
b) Select the independent row from the above
matrix, and calculate the degrees of freedom.
c) Select the joints which are numerically equal
to the degrees of freedom, name them using gen-
eral coordinate system θG, and name the other
joints using coordinate system θS.
d) Decompose the matrix calculated in a) to the
corresponding general coordinate system θG and
name it JG, and name the other matrix JS.

e) The Jacobian between all joints angles and
the general coordinate system is as follows:

H
E

J JS G
=

−




−1 . (5)

f) Calculate W by taking the virtual cutting
joints assuming that the joints between virtual
links are cut.
g) Calculate S by selecting the part of H which
corresponds to the driving joints.

Because this method does not need special
information about the degrees of freedom or the
characteristics of structures, it is truly a general
method.

We can obtain natural motion using the for-
ward dynamics of open link and closed link
systems.  The open link forward dynamics are well
known, and the closed link forward dynamics have
been described above.

6. Collision analysis
Motion is changed by the forces of collisions.

The collision analysis function watches for colli-
sions and monitors the distances between the
links.  A collision is assumed to have occurred
when the distance between two links is smaller
than an infinitesimal amount.  When a collision
occurs, this function calculates the force of the
collision and the change of motion of links for the
motion analysis function.

The system uses two methods of collision de-
tection and a mechanism for switching between
these two methods.  The two methods are the suc-
cessive Gilbert method and the bubble collision
method.  The collision force and the changes of
the links’ motions are calculated using the equa-
tion of momentum and energy.  Formally, collision
detection was very slow or provided only partial
results.  Because of the switching mechanism,
however, the algorithm in this system is fast and
fully functional.
1) Preprocessing for collision detection
a) Processing for creating a convex hull7),8)

First, it is necessary to create a convex hull



255FUJITSU Sci. Tech. J.,35, 2,(December 1999)

F. Nagashima: Development of Production Environment for Motion Contents for Humans, Animals, and Other Structures

for each link because the successive Gilbert meth-
od can handle only convex objects.  The vertex
point inside the link geometry is ignored in this
process.
b) Creating the proximity list

This process creates the proximity list of the
vertex by assuming that the link geometry is ex-
pressed by a triangular patch.  It creates the
connections between the vertexes of the triangle
and outputs them to a file for use by the succes-
sive Gilbert method.
c) Creating hierarchical spheres of links

This process creates spheres which cover a
polygon hierarchically.  The centers of these
spheres are on the polygon surface.  The spheres
are used by the bubble collision method.
2) Algorithm for collision detection
a) Successive Gilbert method

This process calculates the distance between
two links using the previous calculation’s infor-
mation for efficiency.  The inner products of all
vertexes are calculated at each collision calcula-
tion using the ordinary Gilbert method.9),10)  We
assume that the nearest point of contact between
any two links is near the nearest point that was
calculated in the previous time step.  The inner
products of vertexes are calculated near this pre-
viously calculated point.  This is an efficient
method for finding the nearest point of contact
between two links by using only the near-point
inner products using the proximity list file.
b) Bubble collision method11)

Bubble collision is a method for finding the

lowest layer sphere pair and measuring the dis-
tance between them using the ordinary Gilbert
method.
c) Method used in developed software12)

This method switches between the successive
Gilbert method and the bubble collision method
according to the distance between the convex hulls
of two links.  It can calculate the distance between
a group of links in the same way that distances
between links in kinematics models are calculat-
ed.  This method uses a superior tree to quickly
find the nearest pair of links.  An example of a
superior tree is shown in Figure 12.
3) Collision force

The method for calculating the collision force
and resultant change of motion is shown below.
Table 3 explains the symbols used in the method.

The motion equation of the link system R is:

MRθ̈ R + BR = JT
RF . (6)

The motion equation of the link system L is:

MLθ̈L + BL = JT
L(-F) . (7)

Figure 12
Example of superior tree.

Symbol Meaning

Inertia matrix of link system R

Inertia matrix of link system L

Bias vector of link system R

Bias vector of link system L

Jacobian matrix of link system R at collision point

Jacobian matrix of link system L at collision point

Joint acceleration of link system R at collision instant

Joint acceleration of link system L at collision instant

Joint velocity of link system R before collision instant

Joint velocity of link system L before collision instant

Joint velocity of link system R after collision instant

Joint velocity of link system L after collision instant

Collision force vector

Collision force

Unit vector of collision force

Infinitesimal time

Integration time step

MR

ML

BR

BL

JR

JL

θ̈R

θ̈L

θ̇R

θ̇L

θ̇'
R

θ̇'
L

F

f

r

dt

∆t

Table 3
Symbols.



256 FUJITSU Sci. Tech. J.,35, 2,(December 1999)

F. Nagashima: Development of Production Environment for Motion Contents for Humans, Animals, and Other Structures

(9)

(10)

(11)

The energy balance equation for before and after
the collision is:

˙

˙

˙

˙

˙

˙

˙

˙'

' '

'

θ
θ

θ
θ

θ
θ

θ
θ

R

L

T
R

L

R

L

T

R

L

R

L

M

M

M

M
R

L




























 =

































0

0

0

0
,(8)

where

˙̇
˙ ˙

,

˙̇
˙ ˙

,

.

