
245FUJITSU Sci. Tech. J.,34,2,pp.245-255(December 1998)

UDC 002.66: 672: 681.3.02

Multi-agent System for Virtually Integrated
Distributed Databases note)

VYuji Takada VTakao Mohri VHiroyuki Fujii
(Manuscript received October 22, 1998)

To achieve collaborations by sharing information in inter-enterprise environments such
as CALS, a method of accessing seamlessly databases distributed over a network is
required. In this paper, we show a multi-agent system which virtually integrates dis-
tributed databases. With this system, users can access seamlessly databases as if
accessing a single database. As benefits of the multi-agent architecture, our system
has features desirable for information sharing in inter-enterprise environments; each
enterprise can set up independently the policy for maintenance, management, and
security on the system. The experimental system was built up under the Steel Plant
CALS project in Japan, which proved the efficiency and effectiveness of our method.

1. Introduction
One of the aims of CALS (Commerce At Light

Speed) is to achieve collaborations by sharing in-
formation in inter-enterprise environments.3)

Sharing information within several enterprises
enables one enterprise to collaborate effectively
with others and to achieve high productivity of
collaborating enterprises. The Nippon CALS
project extends the CITIS (Contractor Integrated
Technical Information Service) model of the De-
partment of Defense of the United States to in-
ter-enterprise environments and proposes a bilat-
eral CITIS model which allows both a demanding
enterprise and a supplying one to share informa-
tion in common.1), 2)

For this kind of information sharing in in-
ter-enterprise environments, an important infor-
mation technology is a method of accessing seam-
lessly databases distributed over a network, which
are managed by different enterprises. In the Steel
Plant CALS project,13) we investigate this method
in order to share information on plants, for exam-
ple, information on spare parts of various equip-
ment held by steel-making companies and equip-
ment manufacturers.12) With this, a steel-making
company can quickly find spare parts to repair
equipment such as rolling steel mills not only from
within the company but also from equipment
manufacturers and even plants of other steel-
making companies. This quick finding is very im-
portant for steel-making companies, since a halt
of rolling steel mills in longer time means larger
loss of profits. Steel-making plants tend to be close
together in Japan, for example three plants in the
Tokyo bay area, but currently it is hard to find
spare parts from neighboring plants.

One of the characteristics of systems that
share information in inter-enterprise environ-

Note) A part of this work has been done in the Steel
Plant CALS project sponsored by MITI (Min-
istry of International Trade and Industry,
Japan) through “the Inter- and Intra-Corpo-
rate Electronic Commerce Promotion
Projects” of IPA (Information-technology Pro-
motion Agency, Japan). A preliminary ver-
sion of this paper appeared in the “Proceed-
ings of CALS Expo INTERNATIONAL 1997.”

246 FUJITSU Sci. Tech. J.,34, 2,(December 1998)

Y.Takada et al.: Multi-agent System for Virtually Integrated Distributed Databases

ments is that databases are necessarily distrib-
uted over a network because of the security issue
of information and difficulties of sharing mainte-
nance and management of databases. Enterpris-
es are sensitive to provide others with their own
information. Also, sharing databases means shar-
ing maintenance and management within these
enterprises. These situations make it not realis-
tic to have a single database of all the data from
all the enterprises. For a single database, enter-
prises would become more sensitive on their in-
formation and would not offer so much informa-
tion. Also, the policy of maintenance and
management of the database, including the cost
distribution, would become a big issue. With dis-
tributed databases, users by themselves have to
access several databases via a network. If the
scale of collaboration is large and therefore the
number of databases is also large such as in CALS,
even finding databases suitable to requests be-
comes severely difficult for users.

In this paper, we show a system which en-
ables users to access seamlessly to databases dis-
tributed over a network as if accessing to a single
database. Since the distributed databases act as
a single database from the view of users, we call
the distributed databases enhanced with this sys-
tem the virtually integrated database.

We build the system as a multi-agent system.
An agent is a process that works by itself and also
collaborates with other agents by message pass-
ing. A multi-agent system is a distributed system
where one or more agents collaborate over a net-
work. In our method, we assign an agent to each
user and each database and arrange over a net-
work agents which intermediate between other
agents. For each access request from a user, the
system finds databases suitable to the request by
forwarding the request from agents to other ap-
propriate agents according to conditions on the
request and the information which the agents
themselves manage. Then, user agents and data-
base agents access to selected databases in paral-
lel by their collaborations. Since users have only

to access to this multi-agent system in order to
access to distributed databases, the distributed
databases work with the multi-agent system as a
virtually integrated database.

