
160 FUJITSU Sci. Tech. J.,33,2,pp.160-169(December 1997)

UDC 621.397: 681.3

High Speed CG and Simulation Application
Development Environment
“Firstsight”

VFumio Nagashima     VKaori Suzuki     VTsugito Maruyama
(Manuscript received June 5,1997)

Recently, the efficient development of software is becoming more and more important
as multimedia technology progresses.  In particular, software for creating and simu-
lating images based on three-dimensional computer graphics requires an increasing
number of man-hours to develop.  This development process must be reconsidered
from the viewpoint of reusing software components.  No one has, however, succeeded
in developing reusable software components that offer both general-purpose applica-
bility and high-speed processing.  The authors have developed a computer graphics
and simulation application development environment which allows the application de-
signer to reuse software components with high-speed processing and time control
capabilities.  This environment is named “Firstsight”. The basic concept of the First-
sight system is software LSI.  It is an improved concept of constructing component-
ware based on the concepts of object-oriented and data flow programming.  Software
LSIs bear many similarities to hardware LSIs.  This is a totally new method of con-
structing realtime applications.

1. Introduction
We have developed a fundamental program-

ming technology which offers high efficiency in
both the development and execution of software.
Based on this technology, we constructed a pro-
gram development environment called “First-
sight”.  The basic concept of the Firstsight system
is software LSI.

The technique of creating 3-D graphics ex-
tends over a broad variety of fields.  It is thus dif-
ficult for a small number of people to develop a
system for creating contents.  Such a system
should be constructed through the cooperation of
experts in many fields.  The authors of this article
represent groups that specialize in two different
fields.  We have discussed the problem of coopera-
tion and found a way to solve it.

The two groups mentioned include a group
specializing in the creation of CG-based walk-
through simulation systems1) and a group that
specializes in robot dynamics.2)  Both groups use
computer graphics.  A program created by one
group, however, could not be used by the other

group as is.  In most cases, creating a new pro-
gram was faster than modifying a program creat-
ed by the other group.  Although both groups used
object-oriented programs coded in C++, the pro-
grams were not exchangeable because of critical
differences in their methods of selecting objects.

Consequently, we developed a fundamental
programming technology to enable the use or re-
use of these programs, and constructed an applica-
tion development system based on this technology.
This is based on general-purpose componentware
technology.  General-purpose componentware offers
very high development efficiency because each soft-
ware component can easily be reused.  On the oth-
er hand, componentware specific to a particular
data format cannot connect two systems developed
on different concepts, so that component reusabili-
ty is extremely low.3)  With general-purpose compo-
nentware, however, efficiency in program execution
is generally low.4), 5)

We have determined that we must solve the
problem of “improving execution efficiency using
general-purpose componentware.”



161FUJITSU Sci. Tech. J.,33,2,(December 1997)

F. Nagashima et al.:  High Speed CG and Simulation Application Development Environment “Firstsight”

2. Problems with conventional methods
We will first describe problems with conven-

tional methods.  This chapter outlines the two
major concepts for componentware, object-orient-
ed programming6) and data flow programming, 7)

and describes the problems inherent to each.

2.1 Problems with object-oriented
programming
An object-oriented program consists of objects

and the messages passed between them.  Figure
1 illustrates their relationships.

Message passing creates a bottleneck in pro-
gram execution.  The efficiency within each object
can be improved to any degree determined by the
designer of the object, because the object need not
expose its internal structure, including its data
and processes.  It is difficult, however, to improve
the efficiency of message passing.  Figure 2 is a
schematic diagram of an object handled in mes-
sage passing.  Low efficiency in message passing
is caused by:
1) Large messages
2) Processing required for eliminating algo-

rithm-dependent data
Each message contains not only the type of

processing to be performed but also the parame-
ters required to execute that processing.  Some
messages are, therefore, very large in size.  Pro-
grams which handle three-dimensional computer
graphics contain particularly extensive data in the
parameter section.  Moreover, the data must be
converted to a more generic structure to hide the
internal structure of each object.  The process used
to hide algorithm-dependent data structures de-
grades the performance of the entire object-ori-
ented program.

