
196 FUJITSU Sci. Tech. J.,33,2,pp.196-210(December 1997)

UDC 001.81: 681.3

A Multi-Agent Approach to a Distributed
Schedule Management System

VYuji Wada VMasatoshi Shiouchi VYuji Takada
(Manuscript received June 11,1997)

More and more people are engaging in cooperative team activities over worldwide
networks such as the Internet. The multi-agent technology is a framework suitable for
constructing distributed applications to support these activities. Systems based on
this framework have the necessary autonomy, independency, flexibility, and extensi-
bility. We have focussed on the distributed schedule management, which is a typical
application of the multi-agent technology. We have developed a system, IntelliDiary,
based on this framework to show how the framework is used and how the characteris-
tics of the framework enhance the functions of distributed applications.

1. Introduction
As the popularity of worldwide networks such

as the Internet increases, there are more and more
opportunities for people to collaborate with each
other over networks. Using communication
through such networks, people can work as a team
to complete projects even when they do not see
each other face to face. For example, some people
are now engaging in temporal team activities such
as virtual corporations and virtual enterprises. In
these activities, people make a temporary team
and cooperate with each other for a common pur-
pose. The members of a team can be members of
different sections or even competing companies.
As computers and communication through net-
works become faster, new types of collaboration
over networks are appearing. To enable teamwork
over networks to be conducted more smoothly and
effectively, various types of groupware are need-
ed to support collaboration over networks.

The client-server technology can be applied
to construct such kinds of groupware. The client-
server framework consists of a server which of-
fers services and clients which request and use
the services of the server. Servers and clients are
not equal to each other in terms of functions.
Using this framework it is quite simple to design
and implement a system over networks. Howev-
er, it is insufficiently flexible for applications over

practical networks having many servers, for ex-
ample, the Internet. To enable these servers to
collaborate, a single entity is required to flexibly
change its behavior depending on its situation so
that it behaves as a server in some cases and as a
client in other cases. Application systems over
networks require such a flexible feature since each
application system simultaneously offers its own
services and requests services offered by other
systems. To achieve this feature, the client-serv-
er technology is not sufficient.

The multi-agent technology provides a frame-
work which enables a system to behave as a serv-
er or a client according to the situation. In this
framework, a distributed system is regarded as a
collection of units called agents. Agents are au-
tonomous and have their own objectives. Servic-
es of a system are realized by collaboration among
its agents to achieve their own objectives. Agents
offer services and request other agents to perform
tasks. The autonomy of the agents makes them
independent of each other; they have their own
objectives and local states. With this feature, an
agent can refuse to offer its services if the requests
from other agents are likely to be impossible or
do not fit its objectives. Agents do not simply send
messages and requests to each other but negoti-
ate with each other through communication to
achieve their goals.

197FUJITSU Sci. Tech. J.,33,2,(December 1997)

Y. Wada et al.: A Multi-Agent Approach to a Distributed Schedule Management System

However, despite these features of the multi-
agent framework, it is not so clear how the frame-
work can be used to construct a distributed sys-
tem. In our current work, we have focused on
distributed schedule management, which is a typ-
ical application of the multi-agent framework. In
this paper, we describe the benefits of the multi-
agent technology and how the technology is ap-
plied to design and implement our IntelliDiary
system. Finally, we describe which kinds of ser-
vices are provided and how these services are re-
alized in our system.

2. Distributed Schedule Management and
Issues Regarding the Client-Server
Technology
Distributed schedule management involves

arranging group schedules such as group meet-
ings among a group of persons whose schedules
are managed in a distributed manner. Arranging
group schedules means finding mutually unoccu-
pied times and dates among attendees of the
schedules.

It is described in Ref.1) that most scheduling
systems over networks which are commercially
available are based on the client-server frame-
work. Such systems perform centralized manage-
ment of schedule data or a centralized control to
arrange group schedules. A server is a system
which performs this type of centralized manage-
ment for an entire system. A server manages the
schedules of all users and information about who
can use its schedule management service. There-
fore, clients do not have to perform complicated
tasks to manage schedules. Clients communicate
only with their server to access services. In other
words, clients form bridges between users and
their server to access the schedule management
service. Without a server, clients cannot offer any
service by themselves. Even for manipulating per-
sonal schedules of a user, his client has to ask its
server to access the schedules. This style is very
convenient when a system is working on a local
area network (LAN) such as an intranet or pri-

vate network inside a company. As almost all ser-
vices are offered by a single server, the overall
system works fine as long as its server is main-
tained properly. To use a distributed schedule
management service, all the user needs to do is to
start up their clients to access a server.

However, in a client-server framework, cli-
ents always require their server. This is a draw-
back when a system works over a wide area net-
work (WAN) such as the Internet. As a WAN
spreads worldwide, communication over the net-
work is often slow and unreliable. Under such
environment, clients cannot always find their serv-
er and their responses to their users tend to be
slow because of the slow and unreliable commu-
nication between clients and their server. More-
over, all clients communicate with a single server.
As a result, servers tend to be heavily loaded and
the communication between clients and their serv-
er becomes a bottleneck of the overall system.