Our system offers a way to solve the security
issue and difficulties of sharing maintenance and
management necessary to be solved in inter-en-
terprise environments. Each enterprise can set
up independently the policy for security, mainte-
nance, and management on the system. It also
offers load balancing, local maintenance, scalabil-
ity, and robustness. These are benefits of build-
ing the system as a multi-agent system.

The Steel Plant CALS project built an exper-
imental system based on our idea and had exper-
iments on collaborations by information sharing
within steel-making companies and equipment
manufacturers. These experiments showed that
a virtually integrated database seemed to be use-
ful to make the maintenance of equipment more
effective and efficient. We also mention about
implementation details and performance of this
experimental system.

2. Logical configuration of virtually
integrated database
To organize databases distributed over a net-

work as a virtually integrated database, we shall
set up a system called the facilitator7) between
users and databases as shown in Figure 1. The
facilitator intermediates between users and da-
tabases in the following way:
• The facilitator has information about the

databases and, based on this information, it
selects databases suitable to a request from
a user.

• The facilitator accesses the selected databas-
es with the request and then collects and
unifies the results from the accessed data-
bases and replies to the user.
To access distributed databases, users have

only to access the facilitator. The facilitator hides
all the databases from users and pretends as a
single database. Therefore, if we set up the facil-

247FUJITSU Sci. Tech. J.,34,2,(December 1998)

Y.Takada et al.: Multi-agent System for Virtually Integrated Distributed Databases

itator then the databases work as a virtually in-
tegrated database with the facilitator.

A straightforward realization of this logical
configuration is to construct a single facilitator
on a network, which manages all the databases
and handles all the requests from users. When
the system is used in a single enterprise and the
scale of the system is relatively small, this real-
ization is suitable, since the system is not so com-
plicated and its maintenance and management
can be focused on the facilitator. However, in the
inter-enterprise environment where the scale of
the system tends to become larger, this approach
causes the following issues due to the centralized
architecture of the facilitator:
Load: The facilitator must handle all the requests

from users and all the replies from databas-
es. Therefore, as accesses increase more and
more, the load of the facilitator becomes high-
er and higher. As a result, the performance
of the system becomes worse and worse. This
over loading problem limits the scale of the
system.

Maintenance: Registering new users and new da-
tabases to the system and withdrawing reg-
istered users and registered databases from
the system cause modifications of the facili-
tator. Modifying user interfaces and data-
base interfaces also cause modifications of the

facilitator. These modifications tend to be
harder if the scale of the system is very large.
Moreover, when these modifications require
the facilitator to halt, the total system itself
halts even if distributed databases are work-
ing. These mean that the maintenance of the
system is hard.

Share: When several enterprises share a single
facilitator, it must be decided which enter-
prise manages and maintains the facilitator.
This implies that the cost for maintenance
and management must be distributed. As
more companies share the facilitator, the way
of distribution becomes a harder problem.
Moreover, the policy of the managing enter-
prise may dominate others on the mainte-
nance and management of the facilitator.
Then other enterprises may have to follow
the policy, which may include the cost distri-
bution.

Security: More information about the databases
the facilitator has, better it can select data-
bases suitable to requests. Therefore, the
facilitator should have as much information
about databases as possible. However, the
information may include some secure one
and, if the facilitator were managed by one
enterprise, others would be afraid that this
secure information could not be protected.
Hence, security issue limits the information
about databases for the facilitator.
Especially, share and security are critical is-

sues in inter-enterprise environments. These is-
sues imply that the straightforward realization
with one centralized facilitator is not realistic in
inter-enterprise environments such as CALS.

3. Multi-agent architecture of facilitator
An agent is a process that works by itself and

works better by collaborating with other agents.
A multi-agent system is a distributed system
where one or more agents collaborate over a net-
work. The collaboration is generally realized by
message passing.

user Facilitator database

Virtually integrated database

Figure 1
Logical configuration of virtually integrated database.