2.2 Problems with data flow
programming
Along with object-oriented programming,

data flow programming is another concept on
which the creation of componentware is based.
Data flow programs are created by describing the

flow of data.  Implementing data flow program-
ming in current computer architecture will, how-
ever, give rise to the following two large problems:
1) Low execution efficiency caused by the mon-

itoring of data changes
2) Low component independence and reusabil-

ity caused by data sharing
Each component of a data flow program is

triggered by a change made to any data related to
itself.  Each component must, therefore, constantly
monitor data changes.  This monitoring operation
is automatically performed by the data flow pro-
gramming system, so it remains invisible to the
application creator.  Thus, the application program
can be coded very simply to improve its clarity.
The system, however, monitors data changes re-
gardless of whether they affect each component.
The processing time required to monitor data
changes, therefore, degrades the overall execution
efficiency.

Data flow programs sometimes share rather
than transfer data to improve the processing
speed.  Systems rarely transfer data on images or
three-dimensional figures.  Such data sharing,
however, involves a great danger.  Sharing in a
casual manner may cause algorithm-dependent
data to leak out of its component, thus degrading
the independence of each component (see Fig.3).
That is, any component which references and uses
algorithm-dependent data from another compo-
nent will become dependent on that same algo-
rithm.  Such components, which can cooperate
with only those components using a particular
algorithm, cannot cooperate with components
which execute the same function but use a differ-
ent algorithm.  This greatly reduces the reusabil-
ity of components.

3. Development concepts
Firstsight is meant to use highly independent

componentware to construct applications requir-
ing high-speed processing, such as realtime CG and
simulations.  For this purpose, we must address
the issues that lead to degraded performance and



162 FUJITSU Sci. Tech. J.,33,2,(December 1997)

F. Nagashima et al.:  High Speed CG and Simulation Application Development Environment “Firstsight”

independence as described in Chapter 2.  This
chapter first describes the basic strategies for solv-
ing these problems.  We have established these
strategies after comparing several candidates.  A
method to solve the problems based on these strat-
egies is then described.  Finally, the concepts are
summarized.  The basic strategies are as follows:
1) In terms of object-oriented programming,

messages and methods should be divided into
instructions and data.

2) Data should be distinguished as primitive
data when independent of the algorithm.

3) Primitive data should be automatically ex-
panded to allow for direct reference.

4) The above processes should be dynamically
executed at program run time.

The following sections detail these strategies se-
quentially.

3.1 Eliminating large messages
One factor which degrades the efficiency of

executing object-oriented programs is large mes-
sages.  Firstsight separates the parameter section
from the message, thus reducing the message size.
We refer to the separated parameter section as
data and the remaining part of the message as an
instruction.  As described later, the data will be
passed between components separately from the
instruction.  From the viewpoint of data flow pro-
gramming, this strategy enables describing the
flow of control as well as the flow of data.

The problem of large messages has thus been
completely resolved.

3.2 Protecting algorithm-dependent
data
The independence of each component collaps-

es when its internal algorithm-dependent data be-
comes exposed.  To maintain the independence of
each component, therefore, algorithm-dependent
data must be protected.  Attempting to prohibit
the exposure of the data itself, as is done in ob-
ject-oriented programming, does not have much
effect.  Firstsight has employed the following strat-
egy to maintain the independence of each compo-
nent.  Because the algorithm mainly affects the
structure of the data (such as the tree structure
and network structure), preventing the exposure
of the data structure will preserve the indepen-
dence of each component.  Therefore, the data must
be disassembled into primitive data at an early
stage in the program's execution.  This strategy
maintains the independence of each component,
resulting in high component reusability.

Object A

Data 1
Data2...
Process 1
Process 2...

Strong capsule Component

Object B

Object C

Object D

Message 
passing

Fig.1– Object-oriented program.

Algorithm-dependent data structures are not passed.

Algorithm-dependent 
data structure

Object A

Object B

Can process a 
message even
 when its data 
structure is 
unkoun.

Parameters

M
es
sa
ge

Message object

Data acces is slow.

Fig.2– Object-oriented message.

