
145FUJITSU Sci. Tech. J.,33,2,pp.145-159(December 1997)

UDC 001.81: 621.397: 681.3

A Prototype Multimedia Database System

VHiroshi Ishikawa
(Manuscript received May 29,1997)

Emerging multimedia applications such as digital libraries and document manage-
ment require new databases. Next-generation database systems must enable users to
efficiently and flexibly develop and execute such advanced multimedia applications.
In this paper, we focus on the development of a database system which enables flexi-
ble and efficient acquisition, storage, access, retrieval, distribution, and presentation
of large amounts of heterogeneous media data. We take the approach of extending an
object-oriented database, which is more suitable for describing media structures and
operations than a traditional relational database. In this paper, we describe a multime-
dia data model and its efficient implementation.

1. Introduction
New multimedia applications emerging on

top of information infrastructures include on-de-
mand services (e.g., videos, news, and sports), dig-
ital libraries and museums, online shopping, and
document management. We need a next-genera-
tion industry database system which enables us-
ers to efficiently and flexibly develop and execute
such advanced multimedia applications.1) More-
over, since in some cases of application develop-
ment there is no existing database while in other
cases there are databases or files to be integrat-
ed, we need to enable both top-down and bottom-
up database development. (This is because top
down design is unsuitable when there is an exist-
ing database.)

To meet these requirements, we focus on de-
veloping a database system which enables flexi-
ble and efficient acquisition, storage, access, re-
trieval, distribution, and presentation of large
amounts of heterogeneous media data. We take
a realistic approach based on a Fujitsu object-
oriented database (OODB) product called
SymfoWARE/ODB. We decided to use an OODB
because OODBs are more suitable for descrip-
tions of media structures and operations than tradi-
tional relational databases (RDBs). The main fea-
tures of our system are outlined below.

1) Multimedia data model
We propose a multimedia data model that is

an integration of structural, temporal, spatial, and
control functionality. Our extended data model
based on agents provides uniform interfaces to
heterogeneous media in addition to defining struc-
tures and operations specific to such media. The
model enables the representation of temporal and
spatial relationships and of temporal synchroni-
zation and QOS (quality of service) control by ex-
tending a scripting language suitable for multi-
media application development. That is, we take
an object-oriented database approach suitable for
description of media structures and operations
and extend the object-oriented approach by pro-
viding temporal and spatial operators and con-
trol of distributed computing and QOS.
2) Flexible acquisition

Our database system allows users to acquire
newly produced media data via distributed net-
works including ATM LANs and the Internet.
Moreover, we provide multidatabase functional-
ity by managing metadata (e.g., a data dictionary)
of existing data files or heterogeneous databases
to give users interoperable access to such files and
databases. Our technology includes schema trans-
lation between OODBs and RDBs, uniform WWW
(World Wide Web) gateways to databases, HTML

146 FUJITSU Sci. Tech. J.,33,2,(December 1997)

H. Ishikawa: A Prototype Multimedia Database System

(Hyper Text Markup Language) page man-
agement by databases, and WWW directory man-
agement by databases.
3) Efficient storage

We provide media data management mecha-
nisms which enable efficient storage and access
of large amounts of media data. These mecha-
nisms enable users to customize media-specific
storage in areas such as indexing, clustering, and
buffering. We take an object-oriented approach
to resolve heterogeneity in data formats, compres-
sors/decompressors (CODECs), and physical me-
dia used for implementation of logical media.
4) Efficient retrieval

To facilitate interactive retrieval of multime-
dia data, we enable users to flexibly and efficient-
ly access partial data such as sub-streams of vid-
eos using temporal information (e.g., temporal
intervals), keywords, and other related informa-
tion. This technique of subsetting a large amount
of media data is analogous to RDB views. Effi-
cient processing of partial accesses is facilitated
by combining software techniques such as access
methods, clustering, and exploiting available hard-
ware such as parallel machines. Also, we provide
a light-weight technique based on color informa-
tion to segment scenes and recognize objects for
content retrieval of stream data.
5) Flexible distribution and presentation

We provide the means for flexible distribu-
tion and presentation of retrieved multimedia data
over distributed networks by executing QOS con-
trol and scripts. To this end, we use techniques
such as prefetching, caching, synchronization, and
distributed processing. In this paper, we focus on
a multimedia data model and its implementation.

2. Multimedia data model
2.1 Related work

We propose a multimedia data model which
integrates structural, temporal, spatial, and con-
trol functionality. (Some individual functionality
has been researched in previous work, and we
have used the results of that work to assess the

individual functionality of our model.)
We take the object-oriented model of a given

OODB2)-4) as the basis of our multimedia data
model. Structures and operations of each media
data are directly defined as properties and meth-
ods of objects. The set of media objects is man-
aged by the OODB and retrieved and manipulat-
ed by a set-oriented query language. Hypermedia
functionality corresponds to navigation of media
objects through links. Hypermedia links, static
or dynamic, can be implemented as properties or
methods of media objects.5) In the Internet hy-
permedia protocol, called HTTP,6) URLs (Uniform
Resource Locators) and operational codes (i.e.,
methods) are suited to object-orientation. Our
model can integrate HTTP servers and OODBs,
which enables users to access OODBs with WWW
browsers.

There are models7)-10) which support temporal
descriptions. However, most of them focus only on
temporal functionality and pay little attention to
the other functionalities. There is almost no work
that provides a substantial spatial description func-
tionality. Our model provides set-oriented opera-
tors for associative (or partial) access to an ordered
set of internal frames constituting stream media
such as video and audio. These set-oriented oper-
ators are analogous to relational algebra11) for as-
sociative access to a set of records constituting ta-
bles. In general, to develop multimedia
applications, we need control structures which sup-
port features such as concurrency. In our model,
control is described as annotations to other func-
tionalities, i.e., structural, temporal, and spatial.
Annotated concurrency is advocated by Lohr.12)

Relational database vendors, such as Oracle
and Sybase, have announced that they will sup-
port multimedia extensions by providing univer-
sal database servers. However, we cannot com-
pare our work with such products because detailed
specifications of the products are not yet avail-
able.