248 FUJITSU Sci. Tech. J.,34, 2,(December 1998)

Y.Takada et al.: Multi-agent System for Virtually Integrated Distributed Databases

We show a method to realize the facilitator
as a multi-agent system as shown in Figure 2.
This method solves the issues of the centralized
facilitator pointed out in the previous chapter.

Our facilitator consists of the following three
types of agents:
User agents: A user agent acts as an interface

between a client system of a user and the fa-
cilitator. It authenticates the user, trans-
forms the format of a request, and summa-
rizes results of an access.

Facilitation agents: A facilitation agent acts as
an intelligent relay of requests. When it re-
ceives an access request from another agent,
it selects some agents by a simple condition
check, and forwards the request to the select-
ed agents.

Database agents: A database agent acts as an
interface between the facilitator and a data-
base management system. It controls access-
es to the database which it manages, actual-
ly accesses the database, and transforms the
format of results from the database.
Agents can be distributed over a network.

That is, each agent can run on a different host
over the network.

Each agent has a set of rules to make deci-
sions on relays of requests. A rule is in the form

{condition} → {agent}

where {condition} is a logical formula in the prop-
ositional logic and {agent} is the name of an agent.
This rule means that

if a received request is consistent with {con-
dition} then the request should be forward-
ed to {agent}.
{condition} may include access controls as

conditions, which controls accesses to some sets
of databases by controlling relays. For any data-
base agent, the right side of each rule is the name
of the database agent itself.

For example, the rule
[Bay area] and [motors]

→ bay.area@tcals.or.jp

means that
if a received request is about motors in Bay
area then the request should be forwarded
to the agent bay.area@tcals.or.jp .

This is a typical request to find the information
on some equipment (motors) stocked in a certain
specified area (Bay area).

Each rule of an agent defines a conditional
link from the agent to the one specified in the right
side of the rule. Therefore, the facilitator can be
viewed as a directed graph where each node is an
agent and each edge is a conditional directed link
from one agent to another.

4. Accessing virtually integrated database
Each access from a user to a virtually inte-

grated database is separated into two phases, “da-
tabase navigation” and “parallel access”. In the
database navigation phase, the facilitator selects
databases suitable to a request from a user and,
in the parallel access phase, the facilitator accesses
the selected databases with the request in paral-
lel. This two phase access enables a user to ac-
cess the selected databases repeatedly; the user
can access the selected databases several times
with one database navigation phase followed by
several parallel access phases.

4.1 Database navigation
In accessing a virtually integrated database,

facilitator

facilitation agentuser agent database agent

Figure 2
Multi-agent architecture of facilitator.

249FUJITSU Sci. Tech. J.,34,2,(December 1998)

Y.Takada et al.: Multi-agent System for Virtually Integrated Distributed Databases

a user is allowed to give a condition on databases
to a request. This condition is a requirement of
the user on databases to be selected. The facilita-
tor selects databases according to this condition.

In a database navigation phase, agents of the
facilitator collaborate by relaying a request from
a user with condition checks and select databases
suitable to the request as shown in Figure 3.

To access the virtually integrated database,
a user sends a request to the user agent where
the user is registered. This starts the database
navigation phase. When a user agent receives an
access request from a user, it checks the condition
of the request for each rule.

If the condition is consistent with the condi-
tion of a rule, that is, the condition of the request
and the one of the rule yield no contradiction, then
the user agent forwards the request to the agent
in the right side of the rule. The user agent car-
ries out this checking and forwarding for all the
rules in parallel.

For example, suppose that a user agent has
the following set of rules.

[Bay area] and [motors]
→ Bay.area@tcals.or.jp

[Bay area] and [documents]
→ Documet.server@tcals.or.jp

[Inland Sea area] and [motors]
→ Inland.sea@tcals.or.jp

When the user agent receives a request with the
condition “not [Inland Sea area]”, it checks this
condition with all the rules in parallel and for-
wards the request to agents bay.area@tcals.or.jp

and documet.server@tcals.or.jp . Since the
condition “not [Inland Sea area]” contradicts with
the condition of the third rule, the request is not
forwarded to the agent inland.sea@tcals.or.jp .