Privacy of schedules is a primary issue of
schedule management systems. If systems can-
not properly control the privacy of users’ sched-
ules, users will never use the systems. The client-
server framework assumes a server which controls
the behavior of the whole system in a centralized
manner. In other words, how privacy is main-
tained in the system mainly depends on the serv-
er. The privacy of users’ schedules is controlled
by managers of the server, and users should ac-
cept these managers. This is not such a critical
problem if a system is for intra-company use.
Recently, however, inter-company team activities
such as virtual corporations and virtual enterpris-
es are becoming popular. To effectively support
such kinds of inter-company activities using net-
works, the members of a team can have an on-
line meeting over networks and schedules for their
project can be managed over networks. To achieve
this, schedule management and arrangement ser-
vices are required. However, the client-server
framework is not suited to managing schedules
that belong to personnel of different companies.
If a server is introduced to manage schedules, the

198 FUJITSU Sci. Tech. J.,33,2,(December 1997)

Y. Wada et al.: A Multi-Agent Approach to a Distributed Schedule Management System

participants will hesitate to register their entire
schedules because they could contain important
information that must not be leaked to people
outside their own company. Thus, group sched-
ules such as group meetings cannot be arranged
properly with a system which has a server.

Another important feature is scalability of
the system. To allow users to create group sched-
ules with any other user, a system should be able
to dynamically coordinate schedules among arbi-
trary users on demand. Scalability is an impor-
tant feature for a distributed schedule manage-
ment system to dynamically coordinate and
arrange schedules among arbitrary users. More-
over, the topology and scale of worldwide networks
are constantly changing. As a result, it is impos-
sible to know exactly certain status information,
for example, the total number of users, communi-
cation delay times, and reachability between com-
municating nodes. Every minute, new computers
are connected to networks and new users begin to
communicate through them. At the same time,
computers are disconnected from networks and
users stop using networks. Users of such networks
cannot always expect to communicate with other
computers and other users, and systems working
over the networks must work independently of
other systems. In the client-server framework,
communication with a server is indispensable for
clients to offer any service. When new users be-
gin to use a system, its server should be reconfig-
ured to allow the new users to use the system.
This makes the client-server framework difficult
to apply to dynamic networks. A distributed
schedule management system is needed to flexi-
bly adapt to dynamics such as changes in the num-
ber of users and work by itself without requiring
the services of other systems.

There are many services available over net-
works, for example, ticket reservation, hotel res-
ervation, flight schedule information. After reg-
istering business trip schedules, some users want
to access these information and reservation ser-
vices. To offer these services, a schedule manage-

ment system should be able to collaborate with
other kinds of systems. Otherwise, the system it-
self should offer such services. In the client-serv-
er framework, a system offers only the same ser-
vices as its server does. Users cannot access
services which are not offered by the server. In
the case where a server does not offer a service
and cannot collaborate with other servers, the
server should be modified to support the service.
Generally speaking, modifying a server takes some
amount of time and affects many of the users who
access the server. Furthermore, such kinds of new
information and reservation services are going to
be offered over networks every moment. To effec-
tively access these services, a system must have
high extensibility to enable easy adaptation to
changes of cooperation with other systems.

3. The Multi-Agent Technology
3.1 Features of the Multi-Agent

Technology
The multi-agent technology2),3) is a framework

suitable for constructing distributed systems over
worldwide networks such as the Internet. In this
framework, a system is decomposed into units, and
services of the system are realized by the behavior
of each unit and interactions among units. Each
unit is called an agent. An agent has its own objec-
tives and acts to complete its objectives autono-
mously and independently of other agents. An agent
offers its services to its user and to other agents,
and at the same time, the agent uses services of
other agents. When an agent finds that coopera-
tion with other agents is necessary to complete its
objectives, it looks for other agents to cooperate
with. Agents do not simply collaborate, but negoti-
ate with each other. The agents that are asked for
help can decide whether or not to support the ask-
ing agent, depending on their situations.

The notion of an agent is not fixed yet. There-
fore, an agent can have many features depending
on the situation in which it is used. We focus main-
ly on autonomy, independency, and cooperability.
With autonomy and independency, systems based

199FUJITSU Sci. Tech. J.,33,2,(December 1997)

Y. Wada et al.: A Multi-Agent Approach to a Distributed Schedule Management System

on the multi-agent framework do not require the
centralized management and control necessary in
the client-server framework. Moreover, autono-
my and independency enhance extensibility of the
system and the privacy of the information man-
aged by a system. Cooperability enables the sys-
tems to dynamically construct temporary relation-
ships with other agent systems for collaboration.

A system with the multi-agent framework
consists of many kinds of autonomous agents
which perform various tasks to complete their ob-
jectives and offer their services. Each agent works
independently without being aware of the exist-
ence of other collaborating agents. In this frame-
work, centralized management of data and shared
information among agents are not necessary at
all. Agents need to be aware of the existence of
another agents only when they request the ser-
vices of that agent. If they find other agents which
are cooperative, they can access the services of
those other agents. Even if they cannot find oth-
er agents, agents offer their own services which
do not require collaboration with other agents.
When starting cooperation, no agent and no sys-
tem intercede with agents and no information is
shared among agents. Any agent can coordinate
collaboration among agents, and the collaboration
is performed through communication between
agents involved.

An agent can protect its local states and in-
formation from other agents. Each agent manag-
es its local data independently of other agents, and
this local data are manipulated only by the owner
agent. The only way to access information main-
tained inside other agents is through communi-
cation among agents. Even if an agent is asked to
cooperate by other agents, the asked agent auton-
omously decides whether or not it will help the
other agents based on the intentions of its user.
When an agent receives a request to access infor-
mation it has, the requested agent can reject the
request if its user does not allow the requesting
agent to access the information. In this way,
agents can autonomously control accessibility to

their own local states and information by sieving
received requests.

An agent dynamically establishes temporary
relationships to cooperate with other agents. Ba-
sically an agent performs its tasks autonomously
and independently. When collaboration with oth-
ers is found to be necessary to achieve a task, an
agent looks for cooperative agents by sending mes-
sages. If cooperators are found, the agent estab-
lishes cooperative relationships with them. Agents
are scalable; that is, they can dynamically decide
which agents they will collaborate with and tem-
porarily establish cooperative relationships with
those agents on demand. New users can easily
begin to use a system by starting up their own
agents, and existing users can easily stop using a
system by terminating their own agents. There is
no difference between previously existing agents
and newly joined agents, and no agent is adverse-
ly affected by an increase or a decrease in the num-
bers of users. That is, the whole system is scal-
able. Scalability is an important requirement for
a system which works over worldwide networks.

