
127FUJITSU Sci. Tech. J.,33,2,pp.127-137(December 1997)

UDC 621.395.74: 621.397.2

Internet Simulator for Testing Networked
Multimedia

VYao-Min Chen
(Manuscript received June 3,1997)

In developing multimedia applications for the Internet, a simulation tool is essential in
evaluating the effectiveness of various transmission schemes. We have built such a
tool, which uses queueing systems to model network switching nodes. It enables
users to control the degree of (simulated) network congestion so that applications
can be tested under different traffic conditions. In addition, the tool facilitates subjec-
tive testing of continuous signals in real time, so that the perceptual signal quality can
be evaluated while network simulation is being run. This feature distinguishes the
tool from traditional network simulators.

1. Introduction
Internet has become a popular medium for

transmitting continuous multimedia content.
However, Internet was originally designed for
“best-effort” transmission of data traffic. There
are packet loss, packet delay, and delay jitter prob-
lems need to be overcome before continuous mul-
timedia applications, such as MPEG audio and
video, can be successfully run over the Internet.
Fujitsu Laboratories of America (FLA) has been
investigating effective schemes to overcome the
impact of network packet loss on MPEG audio
transmission. The techniques explored include
packet-level interleaving, packet loss compensa-
tion, and forward error correction (FEC). In eval-
uating the techniques and their combinations,
there is a need for a controlled environment to
test their merits. Since a physical testbed is not
available, we take the approach of a software sim-
ulator to emulate the typical Internet behavior.
It is a computer program that sits between the
end parties of a multimedia communication. It
incurs network constraints such as packet loss and
delay.

Since subjective perception of media (such as
audio and video) is critical in evaluating net-
worked multimedia, a major goal in designing the
simulator is to facilitate subjective testing. We
believe that the simulator should be designed so

that a user can evaluate the quality of the con-
tent being transmitted and at the same time ob-
serve the network constraints imposed on the
transmission. In this way, he or she will more
easily capture the correlation between a particu-
lar network constraint and the resulting content
distortion, and acquire a good sense of how the
design can be improved.

As a consequence, our “simulation” is differ-
ent from the traditional simulation in the sense
that simulation events occur in real-time. Some
of the events are true events such as the arrivals
and departures of real packets that contain the
multimedia content under evaluation. The oth-
ers are virtual events including arrivals and de-
partures of imaginary packets that contend with
the real packets for network resources. An ap-
proach related to our idea is the network emula-
tion described in Ref. 1). It used workstations and
dedicated Ethernet links to emulate routers and
links, respectively, of a wide area network. Since
it requires one physical link and workstation to
emulate a network hop, it is costlier than our ap-
proach because we can aggregate the simulation
of several network hops to run on a single work-
station. Also, their approach requires modifica-
tion of operating system kernel, while ours does
not.

In our approach, queueing systems3),4) are

128 FUJITSU Sci. Tech. J.,33,2,(December 1997)

Yao-Min Chen: Internet Simulator for Testing Networked Multimedia

used to model network elements. A queue (see
Fig. 1) models a network device that is subject to
congestion due to incoming packet flows, such as
a network interface at a router or switch. In such
a device, typically there is a buffer to accommo-
date packets arriving too fast over a short period
of time, so that the packets are not dropped im-
mediately after congestion. There is also a server
that services or consumes the packets, such as
transmitting the packets over a communication
link. Note that if the aggregate arrival rate of the
packet flows is persistently larger than the ser-
vice rate of the server, eventually the incoming
packets overflow the buffer and are dropped.

At each queue, a traffic stream (i.e., the data
flow from an application) contends with other net-
work traffic for limited resources. The resources
include buffer space, communication bandwidth
and processing capacity. Due to contention for the
resources, the stream suffers packet loss, packet
delay and delay jitter, in the following fashion.
Packet Loss:

Since the buffer size is finite, a packet is
dropped if the buffer does not have the ca-
pacity to accommodate the packet upon its
arrival.

Packet Delay:
The delay is caused by the waiting time and
service time of the packet in the queue. The
waiting time is the time spent waiting in the
buffer before starting being serviced by the
server. The service time is the amount of time
spent in service.