When a facilitation agent receives a request
from another agent, it also carries out the same
checking and forwarding as user agents. A data-
base agent also checks the condition of a received
request for each rule. When the condition is con-
sistent with rules, the database agent has its own
name as the result. Then, it replies its own name
to the sender.

Each agent waits for replies in a pre-defined
amount of time. After the reception of the replies
from all the accessed agents or after the time lim-
it, the agent unifies and summarizes the replies
and returns the summary to the sender. These
replies are forwarded along the paths where the
request was forwarded. Finally, the user agent
receives names of database agents, which corre-
spond to the databases selected by the facilitator
as suitable ones to the request.

In this way, the facilitator selects the data-
bases suitable to an access request by condition
checking over distributed agents. As a property
of this condition checking, the selected databases
are consistent with the condition of the request.

4.2 Parallel access
In a parallel access phase, a user agent and

database agents collaborate by direct and paral-
lel communications as shown in Figure 4.

A user agent accesses the database agents

Figure 3
Database navigation.

Figure 4
Parallel access to selected databases.

250 FUJITSU Sci. Tech. J.,34, 2,(December 1998)

Y.Takada et al.: Multi-agent System for Virtually Integrated Distributed Databases

selected in a database navigation phase. This ac-
cess is carried out directly and in parallel from
the user agent to the database agents; the user
agent directly sends the access request to each
database agent in parallel. When a database agent
receives an access request in this phase, it actual-
ly accesses the database that it manages, trans-
forms the format of a result of the access, and di-
rectly replies the result to the user agent. After
receiving replies from the accessed database
agents, the user agent unifies and summarizes the
replies and returns the summary to the accessing
client of the user. This ends one parallel access
phase.

While the purpose of the database naviga-
tion phase is to select databases suitable to a re-
quest from a user, the purpose of the parallel ac-
cess phase is to access the selected databases
efficiently. Any number of parallel access phases
can be repeated for the selected databases in the
previous database navigation phase.

4.3 Format of access descriptions
In order to make the system to be widely

available from various kinds of clients and data-
base management systems, the system must have
a popular communication protocol. The Steel
Plant CALS project adopts HTTP as the protocol
for the facilitator to communicate with clients and
database management systems and, following
HTML, prescribes the format of access descriptions,
called FORMAT-X, suitable to the two phase access
to a virtually integrated database. FORMAT-X

defines the format of messages between client sys-
tems and the facilitator and between the facilita-
tor and database management systems.

In FORMAT-X, various types of data are de-
fined by using tags similar to HTML in the fol-
lowing way;

<tag> {data} </tag>
where “tag” is the name of a type of data. For
example, “<USER> Fred </USER> ” defines the
user name “Fred ”.

FORMAT-X mainly defines two formats of

messages, “query format” and “reply format”. The
query format is for messages of access requests
from clients to the facilitator and from the facili-
tator to database management systems while the
reply format is for messages of replies from data-
base management systems to the facilitator and
from the facilitator to clients.

Figure 5 shows an example of a message in
the query format. The tag <SQL-QUERY> indicates
that the message is a query to a virtually inte-
grated database. A message in this format has
information on the profile of a user (user name,
password, affiliation, department, and so on) and
on the access control (crypt system, time limit, and
so on). The first block of the example indicates
this information.

The data indicated by the tag <SQL> is the
statement of access to a virtually integrated da-
tabase. The Steel Plant CALS project also pre-
scribes the database access language, called VIDAL

(Virtually Integrated Database Access Language),
by extending and modifying the standard SQL.
This VIDAL includes ordinary SQL statements
such as SELECT, INSERT, UPDATE, DELETE,

GRAND. It also has some VIDAL specific statements

<SQL-QUERY>
<USER> {user name} </USER>
<PASSWORD> {password} </PASSWORD>
<AFFILIATION> {company code} </AFFILIATION>
<WORKS> {works code} </WORKS>
<PLANT> {plant code} </PLANT>
<MD> {message digest} </MD>
<TIMEOUT> {time limit} </TIMEOUT>

<SQL>
 TARGET {condition} FROM {database name}
</SQL>

<SQL>
 SELECT {class}.{property} WHERE {condition}

...
</SQL>

<SQL>
 END-TARGET
</SQL>

</SQL-QUERY>

Figure 5
Query message in FORMAT-X.