Since agents are quite independent, each
agent can modify its services without significant-
ly affecting other agents. In principle, each agent
acts by itself and communicates with other agents
on demand. If an agent modifies its behavior to
extend its ability, the effect of the modification is
localized into communication parts of other agents.
That is, agents communicating with the modified
agent have only to modify the behavior of their
message handling parts to use the modified ser-
vices. Each agent can also add new services and
even new agents can be introduced into the sys-
tem in the same way. These effects are also local-
ized into the communication parts of other agents
for the new services. Autonomy and independen-
cy provide high extensibility of the system itself.

3.2 Application to Distributed
Schedule Management
Agent-based schedule management systems

have already been reported in Refs.4) and 5). How-

200 FUJITSU Sci. Tech. J.,33,2,(December 1997)

Y. Wada et al.: A Multi-Agent Approach to a Distributed Schedule Management System

ever, they assume centralized management of us-
ers’ schedules. Centralized management has the
same problem with privacy of schedules as the cli-
ent-server framework. Most systems based on the
multi-agent framework can control privacy.1),6)-8)

They arrange meeting schedules in cooperation
with the agents of the attendees. However, they
do not discuss about extensibility and cooperabil-
ity with other agent systems. We show that the
multi-agent framework can enhance these features
with autonomy, independency, and cooperability of
agents.

When the multi-agent technology is applied
to construct a distributed schedule management
system, the system is designed to consist of many
kinds of agents. In such a system, an agent man-
ages the schedules of its user autonomously and
independently of other users’ agents. Agents do
not share any information between themselves.
Unlike the client-server framework, the agents do
not need a server which centrally controls the
whole system and offers almost all of the services
of the system. Instead, each agent manages the
schedules of its user and communicates with oth-
er agents to collaborate, for example, when group
schedules are arranged. Group schedules are
schedules of events to which many users are ex-
pected to attend. To arrange such schedules, an
agent must communicate with the agents of the
attendees to negotiate whether the schedules are
to be registered. The agent which starts the reg-
istration of a group schedule takes the initiative
in negotiating for the registration. The initiating
agent arranges the schedule in collaboration with
the attendees’ agents through communication.

Since the schedules of a user are managed
by his agent and every agent can be an initiating
agent to arrange group schedules, there is no agent
and no system which always behaves as a server
in the client-server framework, where the server
offers services to manage personal and group
schedules in a centralized manner. Autonomy and
independency of agents enable a system to work
without such a server.

An agent protects the schedules of its user
from being referred to, registered, deleted, or mod-
ified by other agents directly. When a user ac-
cesses the schedules of another user, his agent
sends a request to the agent of the accessed user.
The requested agent checks who sent the request
and judges whether the requesting user is allowed
to refer to its schedules based on the intentions,
preferences, or instructions of its user. In other
words, users can easily control the privacy of their
schedules with their responsibilities. This also
means that users are personally responsible if
their agents allow an access by a person to whom
the user does not wish to permit access. Again,
no server is required for the overall system and
each agent works as an independent schedule
management system. It is not necessary for all
agents to be executed on the same machine, and
there is no server and no information shared
among agents. With the multi-agent framework,
each user can control the privacy of his schedules
independently of other users.

An agent dynamically finds agents with
which to collaborate to refer to the schedules of
their users or to arrange group schedules with
their users. When a user asks its agent to per-
form a task which requires collaboration with oth-
er agents such as arranging group schedules, the
agent establishes cooperative relationships with
the agents on demand. Such relationships are only
temporary, and an agent creates new relationships
with the appropriate agents whenever a new re-
quest to manipulate schedules is processed.
Agents have such scalability as to flexibly estab-
lish cooperative relationships with appropriate
agents on demand. The number of agents is not
mentioned in the discussion above since this does
not matter in the multi-agent framework. A sys-
tem with the multi-agent framework does not as-
sume a static configuration of agents. An agent
dynamically decides which agents to communicate
with for collaboration according to requests of its
user. Agents enable a system to flexibly adapt to
changes in the number of agents.

201FUJITSU Sci. Tech. J.,33,2,(December 1997)

Y. Wada et al.: A Multi-Agent Approach to a Distributed Schedule Management System

New features are easily introduced into a sys-
tem based on the multi-agent framework. There
are two ways to do this: extending existing agents
or adding new agents. Because of the indepen-
dency of agents, the effects of extending existing
agents to offer new features and adding new
agents are localized into the communication parts
of agents which use the new features. The addi-
tion of new agents enables, for example, collabo-
ration with other kinds of systems. As there are
many services available over networks, a system
working over such networks is likely to be request-
ed to extend its features to use those services. In
the case of a distributed schedule management
system, the system will be extended to support a
service for accessing information such as cinema
information, flight information, or hotel informa-
tion. To support such services, intermediator
agents are introduced into the system to make
bridges to other systems. Intermediator agents
enable agents and other systems to communicate
with each other by converting protocols and mes-
sage formats and forwarding the converted mes-
sages. When an agent accesses a service of a sys-
tem, it sends a requesting message in its format
to its intermediator agent. The intermediator
agent converts the format of the received message
to the one understood by the accessed system, and
then forwards the converted message to the sys-
tem. When receiving the reply, the intermediator
agent converts the format of the reply to the one
understood by the original sender, and then for-
wards the converted message to the sender. In
this way, a system can collaborate with other sys-
tems. From the point of view of such a system, an
intermediator agent for another system behaves
the same as any other agent in the system, which
send and receive messages in the format of the
system and offer services accessible through com-
munication. From the point of view of the other
system, an intermediator agent for it behaves as
a client which accesses its services by sending and
receiving messages in its format. Intermediator
agents make bridges between a system and other

systems in a simple and smart way. Thus, a sys-
tem with the multi-agent framework can have
high extensibility and can easily cooperate with
other systems.