In addition to concurrency control, QOS pa-
rameters such as latency and bit rates are speci-

147FUJITSU Sci. Tech. J.,33,2,(December 1997)

H. Ishikawa: A Prototype Multimedia Database System

fiable in concurrency annotations to allow real-
time execution of stream media. We extend the
annotated approach to concurrency to allow for
QOS control options. QOS is controlled either by
executing methods or by retrieving stored data.
An Event-Condition-Action (ECA) paradigm of
active databases13) is applicable; however, it needs
to be extended for real-time use. We use tech-
niques such as prefetching and caching. In gen-
eral, event specification facilitates relative invo-
cation of synchronization or serialization of media
objects. In particular, time events enable abso-
lute invocation of media objects at specified times.
Temporal relationships such as “before” and “af-
ter” are directly described by structural operators
of the OODB and hypermedia.

In summary, our multimedia data model is
unique in that it allows concurrent object-orient-
ed computing and QOS control for the develop-
ment of distributed and real-time multimedia
applications in addition to set-oriented temporal
and spatial operators for associative access. In
the rest of this section, we describe our multime-
dia data model, which is clearly different from
other work in that it can subsume and integrate
previous work.

2.2 Our data model
1) Multimedia

We think that multimedia data are not just
static data, but rather compositions of several
types of media data and operations on them. We
therefore provide structural, temporal, spatial,
and control operations as media composition op-
erators, as described later. In other words, our
model has multiple facets and subsumes existing
models such as object, temporal, spatial, and agent
models. Individual operations are orthogonal to
one another. Our model is integrated seamlessly
with existing technologies.

Multimedia systems consist of multimedia
databases and applications. Multimedia databas-
es consist of a set of media data. Media types
include text, graphics, images, and streams.

Stream types include audio, video, streamed texts,
streamed graphics, and streamed images. Multi-
media applications consist of a set of scripts. Ba-
sically, a script has an identifier (ID) and tempo-
ral and spatial operations on a set of streams with
QOS options. A stream has an ID and temporal
and spatial operations on a set of frames. A frame
has an ID and temporal and spatial operations on
frame data.

QOS options are parameters given to the QOS
controller. QOS types include latency, jitter, vari-
ous bit rates and frame rates, resolution, colors,
and fonts. QOS is controlled either by executing
specified QOS functions or by retrieving stored
QOS data. The QOS function takes a stream and
a time and gives frame IDs. The QOS data con-
sisting of the time and a frame ID are stored in
advance by obtaining them from rehearsal.

To concretely explain the features of our data
model, we consider the following multimedia ap-
plication or script, called Script1, under the as-
sumption that there are multimedia databases
containing multiple video streams of the same
object.
Script1:
a) retrieves all video streams of the prime min-

ister taken on January 17th, 1995,
b) selects only parts of the retrieved video

streams temporally overlapping each other,
c) arranges the selected parts on the same pre-

sentation space (i.e., window), and
d) plays the parts in temporal synchronization.

2) Structural Operations
We describe an object-oriented model of an

OODB using Jasmine,2) which is a well-published
research prototype version of SymfoWARE/ODB.
Note that throughout this paper, Jasmine is not a
product name but the code name of a research
prototype of Fujitsu Laboratories, Ltd. Objects
are a collection of attributes, which are catego-
rized into properties (enumerated attributes) and
methods (procedural attributes). Properties are
object structures and methods are operations on

148 FUJITSU Sci. Tech. J.,33,2,(December 1997)

H. Ishikawa: A Prototype Multimedia Database System

those objects. Objects are categorized into instanc-
es and classes. Instances denote individual data,
while classes denote types (i.e., structures) and
operations applicable to instances of the class.
Instances consist of a collection of attribute names
and values. Classes consist of attribute names,
definitions, and associated information such as
demons. Objects are identified by values of the
system-defined attribute object identifier (OID).
Therefore, objects with the same object identifier
in a consistent database have the same values.
On the other hand, while values such as numbers
and character strings have no OIDs, they do have
system-defined classes. Objects with OIDs are
called reference objects, and values with no OIDs
are called immediate objects. Objects can include
other objects (i.e., OIDs) as attribute values. A
property containing an OID is a relationship or
link implementing a hypermedia link. This en-
ables the user to directly define complex objects
(composite objects).14) Objects can have a set of
objects or just a single object as an attribute val-
ue. The former are called multiple-valued at-
tributes, and the latter are called singleton-val-
ued attributes.

Classes are organized into a hierarchy (more
strictly, a lattice) by generalization relationships.
This hierarchy is called a class hierarchy. A su-
perclass in a class hierarchy is denoted by the
Super system-defined attribute. Classes (i.e., sub-
classes) can inherit attribute definitions from their
superclasses. Unlike the features provided for in
Smalltalk-80,15) the user can make instances (i.e.,
instantiate) from any class in a class hierarchy.
Such instances are called intrinsic instances of the
class. If a property type is a superclass, the prop-
erty can contain objects of the subclasses.

For example, media objects such as streams
and frames are defined (see Fig. 1). In addition
to specifying how object types and methods are
defined, classes are also interpreted as sets of in-
stances. That is, the instances of a class are the
unions of all the intrinsic instances of the class
and all its subclasses. This differentiates our

OODB from other OODBs such as GemStone,16)

where the user must define separate classes for
both types and sets.