Delay Jitter:
The waiting time experienced by a packet de-
pends on the amount of data waiting in the
queue when the packet arrives. It is a ran-
dom variable that results in delay variation
from one packet to another. The variation is
commonly referred to as delay jitter.
When a packet is sent over the Internet, it

typically goes through many network devices.
Hence, the end-to-end path of the packet can be
modeled as a concatenation of queues. Although

the end-to-end delay along the path may be com-
posed of propagation, transmission, queueing and
processing delays, it is well known that queueing
delay (the waiting times accumulated at the
queues) imposes the most critical challenge to
applications. This is not only because queueing
delay tends to be the dominating component
among the four, but also because it is mainly re-
sponsible for delay jitter. Delay jitter needs to be
carefully handled by applications to avoid buffer
underflow or overflow at the playback stations.

It is also well known that buffer overflow at
the network devices contributes most significant-
ly to packet loss experienced by applications. Tra-
ditionally, packet loss is handled by Transmission
Control Protocol (TCP) for reliable transmission.
However, for continuous multimedia applications
that typically stress timely and regular delivery
of data, use of TCP has the following two undesir-
able effects. First, retransmission of lost packets
causes long and widely variated packet delay.
Second, the sliding window flow control results
in time-varying application throughput. Since
these effects cannot be overcome easily, User Da-
tagram Protocol (UDP) becomes a common alter-
native to TCP. However, UDP-based applications,
such as the MPEG audio transmission being re-
searched at FLA, are subject to packet loss caused
by buffer overflows in the network.

Therefore, from both the delay and loss per-
spectives, queueing systems justifiably model the
typical network constraints on continuous multi-
media applications. This concept is realized by a
software implementation in the C programming
language over the Sun Solaris operating system.
It has been put to use in evaluating the transmis-
sion techniques for MPEG audio and shown very

Fig.1– A queue.

129FUJITSU Sci. Tech. J.,33,2,(December 1997)

Yao-Min Chen: Internet Simulator for Testing Networked Multimedia

helpful in guiding us to find the right design for
improving the quality of the network-transmit-
ted audio.

However, since the simulator relies on the
clock timers and interrupt signals of the operat-
ing system to generate events, the simulator is
subject to the constraint of the timer resolution of
the operating system (in the case of Solaris, the
resolution is 10 ms). Hence, there is timing inac-
curacy. To control the effect of the inaccuracy, a
user should not specify simulation parameters
that result in events much more frequent than
the granularity. It is still an ongoing research is-
sue as how to reduce the effect of the timing inac-
curacy on simulation results. Hence, for the time
being, the simulator is more suitable for facilitat-
ing the design of networked multimedia, rather
than being used as an evaluation tool for the de-
sign of network infrastructure such as protocols.

The issue of timing inaccuracy could deteri-
orate when multiple processes contending for the
same CPU. Currently we rely on increasing the
priority of simulator processes and blocking the
access of other users. This is not totally satisfac-
tory. Hence we are looking into adopting the tech-
nique of user-level real-time scheduler, such as
URsched described in Ref. 2).

Also note that since the project of MPEG
audio transmission motivated the development of
the simulator, some inter-process messages cur-
rently implemented are tied to the MPEG audio
project. However, this is only limited to control
messages (see Chapter 3). The actual data can be
encoded in any format, as long as they are encap-
sulated into UDP packets. When adopting the sim-
ulator to another multimedia application, one only
needs to modify the control messages of the appli-
cation to work with the simulator. Alternatively,
he or she can replace interface modules of the sim-
ulator with ones suitable for the new application.

We conclude this chapter with an outline of
the balance of this paper. Chapter 2 describes how
the abstract notion of a queue is implemented in
software. In Chapter 3, we describe how multiple

queues (that are computer processes) are concat-
enated using network programming, so as to more
truthfully model the network condition along the
end-to-end path of a data flow. In Chapter 4, the
operation of using the simulator to evaluate the
performance of various MPEG audio transmission
techniques is presented. Then, Chapter 5 provides
concluding remarks and future work.

2. Simulation of a Queue
Figure 2 gives a functional diagram of a

UNIX process that implements a queue. There
are input and output interface modules that in-
teract with other processes. The input interface
receives data packets and exchanges control mes-
sages with the sender of the packets. The output
interface sends out data packets and exchanges
control messages with the recipient of the pack-
ets. The main part of the process is the queueing
model in the lower portion of the diagram.

For the queueing model, we use two parame-
ters to represent the resource constraints. The first
is buffer capacity, which represents the amount of
storage resource for the queue. The second is ser-
vice rate, which represents the constraint on how
fast data leave the system. Buffer capacity mod-
els the finite memory size at a network device.
Service rate models the finite processing and com-
munication bandwidths for the device.

Fig.2– Block diagram of a simulator process.