251FUJITSU Sci. Tech. J.,34,2,(December 1998)

Y.Takada et al.: Multi-agent System for Virtually Integrated Distributed Databases

such as ATTACH (to make a link between instanc-
es of two classes) and DETACH (to remove the link
made by ATTACH).

Important VIDAL statements are TARGET and
END-TARGET. These two statements control the
database navigation phase. A TARGET statement
is in the form

TARGET {condition} FROM {database}
where {condition} is a condition for the facilitator
to select databases and {database} is the name of
a virtually integrated database. When the facili-
tator receives this statement, it carries out the
database navigation with {condition} for {data-
base}. Then all the VIDAL statements after this
are in parallel access phases to the same data-
bases selected by the TARGET statement until
END-TARGET statement is received.

Figure 6 shows an example of a message in
the reply format. The tag <SQL-REPLY> indicates
that the message is a reply from a virtually inte-
grated database. A message in this format has
data as the result of an access or error messages
from agents or database management systems.

5. Maintaining facilitator
The facilitator has no global data and re-

quires no shared memory; only each agent has a
set of rules as an agent-specific data. This makes
it easier to maintain the facilitator. Modifying the
behavior of the facilitator is to modify agents con-
stituting the facilitator and modifying agents is

to modify their rules. The condition and the agent
name of a rule can be changed. Also, a new rule
can be added to an agent. These modifications can
be done independently from the other agents.

Adding or removing some databases for the
virtually integrated database causes changing the
graph structure of the facilitator. This change may
include adding or removing some agents in the
facilitator as well as modifying some agents.
Again, since the facilitator has no global data,
adding and removing agents have no effect to be-
haviors of remaining agents, that is, they can still
work by themselves and, in principle, the facilita-
tor also can work properly.

To add a new agent to the facilitator, the ad-
ministrator can prepare its set of rules indepen-
dently from the other agents and then he may ask
some other agents to put links to the new agent.
When an agent is removed from the facilitator,
some links to the agent from others may remain.
Although this cause no trouble to those agents who
have such links, those links should be removed
because they become useless.

For an agent to become alive or dead corre-
sponds to adding or removing the agent in the fa-
cilitator. Therefore, changing the status of the
agent to be alive or dead does not affect the other
agents although the behavior of the facilitator may
change. In this way, the maintenance of a virtu-
ally integrated database can be localized into
neighbor agents. This enables an incremental way
of scaling up or down of the system. The facilita-
tor can be scaled up or down incrementally by
adding or removing agent by agent.

6. Advantages of multi-agent architecture
Our system has several advantages compar-

ing to systems with centralized facilitators be-
cause of the multi-agent architecture of the facil-
itator.
Load balance: In our system, database accesses

are carried out by collaboration of agents dis-
tributed over a network. Also, each agent
works independently. Therefore, the load of

<SQL-REPLY>
<REPLY-DATA RETURN={the number of instances}>
<INSTANCE>
<PROPERTY LABEL={class}.{property} SIZE={size}>

{data}
</PROPERTY>
</INSTANCE>

...
<INSTANCE>

...
</INSTANCE>

</REPLY-DATA>
</SQL-REPLY>

Figure 6
Reply message in FORMAT-X.

252 FUJITSU Sci. Tech. J.,34, 2,(December 1998)

Y.Takada et al.: Multi-agent System for Virtually Integrated Distributed Databases

processing accesses is distributed over
agents. Since agents work concurrently, this
load balance does not depend so much on the
scale of the system.

Agent-local maintenance: Since the facilitator
has no global data, each agent can be modi-
fied independently from each other. This
modification does not require any modifica-
tion of the other agents. In modifying an
agent, the agent may halt but the other
agents can work. Therefore, the facilitator
works even while some agents are being mod-
ified.

Distribution of maintenance and management:
Each agent can be invoked in a different
machine and can be maintained and man-
aged independently from other agents. This
enables each enterprise to maintain and
manage its own agents. Therefore, each en-
terprise bears the cost for maintenance and
management of its own agents. Also, each
enterprise can put its own policy on its
agents, which does not depend on policies of
other enterprises.