Property inheritance, method inheritance,
and set inclusion are facilitated through super
relationships.

Specialized functions, called demons, can be
attached to attributes to enable the user to flexi-
bly implement active databases. Hypermedia
links written in HTML6) of the WWW can be in-
terpreted so that access events on links invoke
methods (viewers) on data (retrieved hypertexts).

In an OODB, the user manipulates objects
by sending messages to objects just as in object-
oriented programming languages; this process is
called singleton access. The user can assign val-
ues to attributes and reference attribute values.
An OODB allows set-oriented access in addition
to singleton access. Set-oriented access is done
through object queries. The basic unit of an ob-
ject query is the object expression, which is a class
name followed by a series of attribute names de-
limited with periods. Object expressions elimi-
nate most of the need for the equijoin predicates
used in an RDB. The user can also specify meth-
ods in object expressions. An object query con-
sists of a target and a condition. The target part
is a list of object expressions. The condition part
is a logical combination of simple conditions that

STREAM
Super MEDIA

Property
TIME Internal Time
TIME Real Time
SPACE Internal Space
SPACE Real Space
Set FRAME Frame
STRING Topic

MPEG
Super STREAM

Property
Set MPEG-Frame Frame

Method
MPEG AddFrame()
MPEG RemoveFrame()
VOID Forward()
VOID Backward()

FRAME
Super MEDIA-Data Property
TIME Time
FRAME-Data Data

Fig.1– Definition of media objects.

149FUJITSU Sci. Tech. J.,33,2,(December 1997)

H. Ishikawa: A Prototype Multimedia Database System

compares object expressions using comparison
operators. For example, the following query re-
trieves streams of the prime minister taken on
January 17th, 1995, which realizes Script1 a):
STREAM.Frame from STREAM where STREAM.RealTime
= “01171995” and STREAM.Topic = “the prime minister”

To make application programs, users can
combine singleton-access and set-oriented access.
An element of a set of objects is assigned to an
object variable and is manipulated by sending
messages to the object variables. The introduc-
tion of object variables reduces impedance mis-
match between a programming language and a
database language.16) Since users can specify ob-
ject queries as well as simple manipulation of at-
tributes in methods, views of objects correspond-
ing to relational views can be defined using
methods. Since a query on a class returns all the
instances of the class and its subclasses, a single
OODB query can retrieve what would otherwise
take multiple RDB queries. A method is either a
program or a query. The result of a method is a
value or OID or a set of values or OIDs. Methods
can also have side effects. Methods returning
OIDs also implement hypermedia links.

By specifying methods in a query, users can
retrieve and manipulate objects in a set-oriented
manner. If a superclass is specified with a meth-
od in a query, methods dedicated to instances of
the class and its subclasses can be invoked simul-
taneously. This facilitates polymorphism17) in a
set-oriented manner. Thus, polymorphism, which
can invoke dedicated methods by specifying ge-
neric messages, is usually applied to a single ob-
ject at a time. But our language enables simulta-
neous application of polymorphism to a set of
objects. A query can also make new instances from
more than one class, like joins in an RDB.

Application programs written for the OODB
are precompiled into C programs. During this pro-
cess, references to attributes are statically re-
solved to reduce the burden of a dynamic search,
allowing the C programs to execute efficiently. A
set-oriented query can also be interpreted inter-

actively. Objects are basically persistent since
they exist after program execution; however, as
in conventional programming languages, users
can make temporary objects which exist only dur-
ing program execution. OODBs usually have
many classes, and users can access several data-
bases concurrently or switch between them. Also,
OODBs provide basic database facilities such as
transaction management and buffer management.
3) Temporal and Spatial Operations

Temporal and spatial data are viewed as uni-
versal keys common to any stream media data.
Such temporal and spatial relationships structure
multimedia data implicitly in contrast to explicit
links. We define set-oriented temporal and spa-
tial operators that specify such relationships,
which are analogous to relational algebra.11)

Although time is one-dimensional and space
is three-dimensional, they have similar character-
istics. Real time is the time that passes when
streams are recorded in the real world. Internal
time is the time required for normal playback of
streams. External time is the time needed to play
a stream using scripts. Usually, real time is equal
to internal time. In the case of high-speed video,
real time is shorter than internal time. External
time is specified by providing a magnification level
for internal time. The default magnification is X1;
that is, external time is equal to internal time. In
the case of slow play of streams, external time is
longer than internal time; in the case of fast play,
external time is shorter than internal time. As-
suming that S1 and S2 are streams and P is a
predicate on frames of a stream, temporal compo-
sition of streams is achieved by temporal opera-
tors as follows:
a) Tintersection (S1, S2) returns parts of S1 and

S2 which temporally intersect.
b) Tdifference (S1, S2) returns a part of S1

which does not temporally intersect with S2.
c) Tunion (S1, S2) returns S1 and S2 ordered

in time with possible overlaps.
d) Tselect(S1, P) returns a part of S1 which sat-

isfies P.

150 FUJITSU Sci. Tech. J.,33,2,(December 1997)

H. Ishikawa: A Prototype Multimedia Database System

e) Tjoin (S1, S2, P) = Tselect(Tunion(S1, S2), P).
f) Tproject(S1, Func) returns the result of Func

on S1,
where Func is an operation on frames which may
include the spatial operators described below.