Parameters

M
es
sa
ge

Object A Object B

Direct data reference

Component 
independence 
collapsed

Data structure 
exposed

Sees the data
structure of 
other 
components.

Fig.3– Danger in direct data reference.

unknown



163FUJITSU Sci. Tech. J.,33,2,(December 1997)

F. Nagashima et al.:  High Speed CG and Simulation Application Development Environment “Firstsight”

3.3 Direct referencing of algorithm-
independent data
Primitive data, when disassembled as de-

scribed in Section 3.2, is independent of the algo-
rithm.  Such data can be directly referenced with-
out affecting the independence of the component,
thus enabling high-speed data transfer.  Figure 4
shows the concept of data reference.

This strategy enables high-speed data pro-
cessing separate from messages.

3.4 Sharing data at an early stage of
program execution
A program usually does not include data be-

fore being executed.  Therefore, the expansion of
data for direct referencing, as described in Sec-
tion 3.3, must be performed immediately after the
program receives data.

As a result, we have enabled the direct refer-
encing of primitive data to be performed dynami-
cally during the execution of the program.

3.5 Birth of software LSIs
Strategies for improving the execution speed

while maintaining component independence ren-
der components having two clearly discriminated
interfaces: those of instruction and data.  In tra-
ditional software, functions and messages are al-
ways called together with parameters, and sepa-
rating the parameters from functions and

messages was unthinkable.
Although such discrimination is rare in the

software field, it is often encountered in the hard-
ware.  It is similar to the discrimination of LSI
pins.  Firstsight components have a larger num-
ber of “pins,” compared with those of object-ori-
ented and data flow programs.  Thus, we have de-
cided to refer to these components as “software
LSIs” (see Fig.5).  We also use other LSI terms to
represent several Firstsight elements.  A data
sharing symbol is referred to as a data bus, an
instruction symbol as an instruction bus, data
sharing specifications as data bus connections, and
instruction specification as instruction bus con-
nections.  Figure 6 shows example software LSIs,
displayed with a Firstsight tool.

Protecting components with  consumable 
connector mechanism!!

The data structure
is not visible.

M
es
sa
ge

Object A

Object B

Data bus

Instruction bus

Fig.4– Data referencing in Firstsight.

Data sharing symbol

Data bus

Message/method 
symbol

Instruction bus 
Message/method 
specification

Data sharing specification

Data bus 
connection

Instruction bus 
connection

Fig.5– Software LSIs.

Fig.6– Software LSI displayed with a tool.



164 FUJITSU Sci. Tech. J.,33,2,(December 1997)

F. Nagashima et al.:  High Speed CG and Simulation Application Development Environment “Firstsight”

3.6 Co-LSIs
It is not necessary to strictly maintain the

independence of all software LSIs.  Conventional-
ly, many ordinary applications have been created
by placing several processes around a some data
structure.  The Firstsight system also allows ap-
plications to be created in such a way and refers
to such processes as co-LSIs, as they constitute
LSI groups dependent on particular data.  Note,
however, that the data of multiple software LSIs
having different algorithms can be shared using
the software LSI base class function, even if they
have been created in the above way.  That is, co-
LSIs offer substantially higher reusability, as com-
pared with conventional programs.

4. Implementing software LSIs
Implementing those processes which all com-

ponents must have in common, such as the soft-
ware LSI functions, can be performed by inherit-
ance, a mechanism of object-oriented programming.
Software LSIs have been implemented using in-
heritance supported by C++.  We first created the
software LSI base class.  The main tasks of this
class are as follows:
1) Processing an instruction bus
2) Processing a data bus
3) Maintaining a software LSI class name
4) Maintaining a software LSI object name
Note the following for data bus processing.  The
data must be disassembled into primitive data by
the component creator who alone knows which
data is primitive data and which is algorithm-de-
pendent.  The software LSI base class only shares
the disassembled primitive data automatically.