Agent-based security: Each enterprise can put
its own security policy on its managing
agents. This policy is reflected over the rules
of agents. For example, the policy of access
control can be reflected on conditions of rules,
which control paths on the directed graph of
the facilitator. Since rules are local data of
each agent, the information on rules are pro-
tected as far as the enterprise manages
agents properly. This means that each en-
terprise has the responsibility for security.

These advantages mean that our multi-agent ar-
chitecture of the facilitator solves the issues of the
straightforward realization of the facilitator as the
centralized one. Especially, distributing mainte-
nance, management, and security policy over
agents is an important feature in inter-enterprise
environments such as CALS.

In addition to the above advantages, our
multi-agent architecture of the facilitator produces

following advantages as well:
Scalability: The facilitator can be extended by

adding agents to and can be reduced by re-
moving agents from the directed graph of the
facilitator. As we have mentioned in the
above, this does not affect other agents.
Therefore, scaling up or down of the facilita-
tor is easy. Also, since agents work concur-
rently, adding agents does not make the fa-
cilitator infeasible. These mean that the
facilitator has high scalability.

Robustness: As we have mentioned in the above,
even if some agents halt, the other agents
can run and therefore the facilitator itself can
work. Hence, if we prepare more than one
path for each database in the directed graph
of the facilitator, then the database is acces-
sible even when some agents halt. This im-
plies the robustness of the facilitator.

In this way, the multi-agent architecture of the
facilitator has many properties required as dis-
tributed systems.

7. Implementation details
In this chapter, we summarize implementa-

tion details of the experimental system of a virtu-
ally integrated database developed under the Steel
Plant CALS project in Japan.

The facilitator is implemented by April pro-
gramming language system.10) April is a network
oriented programming language system, which
supports various functions to develop distributed
systems over wide area networks such as multi-
agent systems. These functions include asynchro-
nous communication, global naming service, multi
processes and so on. April provides an easy way
of message passing between its processes over a
wide area network by its asynchronous commu-
nication and global naming service. To implement
our facilitator, this makes it easy to realize com-
munications between agents. Agents are realized
as April processes and communications between
them are realized as April message passing be-
tween them. Message passing and names of

253FUJITSU Sci. Tech. J.,34,2,(December 1998)

Y.Takada et al.: Multi-agent System for Virtually Integrated Distributed Databases

agents are managed by April .
Figure 7 shows the communication proto-

cols used in the virtually integrated database of
the Steel Plant CALS project. In the lower level,
April communication protocol is used within
agents while HTTP communication protocol is
used between the facilitator and the outside of the
facilitator. In the upper level, KQML agent com-
munication language4) is used within agents while
FORMAT-X is used between the facilitator and the
outside of the facilitator.

KQML is a language for agent communica-
tion proposed as a standard for inter-agents com-
munication languages. A message in this format
has a performative, which specifies the behavior
of agents, and has attribute-value pairs as param-
eters of the performative. The examples of KQML

messages corresponding to the examples in
Figures 5 and 6 are shown in Figures 8 and 9,
respectively. In the experimental system, a KQML

message is realized as an April compound data of
records and lists.

For the facilitator, since agents symbolically
process messages to relay and handle results, com-
pound data structure such as lists and records are
desired. Therefore, the protocol within the facili-
tator is realized with the combination of April and
KQML . For clients and database management sys-
tems, a popular communication protocol is desired
for the system to be widely available. Since HTTP
and HTML are widely available over the Inter-
net, HTTP and FORMAT-X which follows HTML
are in use between the facilitator and the outside
of the facilitator. The conversions between these
two sets of protocols are handled by user agents
and database agents.

The experimental system is distributed over
eight sites on the Steel Plant CALS network.12)

These sites are distributed over Japan and are
connected by 128 kb/s or 512 kb/s private lines.
Each site has a user agent, a facilitation agent, a
database agent, and a database. All the databas-
es are SQL databases. In this situation, we mea-
sured the performance of the system. Figure 10
shows the time required to access databases with
the numbers of replied data. Although only eight
databases were used in the experiments, the re-
sult of the experiment shows that the access time
would follow a logarithm function of the number
of databases as a benefit of the parallel behavior
of the facilitator. In each access, most of time was
consumed to access databases themselves and,
besides the communication overheads, the agent
system only consumed less than one second. This
partially proves that our system could scale up to
a large number of databases.