Note that internal time of a composite stream
is the union of the external time of its component
streams. Real time of a composite stream is the
union of real time of its component streams. For
example, we assume that the query result of
Script1 a) is scanned and is individually set to
Stream1 and Stream2. To select only parts of
Stream1 and Stream2 which temporally overlap
one another, which realizes Script1 b), we only need
to execute expression Tintersection (Stream1,
Stream2) based on the internal time. Here we
name the selected parts Stream1' and Stream2'
for Stream1 and Stream2, respectively. The sche-
matic explanation of the effect of the expression is
presented in Fig. 2.

Similarly, space is divided into real space, in-
ternal space, and external space. Real space is
space occupied by streams in the real world. In-
ternal space is space typically occupied by streams
in a presentation. External space is space occu-
pied by streams during actual presentation of
scripts. External space is specified by providing
a magnification of internal space. By default, ex-
ternal space is equal to internal space. Assuming

that F1 and F2 are frames and P is a predicate on
pixels of a frame, spatial composition of streams
is accomplished by spatial operators as follows:
a) Sintersection (F1, F2) returns parts of F1 and

F2 which intersect in space.
b) Sdifference (F1, F2) returns a part of F1

which does not intersect in space with F2.
c) Sunion (F1, F2) returns F1 and F2 merged

in space.
d) Sselect(F1, P) returns a part of F1 which sat-

isfies P.
e) Sjoin (F1, F2, P) = Sselect (Sunion (F1, F2), P).
f) Sproject(F1, Func) returns the result of Func

on F1, where Func is an operation on pixels.
Note that internal space of a composite

stream is the union of the external space of its
component streams. Real space of a composite
stream is the union of real space of its component
streams. For example, to arrange Frame1 of
Stream1' and Frame2 of Stream2' on the same
window, which realizes Script1 c), we evaluate
expression Sunion (Frame1, Frame2) based on the
external space, the effect of which is schematical-
ly explained in Fig. 3.
4) Control Operators

Processes, called agents, represent control
structures. Processes consist of events, conditions,
and actions. Event specification allows for serial,
parallel, and alternative occurrences of component

Frame1
Frame2

Fig.3– Schematic explanation of expression
Sunion (Frame1, Frame2).

Stream1

Stream2

Stream1'

Stream2'

Overlapped time
Internal

time

Fig.2– Schematic explanation of expression
Tintersection (Stream1, Stream2).

151FUJITSU Sci. Tech. J.,33,2,(December 1997)

H. Ishikawa: A Prototype Multimedia Database System

events. Time is specifiable in events with key-
words such as “before”, “after”, “between”, “at”, and
“periodically”. Events are invoked by actions with-
in other processes. Conditions can monitor data-
base states, process states, and QOS states. Ac-
tions specify control of processes such as parallel,
serial, alternative, and other model operators such
as structural, temporal, and spatial. Concurren-
cy is represented as annotations together with
QOS options, which reduces to other model oper-
ators in the case of serial compilers. Serial speci-
fication is simply object-oriented programming
and query languages. Merging of processes is spec-
ified by the conjunction of events. QOS informa-
tion is given as parameters to the process con-
struct.

For example, the following shows the speci-
fication based on external time for parallel execu-
tion of Stream1' and Stream2' while taking two
QOS parameters, latency and bit rate, into con-
sideration:

QOS (Latency, Bit Rate) ;
Set1= (Stream1' Stream2');
Set1.parallel.play;

This realizes Script d). The effect is schematical-
ly shown in Fig. 4. We describe how to satisfy the
QOS parameters in Section 3.2.

3. Implementation
3.1 System architecture based on

OODB
We now describe the implementation of a mul-

timedia database system. As shown in Fig. 5, the
system architecture consists of agent management,
media management, object management, data
management, and multidatabase management
layers on top of the OS and network protocol man-
agement layers. The agent management layer
enables users to flexibly describe multimedia ap-
plications. The media management layer provides
interfaces to individual media data. The object and
data management layers, which provide basic da-
tabase management facilities, are OODB-based.2)

The multidatabase management layer enables in-
tegrated accesses to traditional media, for exam-
ple, numbers and character strings, in an RDB and
to new media, for example, audio and video
streams, in an OODB.

In this section, we describe an OODB which
interacts with the OS and network protocol man-
agement layers as the kernel of a multimedia da-
tabase system. An OODB provides an object-ori-
ented data model, as described in Chapter 2. The
object management layer enables users to flexi-
bly define and manipulate objects. Object manip-
ulation is facilitated by combining object-orient-
ed programming and query languages. The data
management layer can efficiently store a large
amount of objects and perform object manipula-
tion.

The OODB system has a layered architecture
consisting of object management and data man-
agement layers. The object management layer al-
lows modeling and manipulation of objects. In
particular, this layer has object buffers that effi-
ciently manage objects in main memory. The data
management layer provides support for transac-
tion management and page buffer management
as database functions.

As the storage manager of our OODB, the
data management layer extends relational data-
bases. This enables the user to define and access
nested relations as well as flat relations. In addi-

Stream1'

Stream2'

Play time

Play time

Latency

Latency

End timeStart time
External

time

Fig.4– Schematic explanation of QOS-constrained
concurrent playback of two streams.

152 FUJITSU Sci. Tech. J.,33,2,(December 1997)

H. Ishikawa: A Prototype Multimedia Database System

tion to reference and update operations, this layer
provides nest and unnest operations for relations.
The system provides sequential, B-tree-based, and
hash-based access to flat and nested relations. A
clustered index can be implemented by storing
whole tuples into B-tree relations. A nonclustered
index can be implemented by storing only keys and
tuple identifiers into B-tree relations.

Objects are mapped into relations as follows.
All intrinsic instances of a class are stored in a
relation by making attributes correspond to fields.
Intrinsic instances include inherited and non-in-
herited attributes. Multiple values are stored in
multiple-valued fields, which are the simplest form
of nested relations. Classes are stored in nested
relations because they have nested structures.