5. Performance measurements
Figures 7 and 8 show the measured differ-

ences in the execution speed between data trans-
fer with conventional object-oriented program-
ming and that with Firstsight.  The figures show
the times required to reference and set a single
data item in an object.  As shown in the figures,
Firstsight processes data two or three times as

fast as conventional object-oriented programming.
This difference is mainly derived from the time
required to manipulate the stack, which is used
by an object-oriented program to transfer data.
Figure 9 shows the time required to reference
multiple uniform data items in an object.  Object-
oriented programs do not directly expose the in-
ternal data of an object.  Object-oriented program-
ming, therefore, requires the conversion of the
internal data to a more generic format.  When an
object contains multiple data items, an object-ori-
ented program requires a process for searching
the data group for the target data.  Thus, data
access becomes longer time as the number of data

0

0.1

0.2

0.3

0.4

0.5

Reference dataSimple dataReference dataSimple data

8-byte integer

4-byte integer

Hard ware

Testing environment

OS

Language
processing system
Time measuring
software

S–4/10 510

Solaris2.3

Sparc Compiler
C++3.0

/usr/bin/time

 Firstsight

A
cc

es
s 

tim
e 

[µ
 s

ec
]

Conventional object–oriented

Fig.7– Comparison of access time for a single data item
(reference).

0

0.1

0.2

0.3

0.4

0.5

Reference dataSimple dataReference dataSimple data

8-byte integer

4-byte integer

Hard ware

Testing environment

OS

Language
processing system
Time measuring
software

S–4/10 510

Solaris2.3

Sparc Compiler
C++3.0

/usr/bin/time

Firstsight

A
cc

es
s 

tim
e 

[µ
 s

ec
]

Conventional object–oriented

Fig.8– Comparison of access time for a single data item
(set).



165FUJITSU Sci. Tech. J.,33,2,(December 1997)

F. Nagashima et al.:  High Speed CG and Simulation Application Development Environment “Firstsight”

items increases.  Firstsight directly references al-
gorithm-independent primitive data, thus elimi-
nating the need to hide the internal data or search
for the target data, so that processing time does
not increase with the number of data items.

6. System overview
This chapter gives an overview of the cur-

rent Firstsight system.  The basic unit of the First-
sight system is software LSIs.  Both system ex-
pansion and application enhancement are per-
formed by adding new software LSIs.

Figures 10 and 11 show the work assigned
to the software LSI creator, the software LSI user,
and Firstsight.  The software LSI creator is in
charge of:
1) Creating a primitive data collection process
2) Creating methods and messages
The software LSI user is in charge of:
1) Connecting data buses
2) Connecting instruction buses
Firstsight is in charge of:
1) Creating connectors, sharing primitive data,

and deleting connectors
2) Executing the method and message process-

ing flow
Figure 12 is a conceptual diagram of the sys-

tem operation.  A Firstsight user first uses an LSI
builder to create a software LSI based on existing
software resources.  The created LSI is stored in
the local archive.  From this archive, the applica-
tion programmer selects the appropriate LSIs and
then creates the application by connecting the

Firstsight
(3) Executing methods and 
message processing flow

LSI creator
(1) Creating 
methods and 
messages

Another LSI

LSI user
(2) Connecting instruction 
buses

FunctionA(int,...)

Fig.11– Work assignment (instruction bus).

LSI user
(2) Connecting 
data bus

Firstsight
(3) Creating connectors
(4) Sharing data
(5) Deleting connectors

(1) Creating primitive
data collection 
process

LSI creator

Connectors

Another
LSI

Fig.10– Work assignment (data bus).

0

1

2

3

4

5

6

10 20 30 40 501

A
cc
e
ss
 ti
m
e
 fo
r 
a
 

si
n
g
le
 d
a
ta
 i
te
m
[μ
s]

Comparison of data access time

Conventional object-oriented

Firstsight

Number of data items in an object

Fig.9– Comparison of access time for multiple
data items (reference).

Wi r ing e d it or

Local archive

LSI b u ilder

Existing software 
resources

Application

ＬＡＮ

Can be operated as a staned-alone or with a LAN or WAN.

Archive on 
LAN

Archive on 
WAN

Archive on 
another LAN

Fig.12– System operation conceptual diagram.

Can be operated as a stand-alone or with a LAN or WAN.