The multi-agent technology has some draw-
backs compared with the client-server technolo-
gy. In the client-server technology, all services of
a system are provided by its server. Users are
requested to install and start up their clients to
access the services of the server. Services are suc-
cessfully accessed as long as the server is proper-
ly maintained. Therefore, users do not have to
maintain the system. Moreover, clients commu-
nicate only with their server. They do not com-
municate with each other since the server does
everything for its clients. In the multi-agent tech-
nology, the services of a system are provided by
each agent. Users must install and start up their
agents to utilize the services. Users must main-
tain their agents to successfully access their ser-
vices. Since agents are autonomous and indepen-
dent, communication is indispensable for collabo-
ration between agents. Consequently, agents re-
quire more communication than in the client-serv-
er framework when cooperation among agents is
necessary.

Table 1 summarizes a comparison of the multi-
agent framework and the client-server framework.

Table 1. Comparison of the multi-agent framework and
the client-server framework

Client-Server Multi-Agent

Centralized
or distributed Centralized Distributed

No Yes

Fair Good

Low High

Fair High

Low Medium

Low Medium

Independency

Privacy

Scalability

Extensibility

Maintenance cost

Communication
complexity

202 FUJITSU Sci. Tech. J.,33,2,(December 1997)

Y. Wada et al.: A Multi-Agent Approach to a Distributed Schedule Management System

4. A Distributed Schedule Management
System: IntelliDiary

4.1 Overview of IntelliDiary
One of the main purposes of our research is

to effectively support cooperative activities over
local and wide area networks.9) To achieve this,
we first chose an example of distributed schedule
management over such networks. This is a typi-
cal example of applying the multi-agent technolo-
gy and evaluating its usefulness. IntelliDiary is
a distributed schedule management system which
is designed and implemented as an agent based
on the multi-agent technology. With the frame-
work, our system achieves privacy of schedules,
scalability, and extensibility.

Each user starts up his IntelliDiary agent,
and schedules of a user are managed by his agents.
Each agent serves only its own user. If a user
permits, his agent collaborates with the agents of
other users to refer to other users’ schedules or to
arrange group schedules.

4.2 How IntelliDiary Works
Our system can be accessed with a WWW

browser such as Netscape. The initial screen shows
a calendar of the current month (see Fig. 1).

The “*” mark indicates that there are sched-

ules on the day. If a mouse is clicked on the “Sched-
ule List” button, a list of the schedules of the
month are displayed. By clicking on a day with a
“*” mark, the schedules of the day are displayed.
Figure 2 shows a schedule for a meeting at 13:00
in Fukuoka that is displayed when 22nd with a
“*” mark is clicked on the screen shown in Fig. 1.
The user can edit or remove the schedule.

To arrange group schedules, the user can
check his current schedules and those of the us-
ers who are expected to attend the scheduled
events. The schedules of other users can be ac-
cessed by clicking on the Other Users button and
specifying their names. In Fig. 3, two users
“demo@bishop” and “wada” are specified. When
the “Go!” button is clicked, the calendars of the
month for the specified users are displayed in the
same way as in Fig. 1. To make it easy to compare
schedules of multiple users and find available time
periods among them, their schedules for the day
are aligned as shown in Fig. 4. After finding the
free time of the attendees, a group schedule is cre-
ated by specifying the names of all attendees as
shown in Fig. 5. A schedule contains the follow-
ing information: the date, start and end time, lo-
cation of the event, attendees, subject, notes, and
privacy. The privacy information specifies who is

Fig.1– Calendar of the current month. Fig.2– A schedule of a day.

203FUJITSU Sci. Tech. J.,33,2,(December 1997)

Y. Wada et al.: A Multi-Agent Approach to a Distributed Schedule Management System

allowed to access the schedule. In Fig. 5, “Private”
and “Public” can be selected. “Private” means that
the schedule is private and no one but the owner
can access it. “Public” means that the schedule is
accessible by everyone.

If all attendees to a schedule can register the
schedule, it is registered to the IntelliDiarys of
the attendees. If the schedule causes double book-
ing against existing schedules, it is rejected. Then,
our system proposes available time periods and
dates of the attendees. Figure 6 shows the screen
displayed when a double booking is detected.

When accessing to other users’ schedules, a
user specifies whose schedules he is going to ac-
cess to. To specify a user, the name of his Intel-
liDiary agent is used. If a user is “foo”, then his
agent can be specified with the name of “foo”. As
there are many people on networks, different us-
ers could have the same name. To avoid this prob-
lem, our system adopts the E-mail style specifica-
tion of users. If a user is “foo” and his schedules
are managed on a computer named “bar.
some.domain”, his agent is specified with the name
“foo@bar.some.domain”. Inside our system, an
agent name is prefixed with “IntelliDiary_”, so the
agent name of a user “foo@bar.some.domain” is
“IntelliDiary_foo@bar.some.domain”. However,

Fig.3– Specifying other users.

Fig.4– Day schedules of multiple users.

Fig.5– Form of a schedule. Fig.6– Available time periods and dates.