The user can specify logical page sizes for
each relation. Each class has its own page size. A
class normally inherits the page size of its super-
class. However, if necessary the page size can be
enlarged. There is no limit on the number and
length of tuples and fields, although whole tuples

must be contained in one page. This enables the
user to optimally store and access large-scale data
such as images and text. Operations and tests on
fields of relations, called manipulation and predi-
cate functions, are treated as user-defined func-
tions in the data management layer and are com-
piled into operations on data in page buffers.

Object queries are translated into relational
operations such as selection and join. During this
process, they are optimized. Object expressions
may generate several joins whose execution or-
der is determined dynamically. Joins are usually
processed based on hashing. If an index is at-
tached to fields, it is used for selection and join.

Page buffers are appropriate for access to ho-
mogeneous data but inappropriate for access to
related heterogeneous data such as complex ob-
jects. Therefore, the object management layer pro-
vides object buffers. Objects, when accessed for
the first time, are fetched from databases in sec-
ondary memory to page buffers in the data man-
agement layer. Only the required data is trans-

On-
Demand-
Services

Online
Shopping/Information

Q&A systems

Digital Libraries
and Museums

Document
Management

Systems

Concurrent
Engineering Existitng Data

Managememt

RDB

Multi-
database

Management

Mutimedia Database System
Agent Management

Media Management Object Management

Data Management

OS Multimedia Extension File Systems

OS Micro Kernel

Network Protocol Management

ATM ETHER FDDI

Fig.5– System architecture.

153FUJITSU Sci. Tech. J.,33,2,(December 1997)

H. Ishikawa: A Prototype Multimedia Database System

ferred to the object buffers from the page buffers.
Object identifiers are represented as a triplet of
database, class, and instance numbers. The iden-
tifiers of objects fetched into object buffers are
translated into addresses in main memory. This
eliminates the need for joins of relations and en-
ables direct access of complex objects. The objects
in object buffers also have tuple identifiers. If
there are any updated objects in the object buff-
ers, they are written back to the page buffers us-
ing the tuple identifiers at the end of the transac-
tion.

Before a set-oriented query is evaluated, any
updated objects associated with the query that are
in the object buffers are moved to the page buff-
ers. The query is then evaluated against the page
buffers. Unlike our approach, Orion14) evaluates
the same query for both object buffers and page
buffers and integrates the results. Because our
approach needs only one evaluation scheme, our
system is more compact.

A query on nonleaf classes in a class hierar-
chy is translated into multiple queries on rela-
tions. Simple methods specified in a query, such
as manipulation of attributes, are transformed
into operations on fields of relations. These can
be executed more efficiently on page buffers be-
cause unnecessary data transfer between page
and object buffers is reduced. On the other hand,
more complex methods, such as manipulation of
heterogeneous objects of complex objects, are more
efficiently evaluated in object buffers. Methods
appearing in the condition part are similarly pro-
cessed. Unlike other OODBs, our approach effi-
ciently executes methods by combining object and
page buffers. Hereafter we focus on the imple-
mentation of our current prototype.

3.2 Agent management
We will now describe the management of

agents in our current prototype. Agents provide
a distributed, object-oriented computing mecha-
nism. Users describe multimedia applications in
the form of scripts by using agents. In distribut-

ed computing, process migration from one server
to another can also be done using agents. For ex-
ample, in online shopping and VOD (Video-On-
Demand) services, after a bunch of processes have
been initiated and partially executed by one serv-
er, the rest of the processes are executed by an-
other server at a client site. Agents also facilitate
distributed hypermedia by retrieving and view-
ing hypermedia in a way that can be processed in
a distributed manner. Scripts not only provide
interfaces to the users but also provide the sys-
tem with hints on QOS control.

First, information needed for QOS control is
obtained by rehearsing scripts. Through rehears-
al, QOS-related data are stored as properties of
media objects. Next, a script execution plan is
made based on the obtained data and then de-
clared to the OS to reserve resources for QOS con-
trol. The agent management layer negotiates with
the OS to satisfy QOS constraints. If necessary,
plans, including QOS parameters, are changed.
This phase corresponds to static optimization of
script execution. In our current prototype we do
not use a multimedia OS which can reserve de-
manded resources because, to our knowledge,
there is currently no product that is sufficiently
stable. Instead we do resource management at a
user level.

Agents are basically objects, although they
can be executed by migrating them to other pro-
cessors available over a network if necessary.
Scripts including agents are translated into ob-
jects and operations on them. Therefore, agents
have storage structures identical to ordinary ob-
jects, although they may be moved to other serv-
ers. Individual structures of media types such as
streams and texts are described later.

In general, there may be deviations from the
reserved QOS parameters in real executions of
scripts. Therefore, the agent management layer
monitors environment information and checks the
deviation from the expected values. If there is
any deviation, the agent management layer dy-
namically changes the QOS parameters to satisfy

154 FUJITSU Sci. Tech. J.,33,2,(December 1997)

H. Ishikawa: A Prototype Multimedia Database System

the constraints. We use prefetching and caching
techniques to satisfy QOS constraints such as la-
tency.

3.3 Media management
This section describes the management of me-

dia data in our current prototype. Media manage-
ment provides a versatile storage system which
can be customized for various types of media.
Users can specify interfaces to store and access
individual media types by defining media storage
objects. Moreover, the users can resolve heteroge-
neity in multimedia interfaces and physical me-
dia interfaces (i.e., data formats, CODECs, and
devices) by using polymorphism of object methods.