A
cc

es
s 

tim
e 

fo
r 

a
si

ng
le

 d
at

a 
ite

m
 [µ

 s
]



166 FUJITSU Sci. Tech. J.,33,2,(December 1997)

F. Nagashima et al.:  High Speed CG and Simulation Application Development Environment “Firstsight”

instruction and data buses using a wiring editor.
If such a system is connected to a LAN, the

local archive allows the LSIs to be shared on the
LAN.  Thus, the user can obtain any LSI avail-
able on the same LAN or use a WAN to download
an LSI from another LAN.

Figure 13 shows the main tools used in this
system and the major software LSIs for which de-
velopment is nearly completed.  Several important
tools and basic software LSIs are described below.

6.1 LSI builder
To create a software LSI, messages and meth-

ods must be disassembled into instructions and
data.  The bulk of this disassembly process is, how-
ever, mechanical work.  To improve efficiency,
therefore, the system provides a tool that supports
the disassembly process.  Figure 14 shows the
LSI builder screens.  The screens include the ap-
pearance of the software LSI being created and a
dialog box used for bus definition.  This LSI builder
has been designed as a Firstsight application us-
ing 15 software LSIs.

6.2 Wiring editor
The application creator must connect wires

between software LSIs.  The wiring operation is
very laborious work if performed on a character-
based system.  The Firstsight system, therefore,
provides a tool that visually displays the wiring
and allows the application creator to edit them.
Figure 15 shows the wiring editor screens.  In
this example, the system is performing a realtime
dynamic simulation of the motion of a chain with
power applied.  This wiring editor has been de-
signed as a Firstsight application using 19 soft-
ware LSIs.

6.3 Frame LSI
An LSI used to group several LSIs is called a

frame LSI.  Frame LSIs are classified into sever-
al types.  Basic frame LSIs are described below.

Firstsight

platform

LSI wiring management,LSI wiring editor

Application developer

End user

Algorithm developer

LS
I 
bu
ild
er

Network Geometric data 
input-output LSI

Screen editing 
LSI

Simulation LSI

Rendering LSI GUI LSI Interference 
check LSI

Data 
management 
LSI

Network 
communication 
LSI

Time contro l 
LSI

Graphics : OpenGL VRML
Window   : X・motif / WindowsNT,95 API
OS          : UNIX / WindowsNT,95

Language

Fig.13– Current system configuration.

Creating or updating LSI

//  追加する処理を記述

Fig.14– LSI builder.

Fig.15– Wiring editor.



167FUJITSU Sci. Tech. J.,33,2,(December 1997)

F. Nagashima et al.:  High Speed CG and Simulation Application Development Environment “Firstsight”

6.3.1 Circuit frame LSI
This is the simplest frame.  Its functions in-

clude wiring its internal LSIs and enabling spec-
ified LSI pins to be shared with outside compo-
nents.

6.3.2 Dynamic circuit frame LSI
This frame contains internal LSIs together

with their wiring prototypes and generates or de-
letes specified LSIs and wires at any timing dur-
ing program execution.  The dynamic circuit frame
supports the description of an object which is gen-
erated or deleted during program execution.

6.3.3 Parallel processing frame LSI
This frame operates its internal LSIs as sep-

arate threads or processes.  This parallel process-
ing originally includes process synchronization
and data lock mechanisms.

6.3.4 Distributed processing frame
LSI

This frame operates its internal LSIs using
different CPUs.  Its basic operation is the same
as that of a parallel processing frame.

7. Discussion
Firstsight has more object interfaces than

conventional object-oriented programming sys-
tems.  In addition, data is transferred through
multiple LSI pins simultaneously.  This is similar
to parallel interfacing in computer hardware.
Conversely, conventional object-oriented programs
transfer messages and their parameters through
a single logical channel.  This is similar to serial
interfacing in computer hardware.  Computer
hardware uses a parallel interface, such as a SCSI
bus, for high-speed processing, while it uses a se-
rial interface, such as Ethernet, for connections
between individual computers.  Software also re-
quires such natural interfaces to select from ac-
cording to its purposes.  Conventional systems re-
lying exclusively on object-oriented programming
result in low execution speeds.  The system pro-
posed in this article will enable the creation of
optimum software.