204 FUJITSU Sci. Tech. J.,33,2,(December 1997)

Y. Wada et al.: A Multi-Agent Approach to a Distributed Schedule Management System

users are requested to specify only the names of
users with whom to interact. When the names of
users are specified, our system automatically
transforms them into the names of the agents with
which to collaborate. To make it easy to specify
long names or repeatedly specify the same groups
of users, our system has the same alias facility
that is used in the E-mail system. Users can de-
fine and use their own aliases for the names of
other users.

IntelliDiarys exchange messages in the
KQML10) format. Basically, KQML defines a pro-
tocol for communication and a format of messag-
es: what kinds of messages are to be used for re-
quests, what kind of information should be
included in messages, how information is arranged
in messages, and so on. All agents understand
KQML messages and communicate with each oth-
er in such a uniform manner. When new agents
are introduced into our system, they can commu-
nicate with existing agents if they understand
KQML messages. The uniformity in communica-
tion enhances the simplicity of communication
among agents and the extensibility of our Intel-
liDiary system.

4.3 Features of IntelliDiary
IntelliDiary has many features to manage us-

ers’ schedules over networks. We describe how priva-
cy of schedules is managed and how group schedules
are arranged while maintaining privacy. Collabora-
tion with other agent systems is also described. Fi-
nally, we explain the alias facility for user names.
- Privacy

Privacy of schedules is controlled by Sched-
ule Manager acccording to the intentions of its
user. Figure 5 shows the screen used to register
new schedule events. The last attribute “Private?”
specifies the privacy of the schedule. If “Private”
is selected, the schedule is exported only to its
owner. If “Public” is specified, the schedule is pub-
lished to all users. When a user refers to other
users’ schedules or when group schedules are ar-
ranged, accesses to other users’ schedules are nec-

essary. There is a trade-off between convenient
facilities and privacy of schedule. Our system al-
lows its user to specify which schedules are pri-
vate and which are public. The contents of a pri-
vate schedule such as when it starts and ends,
location, attendees, and purpose, are exported only
to its owner. As a default policy of our system,
other users are allowed to obtain information such
as whether a new schedule has been successfully
registered into the schedules of a user and when
a user is free. With such information, IntelliDi-
ary arranges group schedules and finds available
time periods and dates of users.
- Group schedules

Group schedules are schedules which have
more than one attendee. Users create a group
schedule by specifying its attendees as the “At-
tendee” attribute shown in Fig. 5. To register a
group schedule, the IntelliDiarys of all attend-
ees cooperate with each other. The IntelliDiary
which is trying to register a group schedule coor-
dinates the registration. If an IntelliDiary of an
attendee causes double booking, the schedule is
not registered. In this case, the initiating agent
asks all of the attendees’ agents to get the times
and dates near to the originally planned time slot
for which the attendees have no schedule.

Such collaboration among IntelliDiary
agents is dynamically achieved when a group
schedule is going to be registered. At first, a user
specifies some users as attendees to a group sched-
ule. His agent coordinates arrangement of the
schedule by sending messages to the attendees
and asking for the collaboration. From the point
of view of the coordinating agent, it establishes
temporal relationships between the attendees’
agents. Each relationship is similar to the rela-
tionship in the client-server framework. In this
case, the coordinating agent behaves as a server
which offers an arrangement service of group
schedules and the agents of its attendees are cli-
ents which utilize the service. In our system, ev-
ery agent can be a coordinator of a group sched-
ule. That is, every user can create a group

205FUJITSU Sci. Tech. J.,33,2,(December 1997)

Y. Wada et al.: A Multi-Agent Approach to a Distributed Schedule Management System

schedule. Moreover, attendees to a group sched-
ule are dynamically specified when the group
schedules are registered. Therefore, all IntelliD-
iary agents are designed to behave as a server
and a client and to establish client-server rela-
tionships among agents on demand.
- Collaboration with other agent systems

With our system, users can access the ser-
vices of SAGE.11) SAGE is an agent oriented sys-
tem which allows access to public information such
as flight schedules, hotel reservation information,
train ticket information, and so on. Since this in-
formation is useful for planning schedules, collab-
oration with SAGE enables IntelliDiary to offer
more convenient schedule management services.
Also, through cooperation with DUET,12) the cur-
rent location of a user can be detected. DUET of-
fers an agent based support for personal commu-
nication under various situations. It senses
current information about a user, such as the us-
er’s location, communication capabilities, and so
on. Based on this information, DUET decides how
to communicate among users. By using the cur-
rent location information of a user offered by
DUET, IntelliDiary offers a smart navigation
service13) which, for example, automatically noti-
fies the user about schedules that the user has
sufficient time to travel to.

Collaboration with these systems is achieved
by introducing an agent called an intermediator.
Intermediators of SAGE and DUET enable our
system to communicate with these systems. In-
termediators converts protocols and message for-
mats properly. Intermediators understand mes-
sages in the format used in our system. When an
intermediator for a system communicates with
agents in our system, it acts on behalf of that sys-
tem and provides access to its services. An inter-
mediator for a system also behaves as a client
which accesses the services of the system through
communication with messages in the format of the
system. When IntelliDiary cooperates with new
systems, our system can be extended by introduc-
ing intermediators for them.

- Aliases for user names
When specifying other users, IntelliDiary

requires a name such as “foo@bar.some.domain”,
which means IntelliDiary of “foo” is on a machine
named “bar.some.domain”. To make it easier to
specify a user, the user can define a simple alias
for users and then use the alias instead of the full
name of the users. An alias can also be defined
with names of users and of aliases themselves.

4.4 Configuration of IntelliDiary
Each user starts up his own IntelliDiary to

maintain schedules, and IntelliDiarys collabo-
rate with each other to access other users’ sched-
ules or to arrange group schedules. From a mac-
roscopic point of view, each IntelliDiary is an
agent which constructs a distributed schedule
management system.