We will illustrate the media management by
using streams and text as examples.
1) Stream media data such as video and audio

are usually unstructured and large-scale (i.e.,
large binary objects), compressed, and se-
quentially ordered and clustered. They are
wholly or partially accessed, and more often
referenced than updated. They are real-time
accessed with QOS constraints. Access to
whole streams, partial streams, and individ-
ual frames is allowed. Partial and individu-
al access is required for frame-based image
processing. A stream can be played in its en-
tirety, or a section or single frame of a stream
can be played. Streams can be played for-
ward or backward at fast, normal, or slow
speed. QOS parameters include latency, jit-
ter, bit rate, frame rate, resolution, and color.
An index can be created using the correspon-
dence between frame numbers, time, and off-
sets. View streams can be derived from base
streams stored in databases primarily by us-
ing an index on the time intervals. Indexes
on keywords or other related objects can also
be defined. View streams can be accessed and
played with QOS constraints, like base
streams. Composite view streams can be re-
cursively defined using existing view str-
eams.

In fact, a base stream is a logical stream
which can have multiple physical streams of dif-
ferent qualities. A view stream is defined as a
subset of a logical stream by specifying time in-
tervals. Either the entire physical stream is stored
in databases or only meta data such as size, load
factors, and file descriptors are stored in databas-
es. In the latter case, bulk data are managed by
ordinary files or special stream servers. In both
cases, to satisfy the QOS constraints, during script
translation the system chooses the appropriate
quality of physical streams that can be provided
by the available computing resources.

The stream classes are defined (see Fig. 6).
Streams can be accessed with uniform interfaces
independent of CODECs such as MPEG and
JPEG. Usually, stream data are sequentially clus-
tered in favor of forward play, although they may
be declustered for striping to allow parallel ac-
cess.

To facilitate interactive retrieval of multime-
dia, we enable users to flexibly and efficiently ac-
cess partial data such as sub-streams of videos
using temporal information (e.g., temporal inter-
vals), keywords, and other related information.
This technique of subsetting a large amount of
media data is analogous to RDB views. For ex-
ample, Fig. 7 shows the relationships among
views, logical contents, and physical streams. A
view selects a subset of logical contents by speci-
fying a time interval. Keywords are attached to
views for retrieval. Characteristic data such as

SCRIPT

MPEG Movie JPEG MPEG-
Frame

JPEG-
Frame

B-frameP-frameI-frame

STREAM FRAME

Fig.6– Class hierarchy of media objects.

155FUJITSU Sci. Tech. J.,33,2,(December 1997)

H. Ishikawa: A Prototype Multimedia Database System

figure

color

direction

cancelsubmit

Fig.8– GUI for content-based retrieval.

figures, colors, and motion directions are attached
to frames of streams corresponding to views for
content-based retrieval. Logical contents can have
several physical streams of different quality.

Unlike other approaches, we use a light-weight
technique to segment scenes and recognize objects
for content-based retrieval of stream data. 18) First,
the system detects scene cuts by using differences
in successive frames, such as motion vectors of
MPEG macro blocks and colors. Then the user can
define views of streams (i.e., sub-streams) by at-
taching keywords to such scenes. Further, the user
can define new views recursively by combining ex-
isting stream views. The system also chooses rep-
resentative frames, abstracts characteristic data,
and then stores the frames and abstracted data into
databases.

The system detects moving objects by using
MPEG motion vectors and decreases the number
of colors to more accurately recognize moving ob-
jects. In addition to figures and colors associated
with moving objects the system also stores mo-
tion directions. The user can retrieve sub-streams
corresponding to views with specified keywords.
The user can also retrieve sub-streams contain-
ing samples of specified colors, figures, and
motion directions. Content-based retrieval is used
by end users and by content providers.

The following is an example of a script for
content-based retrieval:

Script2:
Set1 = VIEW from VIEW where

VIEW.like (Sample1);
On Event Selection by User;
Set2 = Set1 from Set1 selected by User;
Set2.parallel.play;

The user specifies a sample (e.g., Sample1)
through a GUI as shown in Fig. 8. A sample fig-
ure consists of several parts like a human body.
The system uses the largest part (i.e., the trunk)
as a search key to a multi-dimensional index such
as an R-tree. The system evaluates the other parts
(e.g., the head) as additional conditions of a que-
ry. A content-based query evaluates to many views
(e.g., Set1). Then the user chooses several views
(e.g., Set2) for simultaneous playback.

We provide the means for flexible distribu-
tion and presentation of retrieved multimedia data
over distributed networks by executing QOS con-
trol and scripts. To this end, we use techniques
such as prefetching, caching, synchronization, and
distributed processing.

In particular, unlike other approaches, our
script scheduler detects overlaps of intervals of
view streams appearing in users’ scripts and se-
lects appropriate physical streams by using views
to enforce QOS control. For example, if the user
chooses three streams for parallel playback in

Fig.7– Views, contents, and streams.

View

Contents

Streams

320 × 240 pixels,10 fps

160 × 120 pixels,10 fps

160 × 120 pixels, 5 fps

View

156 FUJITSU Sci. Tech. J.,33,2,(December 1997)

H. Ishikawa: A Prototype Multimedia Database System

Script2, the total playback time is divided into
three intervals as shown in Fig. 9. The scheduler
chooses physical streams of appropriate quality
which can be played with the available CPU re-
sources within each interval. In other words, phys-
ical streams of different quality may be chosen
for the same view, such as a stream for View3.
2) Text data are usually structured, medium-

scale, uncompressed, and hierarchically or-
dered and clustered. They are wholly or par-
tially accessed and reference-oriented or
update-oriented. Also, they are non-real-time
accessed with few QOS constraints. Struc-
tural access via component relationships is
allowed. Hypermedia links can be stored
within texts. An index on keywords or links
can be made. Format-independent interfac-
es such as SGML and ODA are provided us-
ing polymorphism. One possible QOS param-
eter is a font parameter.
The page manager of our OODB is being ex-

tended to accommodate different kinds of data (i.e.,
complex objects) within a single page. SGML texts
are clustered in such pages along their hierarchi-
cal structures. Individual components of SGML
texts, such as sections and paragraphs, are stored
as objects. HTML texts are usually clustered ac-
cording to media types such as text and graphics.
Mutual translation among SGML, HTML, and
plain texts is facilitated.