 _ask_all, [
(_aspect, DB),
(_reply_with, {message ID}),
(_content, [

(_db_request,
(SELECT, ([({class}.{property}),], {condition}))),
(_session_id, {session ID}),
(_user, {user name}),
(_affiliation, {company code}),
(_works, {works code}),
(_plant, {plant code}),
(_md, {message digest}),
(_timeout, {time limit}),
(_request_id, {request ID})])])

Figure 8
Query message in KQML .

user agent database agent

FORMAT-X FORMAT-XKQML KQML

HTTP HTTPApril April

databaseclient facilitation agent

Figure 7
Communication protocols.

 _reply, [
(_in_reply_to, {message ID}),
(_reply_status, OK),
(_content, [

(REPLY_DATA, [
({class}.{property},　,{data}), 　])])])

Figure 9
Reply message in KQML .

254 FUJITSU Sci. Tech. J.,34, 2,(December 1998)

Y.Takada et al.: Multi-agent System for Virtually Integrated Distributed Databases

The Steel Plant CALS project also had a ques-
tionnaire to users about the response time of the
system. All the users felt that the system worked
efficiently enough to satisfy them.

8. Concluding remarks
In the Steel Plant CALS project, only SQL

databases are used at all the sites. In real situa-
tions, various types of databases are desired to be
virtually integrated. Although more researches
are required to deal with heterogeneity of data-
base schema,9) our multi-agent architecture of the
facilitator can deal with weak heterogeneity of da-
tabases such as format transformation. Each da-
tabase agent transforms the database own format
into the standard one and wraps the transformed
data with messages in KQML. When a database
is replaced by another database that has a differ-
ent format, it is enough to modify only the data-
base agent.

In order to promote our system more in in-
ter-enterprise environments, adopting standard
technologies is important. For wide availability
on various platforms, we rebuilt our system in
Java,8) which enables our agents to run in a plat-
form independent way. This version also uses our
extended Java runtime libraries, Kafka 6) and
Pathwalker ;14) Kafka enables us to program in an
agent component fashion and allows components
to be extended dynamically by mobile codes. With

this function, we realized an on-demand visual
monitor of behaviors of the system. Pathwalker

supports April -like network oriented program-
ming facility such as asynchronous communica-
tion, global naming service, multi processes and
so on. For communication protocols, XML15) is
under consideration instead of FORMAT-X. XML
is an extension of HTML so that structure of doc-
uments can be represented more explicitly by in-
troducing user-defined tags in documents. Since
FORMAT-X follows the HTML convention, pre-
scribing messages in XML must be not so diffi-
cult. As a standard of agent communication lan-
guages, the international organization FIPA
(Foundation for Intelligent Physical Agents)5) for
the agent technology is proposing the language
FIPA ACL. We also adopts this language in our
new system and proposes our way of facilitation
as a standard of FIPA agent facilitation.

The bilateral CITIS model proposed by the
Nippon CALS project prescribes a one-to-one col-
laboration between a demanding enterprise and
a supplying enterprise. Our multi-agent archi-
tecture of the facilitator shows that many demand-
ing enterprises can share information with many
supplying enterprises. This suggests one possi-
ble way to extend the bilateral CITIS model. We
are investigating an extension of the bilateral
CITIS model according to the multi-agent archi-
tecture, which may allow many demanding enter-
prises and many supplying ones to share infor-
mation in common.11)

Acknowledgements
We would like to thank all the members of

the Steel Plant CALS project for their helpful sug-
gestions and comments. We also thank our col-
leagues in FUJITSU LABORATORIES LTD. and
FUJITSU LIMITED. In particular, we gratefully
acknowledge Dr. Kazuo Asakawa, Dr. Mitsuhiko
Toda and Dr. Francis G. McCabe for their valu-
able comments and suggestions.

25

20

15

10

 5

0

T
im

e
(s

)

8

Number of Reply Data

Number of Databases

421

 1
100
300
542

Figure 10
Result of experiment.

255FUJITSU Sci. Tech. J.,34,2,(December 1998)

Y.Takada et al.: Multi-agent System for Virtually Integrated Distributed Databases

References
1) Y. Asahi: Implementation of information

sharing environment with bilateral CITIS.
(in Japanese), In CALS Japan ’96, pp.9-17
(1996).