'

'

θ θ θ

θ θ θ

R
R

L
L

R

L

dt

dt

F f r

= −

= −

= ⋅

The impulse is:

f dt
b

a
⋅ = −

,
f dt

b

a
⋅ = −

, (12)

where

a = MJT
RMRMJR+ MJT

LMLMJL  , (13)

b = MJT
RMRθ̇ 

R+θ̇ T
R MRMJR +  MJT

LMLθ̇ 
L+ θ̇ T

L ML MJL ,
(14)

MJR =  MR
-1 JT

R r , (15)

MJL =  –ML
-1 JT

L r . (16)

Assuming that the collision force is constant over
the integration time step, the collision force is cal-
culated by:

F
f dt

t
r= ⋅

∆ .
(17)

And the joint velocities after collision are:

θ̇'
R = MJR   f · dt+θ̇ 

R , (18)

θ̇'
L = MJL  f · dt+θ̇ 

L . (19)

7. Conclusion
We have proposed an efficient method for pro-

ducing contents which contain the motions of
complex objects, particularly those of humans and
animals.  We have developed a production envi-
ronment for motion contents, including motion
contents for humans and animals, using the pro-
posed method.  This environment helps the user
to create a complete motion content.  Several ele-
mentary technologies are used together to edit a
motion content, simulate a dynamic system, in-
terpolate a motion, and execute a motion content.
Some elementary technologies have been devel-
oped as a result of the author’s recent studies.

This environment can be used to easily cre-
ate motion contents in a short time without special
skills.  It is based on software LSIs, general mo-
tion analysis, and high-speed collision checking.
General motion analysis can analyze a complex
structure, especially the structures of humans and
animals.  The collision detection function is fast
and accurate.  The software LSI technology pro-
vides interfaces between key technologies.

References
1) F. Nagashima, K. Suzuki, and T. Maruyama:

High Speed CG and Simulation Application
Development Environment.  Fujitsu Sci.
Tech. J., 33, 2, pp.160-169 (1997).

2) M. W. Walker, and D. E. Orin: Efficient
dynamic computer simulation of robot
mechanisms.  Journal of Dynamic Systems,
Measurement, Control, 104, pp.205-211 (1982).

3) J. Y. S. Luh, M. W. Walker, and R. P. C. Paul:
Resolved acceleration control of mechanical
manipulators.  IEEE Transactions on Auto-
matic Control, 25, 3, pp.468-474 (1980).

4) F. Nagashima and Y. Nakamura: Efficient
computer scheme for the kinematics and
inverse dynamics of a satellite based manip-
ulator.  Proceedings of IEEE International
Conference on Robotics and Automation,
pp.905-911, 1992.

5) Y. Nakamura: Dynamics Computation of



257FUJITSU Sci. Tech. J.,35, 2,(December 1999)

F. Nagashima: Development of Production Environment for Motion Contents for Humans, Animals, and Other Structures

Fumio Nagashima  received the Dr.
degree in Mechanical Engineering
from Keio University, Tokyo, Japan
in 1989.  He joined Fujitsu Labora-
tories Ltd., Kawasaki, Japan in
1989 and has been engaged in
research and development of soft-
ware simulation tools.  He is a
member of the Japan Society of
Mechanical Engineers (JSME).

 

Closed Link Robots and Optimization of
Actuational Redundancy.  Transactions of the
Society of Instrument and Control Engineers,
25, 5, pp.600-607 (1989).

6) Y. Nakamura: Dynamics of Parallel Mecha-
nism.  Journal of the Robotics Society of Japan,
10, 6, pp.13-15 (1992).

7) F. P. Preparata and M. I. Shamos: Computa-
tional Geometry - an Introduction. Springer-
Verlag, New York, 1985.

8) H. Edelsbrunner: Algorithms in Combinato-
rial Geometry.  Springer-Verlag, New York,
1987.

9) E. G. Gilbert, D. W. Johnson, and S. S.
Keerthi: A Fast Procedure for Computing the
Distance Between Complex Objects in Three
Dimensional Space.  IEEE Journal of Robot-
ics and Automation, 4, 2, pp.193-203 (1988).

10) E. G. Gilbert and C. P. Foo: Computing the
Distance Between General Convex Objects
in Three-Dimensional Space.  IEEE Trans-
actions on Robotics and Automation, 6, 1,
pp.53-61 (1990).

11) S. Quinlan: Efficient Distance Computation
between Non-Convex Objects.  Proceedings
of the 1994 IEEE International Conference
on Robotics and Automation, 4, pp.3324-3329
(1994).

12) Y. Sato, M. Hirata, T. Maruyama, and Y.
Arita: Efficient Collision Detection using Fast
Distance-Calculation Algorithms for Convex
and Non-Convex Objects.  Proceedings of the
1996 IEEE International Conference on
Robotics and Automation, Minneapolis,
Minnesota, pp.771-778, 1996.