We provide media data management mecha-
nisms which enable efficient storage and access

of large amounts of media data. They enable us-
ers to customize media-specific storage in areas
such as indexing, clustering, and buffering. We
take an object-oriented approach to resolving
heterogeneity in data formats, compressors/de-
compressors (CODECs), and physical media used
for implementation of logical media.

Structured texts such as SGML texts are of-
ten accessed according to component links. The
system must cluster relevant texts in the same or
neighboring pages so they can be retrieved effi-
ciently. We assume that the user chooses to clus-
ter texts. Thus, the user specifies how data are
clustered. Then the system clusters data accord-
ing to the user’s specification. We are planning to
provide a facility to monitor hot spots of access
patterns. Either the system or the user clusters
data based on the results of monitored accesses.
We allow the user to recluster data after heavy
updates.

In addition to heterogeneous clustering, we
allow homogeneous clustering, for example, clus-
tering of all instances of the same class. We allow
subtrees of a whole component tree to be flexibly
clustered according to the user’s specification by
combining homogeneous and heterogeneous clus-
tering.

3.4 Multidatabase management
We will now describe the management of mul-

tidatabases in our current prototype. We provide
multidatabase management to establish interop-
erability between existing media in an RDB and
new media in an OODB. Heterogeneous database
systems, data models, and schemas are integrat-
ed by model primitives, viewports, and views.
Translation between different models can be done
by enabling users to describe their models through
model primitives. If there is no direct mapping
between two different models, the users can spec-
ify rules to translate one schema at one site into a
combination of schemas at another site.19),20) Us-
ing HTTP on the Internet, we provide an integrat-
ed interface to files, RDBs, and OODBs. Also, we

10 fps

5 fps 10 fps

10 fps 15 fps5 fps

View1 stream

View2 stream

View3 stream

Playback interval1 interval2 interval3

Time

Fig.9– Script schedule example.

157FUJITSU Sci. Tech. J.,33,2,(December 1997)

H. Ishikawa: A Prototype Multimedia Database System

manage HTML documents using an OODB be-
cause OODBs have common hyperlink structures,
and we represent a hierarchically-structured di-
rectory of WWW servers by taking advantage of
the generalization hierarchy of OODBs.

The framework we provide consists of model
primitives, viewports, and views. Users describe
their relational or object-oriented data models and
schemas at local sites using the model primitives.
Data model description using such primitives con-
stitutes viewports, whose role it is to resolve het-
erogeneity in data models and database systems
at local sites. At relational viewports, both rela-
tional and object-oriented schemas defined at oth-
er sites are viewed as relational schemas. Simi-
larly, at object-oriented viewports, any schema
defined at another site is viewed as an object-ori-
ented schema. Within local sites, relational11) and
object-oriented21) views are used to resolve such
semantic heterogeneity. In other words, as a first
step, viewports generated by system and model
descriptions translate database schemas repre-
sented by a data model of a database system at
one site into those represented by a model of a
system at another site. As a second step, view
mechanisms transform the schemas into ones
which users at the site would like to view. Thus,
we take a step-wise approach to resolving the
three types of heterogeneity; that is, database
system, data model, and semantic. Our approach
enables us to concentrate on resolving one type of
heterogeneity at a time and to incorporate exist-
ing technologies such as SQL and even new tech-
nologies such as object-oriented views into the
framework.

Ease of data acquisition through the WWW,
however, makes the size of collected data unman-
ageable for the user. Keyword-based retrieval
alone is not sufficient. The system automatically
abstracts keywords from collected HTML or
SGML texts. Then, the system chooses the 100
most frequent keywords contained by a set of texts
and places each text in an information space of
100 axes ranging from those that have the corre-

sponding keyword to those that do not. The sys-
tem uses a Self-Organizing Map (SOM)22) tech-
nique to cluster a set of texts into the given num-
ber of groups in the above information space. The
system displays the structured map by using a
3-D graphics technique such as VRML. The user
can retrieve texts by navigating a 3-D user inter-
face. The important point here is that the users
cluster collected texts for their own use. Of course,
content providers can use this technique when
they cluster their own texts.

To allow for access control, we must main-
tain the integrity of programs for database access.
Further, we must maintain program components
for reuse and divide the processing between cli-
ents and servers. In general, the result of a data-
base retrieval is rather large, so we must adopt
protocols other than HTTP, which is insufficient
for transfer of bulk data.23)

Program components are managed by data-
base servers. The system maintains information
on, for example, program configurations. When
the user requires programs, the system compares
the user’s configuration and the server’s configu-
ration by looking up information such as the con-
figuration version and user level stored in data-
bases. Then, the system sends only the differences
it detected.

The system processes programs by distribut-
ing processes between clients and servers specified
by scripts. Client processes take care of the graph-
ical user interface, and server processes take care
of database access. The query result is sent back to
the client by the database system’s protocols.

If a user query for program components is
not satisfied by one server, the query is federated
to other servers. We take an agent-based approach
to such federation. The search agent also uses
the SOM technique to construct an inter-server
map for navigating the query through relevant
servers, which is a new approach. The query re-
sult is sent to the mailbox specified by the client,
then the client obtains the program components
from the mailbox.