7.1 Comparison with an object-oriented
programming system
Object-oriented programming systems, such

as IDL, exchange information between objects by
adding parameters to messages.  Firstsight divides
the information to be exchanged into a message
section and parameter section, each of which is
transferred between objects independently.  This
mechanism can be regarded as serial and paral-
lel interfaces between computers.  Object-orient-
ed programming corresponds to the serial inter-
face while Firstsight corresponds to the parallel
interface.

7.2 Comparison with data flow
programming
The execution of a data flow program pro-

ceeds as the data changes, while information in-
dicating these changes is transferred between
components.  Usually, this information transfer is
not significant because the user does not notice
it.

Firstsight performs this information trans-
fer by connecting instruction buses, so that the
user can control the transfer.  If instruction bus
connections are always automatically performed
together with data connection, the result is equiv-
alent to data flow programming.  The most signif-
icant difference is whether the user can control
the information transfer.

8. Application examples
Figure 16 show the application developed

by Firstsight and its circuit.  This circuit consists
of many LSIs and work together using high speed
data exchange.  Usually, the application can be
easily modified by connecting several buses.

9. Conclusion
Because the CG and simulation application

has a complex data structures, it was difficult to
reuse the software component inside such appli-
cations.  And these applications require high speed
execution.  We propose a new method to reuse soft-



168 FUJITSU Sci. Tech. J.,33,2,(December 1997)

F. Nagashima et al.:  High Speed CG and Simulation Application Development Environment “Firstsight”

ware component for such CG and simulation ap-
plications.  The basic concept is software LSI.  The
new method offers high efficiency in both the de-
velopment and execution of software.  We con-
structed a program development environment
based on this technology and named it Firstsight.

We are now developing some easier develop-
ment tools for end users.  For example, we are de-
veloping a program launcher on which end users
can develop a CG and simulation application easily.

References
1) Kamada, H. et al. : Time-realistic 3D CG sim-

ulator 'Sight'. : SPIE 2409, pp. 255-266 (Feb-
ruary 1995).

2) Nagashima, F. and Nakamura, Y. : Efficient
Computation scheme for the Kinematics and
Inverse Dynamics of a Satellite-Based Ma-
nipulator. Proc. of the IEEE Int. Conf. on Ro-
botics and Automation, May 1992, pp. 905-
913.

3) Bethel, W. : Modular Virtual Reality Visual-
ization Tools. LBL Report Number 36693,
UC 405.

4) Arnold, K. and Gosling, J. : The Java Program-
ming Language. Addison- Wesley, 1996.

5) Brockshmidt, K. : Inside OLE, Microsoft,
ISBN4-7561-3, 1996.

6) Goldberg, A. and Robson, D. : Smalltalk-80
The Language and its Implementation. Add-
ison-Wesley Publishing Center, 1983.

7) Adams, D. : A Computation Model with Data
Flow Sequencing. Stanford University, 1968.

Fig.16– The application developed by Firstsight.

a) Screen Image

b) Firstsight LSI circuit



169FUJITSU Sci. Tech. J.,33,2,(December 1997)

F. Nagashima et al.:  High Speed CG and Simulation Application Development Environment “Firstsight”

Fumio Nagashima  received the Dr. de-
gree in mechanical engineering from
Keio University, Tokyo, Japan, in 1989.
He joined Fujitsu Laboratories Ltd.,
Kawasaki in 1989 and has been en-
gaged in research and development of
software simulation tools.  He is a mem-
ber of the Japan Society of Mechanical
Engineers(JSME).

 

Kaori Suzuki  received the Master de-
gree in earth and planetary physics from
Hokkaido University, Japan in 1986.
She joined Fujitsu Laboratories Ltd.,
Kawasaki in 1986 and has been en-
gaged in research and development of
computer graphics.

 

Tsugito Maruyama  received the Dr. de-
gree in electrical engineering from To-
hoku University, Japan in 1970.  He
joined Fujitsu Laboratories Ltd., Ka-
wasaki in 1989 and has  been engaged
in research and development of com-
puter vision.  He is a member of the
Society of Instrument and Control En-
gineerings.