Personal schedules are managed by each In-
telliDiary agent, and group schedules are ar-
ranged in cooperation with those of the attendees.

IntelliDiary consists of many agents which
have their own objectives and offer various func-
tions to each other. The services of each Intel-
liDiary are realized through a combination of the
behavior of the agents and interactions among
them. Figure 7 shows the internal configuration

Fig.7– Internal configuration of IntelliDiary.

206 FUJITSU Sci. Tech. J.,33,2,(December 1997)

Y. Wada et al.: A Multi-Agent Approach to a Distributed Schedule Management System

of our system and the agents which play main roles
in our system.
- Supervisor agent

Supervisor behaves as an interface to other
IntelliDiary. All incoming messages from other
IntelliDiarys are received by this agent. When
Supervisor receives a message, it interprets its
contents, creates new messages according to the
contents, and sends the new messages to the ap-
propriate agents in the system. All incoming mes-
sages are delivered to Supervisor since only its
name is exported to other IntelliDiarys in order
to be used for communication. That is, messages
to “IntelliDiary_foo” are delivered to the Supervi-
sor of foo’s IntelliDiary and there is no other
name which can be used to communicate with
agents of foo’s system.
- Schedule Manager agent

Schedule Manager manages schedule data by
using Negotiator, Conflict Solver, and DB Manag-
er. All requests which need to access schedule
data, such as for referring to, creating, deleting,
or modifying schedules, are sent to Schedule Man-
ager. To cooperate with other users, users are re-
quested to export information such as whether
new schedules have been successfully registered
and the time periods and dates when the user is
available. Unless information is exported to oth-
er users, it is impossible to properly arrange group
schedules. However, users hesitate to publish all
of their information since there can be private
schedules maintained with our system. There is
therefore a trade-off between the convenience of
group schedules and the need for privacy of sched-
ules. In our system, users can specify which sched-
ules are private or public. As a default policy, In-
telliDiary exports information such as whether
new schedules cause double booking and when its
user is free. Schedule Manager checks who is al-
lowed to access its schedules based on informa-
tion included in each schedule.
- Negotiator agent

Registering new schedules can cause double
booking; that is, more than one schedule occupies

the same time period. If a new schedule is found
to cause double booking, it is not registered and
IntelliDiary notifies its user of the double book-
ing and the times and dates when the attendees
will be free. Negotiator checks whether new sched-
ules will cause double booking with existing sched-
ules. To check the schedules of its own user, Ne-
gotiator asks DB Manager to access the schedule
data it manages. If a new schedule is a group
schedule, Negotiator of the user who is going to
register the schedules takes the initiative in ne-
gotiating with the attendees’ IntelliDiarys. To
check the schedules of other users, Negotiator
sends messages to the attendees’ systems to ar-
range group schedules through collaboration. As
mentioned above, these messages are received via
the Supervisors of the attendees’ systems. If the
system detects double booking against the sched-
ules being registered, the schedules is not regis-
tered and Conflict Solver calculates the available
time periods and dates of the attendees.

The negotiation process is not complicated.
First, an agent registering a new schedule checks
the schedules of its user to see whether the sched-
ule will cause double booking. Then, if the sched-
ule has multiple attendees, the agent asks the
other attendees’ agents to perform similar checks.
- Conflict Solver agent

IntelliDiary itself does not resolve double
booking. When double booking is detected, our
system proposes available time periods and dates
around the originally planned date. To resolve
double booking, one or more schedules need to be
canceled or moved to other time periods and dates.
In general, it is not so easy to decide which sched-
ules a user will allow to be cancelled or moved.
Moreover, moving schedules can cause other dou-
ble booking. If there are free times and dates and
attendees agree with the schedule being moved,
double booking is easily resolved. Otherwise, dou-
ble booking presents many difficulties.

Conflict Solver finds the available time peri-
ods and dates of attendees in collaboration with
their IntelliDiarys. The collaboration is done in

207FUJITSU Sci. Tech. J.,33,2,(December 1997)

Y. Wada et al.: A Multi-Agent Approach to a Distributed Schedule Management System

the same way as when registering new group
schedules. The Conflict Solver of a user who tries
to register a rejected schedule takes the initiative
in cooperation with the attendees’ IntelliDiarys.
The initiating agent finds the times and dates by
accessing the schedules of its user that are man-
aged by DB Manager. Then, the agent asks the
attendees’ agents for the attendees’ free time slots.
The attendees’ agents do not tell contents of their
schedules to maintain privacy of their users’ sched-
ules but tell free times and dates of their users as
a default policy. After collecting this information,
the initiating agent finds the time slots for which
all the attendees are free.

Our system adopts a simple method to find
available time periods and dates. First, an initi-
ating agent asks agents of attendees to find out
when their users are free. Then, it collects the
results from these agents. Then, using the results,
the initiator finds the time slots for which none of
the attendees have any booking.
- DB Manager agent

DB Manager maintains its schedule data
using a database engine. DB Manager encapsu-
lates the database engine it uses. There can be
differences between database engines, for exam-
ple, they may use different protocols and opera-
tions to manipulate data. This is not a problem
however since DB Manager encapsulates the da-
tabase engine it is using by providing the agents
of its system with a uniform interface so they can
manipulate schedule data without being aware of
a concrete database engine used.
- Display Controller agent

IntelliDiary is expected to be used in vari-
ous kinds of environments, for example, it can be
used on a powerful workstation with sophisticat-
ed graphics or on a portable terminal with a sim-
ple character display. To adapt to these differenc-
es, the user tells Display Manager which type of
terminal is used. Then, Display Controller adjusts
the way information from IntelliDiary is dis-
played according to the information from the user.
In the current version of IntelliDiary, three types

of user interfaces are provided. The first is a char-
acter based display for terminals with only sim-
ple graphics abilities. Schedules are displayed in
the text format using new lines, tabs, symbol char-
acters, and so on. The second is a WWW browser
based display for users who use IntelliDiary ser-
vices via networks. WWW browsers are getting
common as navigation tools over networks and
many services are already accessed with such
tools. The last is an X window based display for
computers running the X Window system.
- Intermediator agent

SAGE Intermediator and DUET Intermedi-
ator are Intermediator agents which make bridg-
es to SAGE and DUET so that their services can
be accessed.