2) Y. Asahi, H. Kajihara, T. Ichimura, N.
Kiyono, and H. Oono: Information sharing
among multiple enterprises through CITIS.
(in Japanese), In Proceedings of CALS Expo
INTERNATIONAL 1997.

3) CALS Industry Forum, Japan. Proceedings
of CALS Expo INTERNATIONAL 1997.

4) T. Finin, Y. Labrou, and J. Mayfield: KQML
as an Agent Communication Language.
chapter 14, pp.291-316. In Software Agents,
The MIT Press 1997.

5) Foundation for Intelligent Physical Agents.
See FIPA home page (http://drogo.cselt.

stet.it/fipa).
6) Fujitsu Laboratories Ltd: Design of multi-

agent programming libraries for Java. See
Fujitsu’s home page (http://www.fujitsu.

co.jp/hypertext/free/kafka/paper/).
7) M. R. Genesereth and S. P. Ketchpel: Soft-

ware agents. Communications of the ACM,
37(7), pp.48-53, 147 (1994).

8) J. Gosling, B. Joy, and G. Steele: The Java Lan-
guage Specification. Sunsoft Series, Addison-
Wesley Developers Press, 1996.

9) W. Litwin, L. Mark, and N. Roussopoulos: In-
teroperability of multiple autonomous data-
bases. ACM Computing Surveys, 22(3),
pp.267-293 (1990).

10) F. G. McCabe and K. L. Clark: April - Agent
PRocess Interaction Language. In M. J. Wool-
dridge and N. R. Jennings, editors, Intelligent
Agents, volume 890 of Lecture Notes in Arti-
ficial Intelligence, pp.324-340, Springer-Ver-
lag, 1995.

11) T. Mohri and Y. Takada: Multi-agent platform
for inter-enterprise information sharing. (in
Japanese), In CALS/EC Japan 1998, 1998.

12) A. Nishiguchi, K. Shida, and Y. Takada: Steel
plant CALS project - business process and

information infrastructure across enterpris-
es. In Proceedings of CALS Expo INTER-
NATIONAL 1997.

13) A. Takekoshi, H. Kato, Y. Horiuchi, and Y.
Izumida: Research project to apply CALS to
steel production equipment management. (in
Japanese), In CALS Japan ’96, pp.89-96
(1996).

14) S. Ushijima, T. Mohri, T. Iwao, and Y. Takada:
Pathwalker: Message-based process-oriented
programming library for Java. In Proceed-
ings of the 11th International Conference on
Applications of Prolog (INAP’98), pp.137-143,
September 1998.

15) W3C. Extensible markup language (XML).
See http://www.w3.org/XML .

Hiroyuki Fujii received B.E. degree in
Environmental Engineering from
Kyushu Institute of Technology in 1981.
He joined Fujitsu Ltd. in 1981, and has
been engaged in system engineering,
system integration and consultation on
controlling process computers, product
management systems for the Steel in-
dustry. His current interest involves
business process reengineering for
product management systems. Since

1996, he was a researcher of the Steel Plant CALS project for
two years.

Takao Mohri received B.E. degree in
Mechanical Engineering, and the M.E.
and the Dr.Eng. degrees in Information
Engineering from the University of
Tokyo in 1990, 1992, and 1995, respec-
tively. In 1995, he was a research fel-
low of Japan Society for the Promotion
of Science. Since 1996, he has been
with Fujitsu Laboratories Ltd. His cur-
rent research interests include distrib-
uted computing and multi-agent sys-

tems. He is a member of IPSJ and JSAI.

Yuji Takada received B.A. and M.A. de-
grees from Department of Behavioral Sci-
ence and Dr.Eng. degree from Depart-
ment of Information Engineering,
Hokkaido University, in 1983, 1985, and
1993, respectively. Since 1985, he has
been with Fujitsu Laboratories Ltd. In
1994 he was a visiting researcher at
Department of Computing, Imperial Col-
lege, U.K. His current research inter-
ests include multi-agent systems, dis-

tributed computing, groupware, and machine learning. He is a
member of EATCS, IPSJ and JSAI.