MM
traffic

FIFO
queue

MM
traffic

Input
interface

Output
interface

Multimedia
traffic to
next stage

Multimedia
traffic from
prev. stage

Competing
traffic src 1

Competing
traffic src N

Competing
traffic sink

130 FUJITSU Sci. Tech. J.,33,2,(December 1997)

Yao-Min Chen: Internet Simulator for Testing Networked Multimedia

are from a random distribution, and the parame-
ter denotes the mean value for the distribution.
Currently we have only implemented two distri-
butions. The first distribution assigns to each
packet the same length, which we will refer to as
the fixed-sized distribution. In this case, the
length of each packet is equal to the parameter.
The other distribution, identified as the exponen-
tial distribution, uses an exponential random
number generator to generate the length of a pack-
et according to the mean packet size. Note that a
user can choose, independently for each back-
ground stream, whether the packets of the stream
have a fixed or exponentially distributed size.

The arrival rate parameter, combined with
mean packet size, determines the inter-arrival
times between adjacent packet arrivals. Here, we
assume that the packet arrival process is Pois-
son. In other words, the packet inter-arrival times
follow an exponential distribution. The mean in-
ter-arrival time τ is computed from the arrival rate
R and mean packet size L by

τ = –. (3)

Whenever a packet arrives, a random number
generator is called to generate the inter-arrival
time ti between the packet and its succeeding pack-
et from the same stream. Then, the arrival time
t’a of the succeeding packet is determined by

t’a:= ta + ti. (4)
The arrival time t’a is the event time for the arriv-
al event of the succeeding packet.

We can now enumerate the types of events
used in the simulator: (i) the arrival events of real
data packets, (ii) the departure events of real data
packets, and (iii) the arrival events of virtual data
packets. The first type is triggered by receiving
the real data packets, while the other two are gen-
erated internally by the simulation process. A
challenge in implementing the simulation process
is in the scheduling, sorting, and timely genera-
tion of the internal events. Currently we use a
linked list to store the set of events waiting to be

The system keeps a state called queue size.
It represents the amount of system storage ca-
pacity (such as memory) that are currently occu-
pied by data, including the unsent data in the
packet currently being served. The data repre-
sented by queue size can be either from the real
data traffic under evaluation, or from the virtual
data traffic. The virtual data traffic consists of
imaginary data flows that interfere with the real
data flow and can cause it to experience queueing
delay and packet loss.

Both real and virtual data flows produce
packet arrival events at the simulation process.
The arrival event of a real data packet is triggered
when the input interface receives such a packet,
while the arrival event of a virtual data packet is
generated within the queueing model. When an
arrival event occurs, the sum of the packet size p
and the current queue size q is checked against
the buffer capacity B. If q + p > B, meaning buffer
capacity is exceeded, the packet is dropped. Oth-
erwise, the queue size is updated by

q := q + p. (1)
Once the queue size is updated, the depar-

ture time td for the packet can be computed by

td := ta + –, (2)

where ta is the event time of the arrival event and
C denotes the service rate of the queue. Note that
the ratio q/C accounts for the waiting and service
times (see Fig. 1) of the packet.

If the packet is real data, the departure time
td is the event time for the departure event of the
packet. The event time is used to schedule the
departure of the packet. When it is due, the pack-
et is forwarded to the output interface.

We proceed to describe the virtual data traf-
fic in more details. The virtual data traffic is mod-
eled as a set of traffic flows called background
streams. Each stream is characterized by two
parameters: mean packet size and arrival rate.
The first parameter describes the lengths of the
packets in the stream. More precisely, the lengths

q

C

L
R

131FUJITSU Sci. Tech. J.,33,2,(December 1997)

Yao-Min Chen: Internet Simulator for Testing Networked Multimedia

generated. The list is referred to as the event set.
Each event has an event time that is the sched-
uled occurrence time for the event. If the event is
the departure of a real packet, its record also has
a pointer to the memory address where the pack-
et is physically stored. The events in the event
set maintain sorted in increasing order of their
event times. This is done by inserting each new
event into the proper place in the event set.

By maintaining a sorted event set, the oper-
ating system only needs to use one timer, which
keeps track of whether the event time of the top
event has expired. The timer is set whenever there
is a new top event, which happens after a preced-
ing event expires. The timer is set to be expired
in a time value equal to the difference between
the current system clock value and the event time
of the top event. When the timer expires, the event
is generated. If the event is the departure of a
real packet, the packet is forwarded to the output
interface. Otherwise, meaning that the event is
the arrival of a virtual packet, the random num-
ber generator is called to compute the arrival time
of the next virtual packet from the same stream,
according to Equation (4). In addition, the queue
size is updated according to Equation (1).