158 FUJITSU Sci. Tech. J.,33,2,(December 1997)

H. Ishikawa: A Prototype Multimedia Database System

4. Conclusion
In this paper, we proposed a multimedia da-

tabase system for multimedia applications that
is based on an OODB model. We have developed
a prototype multimedia database system to eval-
uate the proposed approach. The prototype sup-
ports scripts, keyword-based and content-based
view retrieval with QOS control, SOM-based clus-
tering, and WWW integration. We plan to enhance
the functionality and performance by applying our
technology to the promising application of docu-
ment warehousing, in which corporate documents
are managed on intranets.

References
1) Ishikawa, H. et al.: A Next-Generation In-

dustrial Multimedia Database System. Proc.
IEEE 20th Intl. Conf. Data Engineering,
pp.364-371, 1996.

2) Ishikawa, H. et al.: The Model, Language,
and Implementation of an Object-Oriented
Multimedia Knowledge Base Management
System. ACM Trans. Database Syst., 18, 1,
pp.1-50 (1993).

3) Ishikawa, H.: Object-Oriented Database Sys-
tem. Springer-Verlag, 1993.

4) Ishikawa, H. et al.: An Object-Oriented Data-
base System Jasmine: Implementation, Appli-
cation, and Extension. IEEE Trans. Knowledge
and Data Engineering, 8, 2, pp.285-304(1996).

5) Ishikawa, H.: An Object-Oriented Knowledge
Base Approach to a Next Generation of Hy-
permedia System. Proc. IEEE COMPCON
Spring 90 Conference, pp. 520-527 (1990).

6) Berners-Lee, T. et al.: The World-Wide Web.
CACM, 37, 8, pp.76-82 (1994).

7) Gibbs, S., Breiteneder, C., and Tsichritzis, D.:
Audio/Video Databases: An Object-Oriented
Approach. Proc.9th Intl. Conf. on Data Engi-
neering, 1993, pp.381-390.

8) Gibbs, S., Breiteneder, C., and Tsichritzis, D.:
Data Modeling of Time-Based Media. Proc.
ACM Sigmod Conference, May 1994, pp.91-
101.

9) Hamakawa, R., Rekimoto, J.: Object compo-
sition and playback models for handling mul-
timedia data. ACM Multimedia Systems, 2,
1994, pp.26-35.

10) Prabhakaran, B., Raghavan, S.V.: Synchro-
nization Models For Multimedia Presenta-
tion With User Participation. Proc. ACM
Multimedia 93, 1993, pp.157-166.

11) Date, J.C.: An Introduction to Database Sys-
tems. 1, Addison-Wesley, 1990.

12) Lohr, K.-P.: Concurrency Annotations for Re-
usable Software. CACM, 36, 9, pp.81-89
(Sept.1993).

13) Ishikawa, H. et al.: An Active Object-Orient-
ed Database: A Multi-Paradigm Approach to
Constraint Management. Proc. 19th VLDB
Conference, 1993, pp.467-478.

14) Kim, W. et al.: Architecture of the ORION
Next-Generation Database. IEEE Trans.
Knowledge and Data Engineering, 2, 1, pp.
109-124 (1990).

15) Goldberg, A. et al.: Smalltalk-80: The Lan-
guage and Its Implementation. Addison-Wes-
ley, Reading, MA., 1983.

16) Maier, D. et al.: Development of an object-ori-
ented DBMS. Proc. 1st OOPSLA Conference,
1986, pp. 472-482.

17) Stefik, M. et al: Object-Oriented Program-
ming: Themes and Variations. AI MAGA-
ZINE, 6, 4, pp.40-62 (winter 1986).

18) Kato, K. and Ishikawa, H.: Content-based Re-
trieval System for Video Data. Proc. Third
Intl. Conf. Computer Science & Informatics,
pp.195-198, 1997.

19) Ishikawa, H. et al.: The design and Implemen-
tation of an Interoperable Database System
based on Scripts and Active Objects. IEICE
Trans. Inf. & Syst., E78-D, 11, pp.1396-
1406(1995).

20) Kubota, K. and Ishikawa, H.: Structural
Schema Translation in Multidatabase
System:Jasmine/M. (in Japanese), Proc. IPSJ
Advanced Database Symposium, 1994.

21) Ishikawa, H. et al.: An Object-Oriented Da-

159FUJITSU Sci. Tech. J.,33,2,(December 1997)

H. Ishikawa: A Prototype Multimedia Database System

Hiroshi Ishikawa received the B.S. and
Ph.D degrees in Computer Science
from the University of Tokyo, Tokyo,
Japan in 1979 and 1992, respectively.
He joined Fujitsu Laboratories Ltd., in
1979. He is the chief architect of an
object-oriented database system Jas-
mine. His research interests include
object-oriented databases, multimedia
databases, distributed databases, and
active databases. He has published

actively in international, refereed journals and conferences, such
as ACM TODS, IEEE TKDE, VLDB, IEEE ICDE. He has au-
thored a book Object-Oriented Database System (Springer-
Verlag). He received the Sakai Memorial Distinguished Award
from IPSJ in 1994 and the Minister of State Award from Science
and Technology Agency in 1997. He is a member of IEEE, ACM,
IPSJ, and IEICE.

tabase System and its View Mechanism for
Schema Integration. Proc. Second Far-East
Workshop on Future Database Systems (Ky-
oto, Japan), 1992, pp. 194-200.

22) Kohonen, T.: Self-Organizing Maps. Spring-

er-Verlag ,1995.
23) Kubota, K., Takarabe, Y., and Ishikawa, H.:

A Proposal of Agent System for Database
Access. (in Japanese), Proc. IPSJ National
Conf., 1996.