4.5 Future Directions
To construct a distributed system, there are

many issues to be solved, for example, privacy con-
trol for the information maintained by the sys-
tem, flexibility and scalability, and extensibility
for easy collaboration with other systems. To solve
these issues using the multi-agent framework, we
focused on a typical application of the framework
and constructed a distributed schedule manage-
ment system called IntelliDiary based on the
framework. As has been described in previous sec-
tions, IntelliDiary solves these issues using the
framework. As a result, the configuration of our
system is suitable for a WAN such as the Inter-
net. There are various possibilities to extend our
system and some of them are being investigated.
- Mobile environment

As a portable PC with networks through a
portable handy phone is going to be widely used
these days, cooperative activities under mobile en-
vironment are desired to be supported by distrib-
uted tools like IntelliDiary. A key characteristic
of the mobile environment is network availabili-
ty. Under mobile environment, the agents work-
ing on the computers are sometimes unable to
communicate with other agents since mobile com-
puters can become disconnected from networks.

208 FUJITSU Sci. Tech. J.,33,2,(December 1997)

Y. Wada et al.: A Multi-Agent Approach to a Distributed Schedule Management System

Therefore, to adapt to a mobile environment,
IntelliDiary has a dual configuration.13) As shown
in Fig. 8, Ego and Atten Ego play main roles in
adapting to the mobile environment. Ego is an
agent with all the functions of IntelliDiary and
must be run on a machine which is permanently
connected to a network. In most cases, Ego be-
haves as an IntelliDiary agent which manages
the schedules of its user. Alter Ego is an agent with
the functions required for IntelliDiary to man-
age the schedules of its user and works on machines
which can be disconnected from networks. Alter
Ego has a subset of the functions of its Ego and a
copy of the schedule data maintained by its Ego.
When Alter Ego cannot communicate with its Ego,
Alter Ego behaves as an IntelliDiary agent and
modifications to schedule data are saved in Alter
Ego. When Alter Ego finds its Ego on a network, it
sends the agent the saved history of modifications.
In this way, consistency between the schedule data
of Ego and Alter Ego is maintained.
- Navigation

IntelliDiary notifies the user about a sched-
ule event when the start time of the event is ap-
proaching.14),15) Our system uses the current loca-
tion of its user to give the notification in a smart
way. In collaboration with DUET, the current lo-
cation of its user is known. With this information
and the destination where the next schedule is

requested to be performed, the time required to
move from the current location to the destination
is estimated. Then, based on the estimated time,
IntelliDiary gives the timely notification to the
user so the user can arrive on time.

The current location of a user is also used to
check whether schedule is feasible. For example,
when new schedules are created, our system
checks the current time, the current location of
its user, and the start times of the schedules. If
there is no time to reach the locations of the sched-
ules, a warning message such as “It is impossible
to complete the schedule” is given.
- Event information management

The framework of IntelliDiary can be used
to manage various kinds of information that has
time and date attributes. One example of such
management is event information management.
For instance, cinemas have their schedules such
as what movies are screened and when they are
released. By registering such information of each
cinema to IntelliDiary, the screening plans of cin-
emas can also be managed with our system. An
event map of cinemas, which is a collection of in-
formation of cinemas, can be dynamically created
in cooperation with IntelliDiarys of cinemas. In-
telliDiary collects cinema information in cooper-
ation with other IntelliDiarys in the same way
it collects users’ schedules. The only difference is
in the contents of the information collected.
- Role information management

The alias facility can be extended to manage
role information, which identifies users in terms
of their roles in organizations, for example, work-
er, project leader, manager, and so on. These pub-
lic names are regarded as aliases of the person.
In that sense, agent can have several names ac-
cording to their services. If one agent offers sev-
eral services, then the agent can be specified with
any of several names, each of which represents
its corresponding service. That is, each service
has its suitable name and these names are alias-
es of the agent which offers the services. Role in-
formation management makes it possible to spec-Fig.8– Overall configuration of IntelliDiary.

209FUJITSU Sci. Tech. J.,33,2,(December 1997)

Y. Wada et al.: A Multi-Agent Approach to a Distributed Schedule Management System

ify agent with names that reflect the situations
in which the agents are used without needing to
know their real names.
- IntelliTeam project

We are currently working on a project called
IntelliTeam.9) The main aim of this project is to
help people efficiently cooperate as a team over
networks. To achieve this, we are designing and
implementing some groupware tools working over
networks based on the multi-agent framework.
IntelliTeam includes a schedule management tool
IntelliDiary, a work-flow management tool, a lo-
cation information management tool, and so on.
These tools are designed to cooperatively work
over a WAN such as the Internet.

In this project, IntelliDiary assists in man-
aging personal schedules and arranging group
schedules over networks to support cooperative
activities over networks. With our system the us-
ers manage their own schedules independently of
others and arrange group schedules by collabo-
rating with the systems of other users. To achieve
more effective support for cooperative activities,
IntelliDiary should be able to collaborate with
other tools of our project more smoothly and offer
convenient combinations of services.

5. Concluding Remarks
In this paper, we discussed the multi-agent

technology and how the technology can be applied
to design and implement a distributed system.
The multi-agent technology is suitable as the base
of a distributed system. Autonomy and indepen-
dency enable agents to control the privacy of in-
formation maintained in the agents and enhanc-
es scalability and extensibility of systems with the
multi-agent framework. However, how to con-
struct such a system with the technology has not
been sufficiently explored. We showed how the
framework can be used to design and implement
a distributed system using an example of a dis-
tributed schedule management system called In-
telliDiary. We also showed that the framework
is suitable for constructing systems over a WAN

such as the Internet.
The number of people who use computers and

networks is growing rapidly, and cooperative ac-
tivities over networks are getting more important.
To enhance utilization of the networks and sup-
port these activities over the networks, we should
continue to work on the topics addressed in this
paper and find which kinds of services are need-
ed and how they can be easily provided using the
multi-agent technology.

References:
1) Haynes, T., Sen, S., Arora, N., and Nadella,

R.,: An Automated Meeting Scheduling Sys-
tem that utilizes User Preferences. The First
International Conference on Autonomous
Agents, Feb. 1997, pp. 308-315.

2) Wooldridge, M. and Jennings, N.: Intelligent
Agents - Theories, Architectures, and Lan-
guages, Vol. 890 of Lecture Notes in Artifi-
cial Intelligence. Springer- Verlag, 1995.

3) Wooldridge, M. and Jennings, N.: Intelligent
Agents II., Vol. 1037 of Lecture Notes in Ar-
tificial Intelligence. Springer-Verlag, 1996.

4) Jennings, N. and Jackson, A.: Agent-based
Meeting Scheduling: A Design and Imple-
mentation. Electric Letters, The Institute of
Electric Engineering, 31, 5, pp.350-352
(1995).

5) Sandip, S. and Durfee, E.: The Role of Com-
mitment in Cooperative Negotiation. Inter-
national Journal of Intelligent Cooperative
Information System, 3, 1, pp.67-81 (1994).

6) Sen, S. and Durfee, E.: A Formal Analysis of
Communication and Commitment in Distrib-
uted Meeting Scheduling. The 11th Interna-
tional Workshop on Distributed Artificial
Intelligence, 1992, pp.333-344.

7) Sen, S. and Durfee, F.: PashaII-Personal As-
sistant for Scheduling Appointments. The
First International Conference and Exhibi-
tion on The Practical Application of Intelli-
gent Agents and Multi-Agent Technology, Apr.
1996, pp.523-542.

210 FUJITSU Sci. Tech. J.,33,2,(December 1997)

Y. Wada et al.: A Multi-Agent Approach to a Distributed Schedule Management System

8) Belakhdar, O. and Ayel, J.: Meeting Sched-
uling: an Application for Protocols Driven
Cooperation. The First International Con-
ference and Exhibition on The Practical Ap-
plication of Intelligent Agents and Multi-
Agent Technology, Apr. 1996, pp.25-44.

9) McCabe, F. G.: IntelliTeam - managing
projects in the 21st century. FUJITSU Sci.
Tech. J., 32, 2, pp.224-237 (1996).

10) Finin, T. et al.: Specification of the KQML
Agent-Communication Language, DRAFT
Paper, 1993.

11) Masuda, R. and Maruyama, F.: Ontology for
Database Access. AAAI 1997 Spring Sympo-
sium Series, Mar. 1997.

12) Iida, I., Nishigaya, T., and Murakami, K.:
DUET: An Agent-Based Personal Commu-
nication Network. IEEE Communications
Magazine, 33, 11, pp.44-49 (1995).

13) Wada, Y.., Kawamura, A., McCabe, F.G., Shio-
uchi, M., Teramoto, Y., and Takada, Y.: An
Agent Oriented Schedule Management Sys-
tem - IntelliDiary. The First International
Conference and Exhibition on The Practical
Application of Intelligent Agents and Multi-
Agent Technology, Apr. 1996, pp.655-667.

14) Takada, Y., Mohri, T., Ichiki, H., Shiouchi, M.,
Wada, Y., and McCabe, F.C.: A Multi Agent
Model for Schedule Navigation with Location
Information. The First International Con-
ference on Autonomous Agents, Feb. 1997,
pp.532-533.

15) Mohri, T., McCabe, F.G., Wada, Y., and Taka-
da, Y.: Using Location Information to Guide
Scheduling. The Second International Con-
ference and Exhibition on the Practical Ap-
plication of Intelligent Agents and Multi-
Agent Technology, Apr. 1997, pp.532-533.

Yuji Wada received the B.S. and M.S.
degrees in Information and Computer
Science from Osaka University in 1990
and 1992, respectively.
He has been a member of Fujitsu Lab-
oratories Ltd. since 1992. His current
research interests are the multi-agent
technology and distributed applications.
He is a member of the IPSJ and JSSST.

Yuji Takada received the B.A. and M.A.
degrees from the Department of Behav-
ioral Science in 1983 and 1985, respec-
tively and the Dr. Eng. degree from the
Department of Information Engineering,
Hokkaido University in 1993. Since
1985, he has been with Fujitsu Labora-
tories Ltd. In 1994 he was a visiting
researcher at the Department of Com-
puting, Imperial College, U.K. His cur-
rent research interests include multi-

agent systems, distributed computing, groupware, and machine
learning. He is a member of EATCS, IPSJ, JSAI.

Masatoshi Shiouchi received the B.E.
and M.E. degrees in Information and
Computer Sciences from Kyushu Uni-
versity, Fukuoka, Japan in 1985 and
1987, respectively.
He joined Fujitsu Laboratories Ltd. in
1987 and has been engaged in re-
search and development of machine
translation systems, natural language
processing, and intuitive search sys-
tems. His current research interest is

multi-agent systems. He is a member of the IPSJ.