Note that Equation (1) assumes that the val-
ue of q is kept up to date at every instant. In real-
ity, we need to update the value of q only when a
real or virtual packet arrives. When such an event
is generated, the following computation is execut-
ed:

q := max {q - C (t - t0), 0}, (5)
where t is the current event time and and t0 is the
last event time when q was updated. Note that the
updating in Equation (5) needs to be performed be-
fore we check whether to drop the arriving packet.

Figure 3 shows the user interface for run-
ning the simulation process. In the top left block,
the boxes for Buffer Size and Service Rate are
where a user enters the resource constraints. The
Connection HOST and Connection PORT facili-
tate communication between processes, which we
will describe in the next chapter. The top right

block is where the parameters for background
streams are entered. For each stream, the user
enters the parameters for the stream, pushes the
ENTER Stream button, and then switches to an-
other stream. The user can stop this process any
time after the parameters for the first stream has
been entered. The simulation process automati-
cally keeps track of the number of streams speci-
fied. In the example shown in Fig. 3, the user has
specified three streams.

The other parts of the user interface incor-
porate some mechanisms for the convenience of
simulation experiments. There is an option of re-
peating the same sequence of lost real packets as
in the previous simulation. In addition, the mid-
dle and bottom parts of the user interface dynam-
ically show the packet loss ratio of an ongoing sim-
ulation. The packet loss ratio is with respect to
the real data packets and is computed for every

Fig.3– The graphical user interface for simulating a queue.

132 FUJITSU Sci. Tech. J.,33,2,(December 1997)

Yao-Min Chen: Internet Simulator for Testing Networked Multimedia

group of 50 packets. The numerical values
for the dynamic packet loss ratio are listed in the
middle part of the user interface, and are displayed
graphically in the bottom part.

There is also a command mode for entering
simulation parameters and invoking a simulation
process. More details on both the graphical user
interface and the command mode can be found in
Ref. 5).

We conclude this chapter with two remarks.
First, note that the data structure for the event
set belongs to a more general problem called the
Event Set Problem6). Recently we became aware
of more efficient implementation schemes such as
the one described in Ref. 7). We are investigating
these schemes for future improvement of the sim-
ulator.

Second, as we discussed in the introduction
chapter, the coarse resolution of the operating sys-
tem clock timers incurs timing inaccuracy in
events. To alleviate the effect of the inaccuracy,
we are looking into minimizing the use of timers.
In particular, we can restrict the use of timers only
to schedule the departure events of real data pack-
ets. This can be accomplished by aggregating the
events for the virtual data traffic, in the following
sense. Let t1 and t2 be event times of two consecu-
tive events (arrival or departure) of real data pack-
ets. The events for virtual data packets, with event
times between t1 and t2, are not generated at their
scheduled event times but “realized” after the in-
terrupt for t2 occurs. As long as the realization
leads to correct queue size, seen by the arriving
or departing packet, the algorithm is correct but
relies much less on operating system clock tim-
ers.

3. Simulation of Multiple Queues
As we allured to earlier, several simulation

processes can be concatenated together to con-
struct a model more truthfully describes the end-
to-end path experienced by a multimedia flow.
These concurrent processes can be run on the same
machine or different machines, which is facilitat-

ed by the UNIX Socket programming.
In developing the connection mechanism, we

assume a client-server paradigm for the multime-
dia application under evaluation. Under the par-
adigm, the application client sends a request to
the server to initiate the data transmission. If the
server honors the request, it responds by sending
acknowledgment and then transmitting the re-
quested multimedia content. When simulation is
inserted in the data path between the server and
client, we consider the server the most upstream
process, the client the most downstream, and in
the middle a sequence of simulation processes rep-
resenting a sequence of queues (see Fig. 4). Note
that the direction of flow is with respect to how
actual multimedia data are transmitted. Howev-
er, along with the data, there are control messag-
es used to coordinate the server and client. These
messages can travel upstream or downstream.
Specifically, the request message goes upstream,
while the acknowledgment message traverses the
opposite, downstream direction.

To facilitate the communication between a
simulation process and its immediate up- and
down-stream processes, it needs to open up a few
datagram ports upon starting. It uses a connec-
tion port (resp., control port) to communicate con-
trol messages with its immediate downstream
(resp., upstream) process. In addition, it uses a
data port to forward and receive the actual multi-
media data. Figure 5 shows an example of using
three queues to simulate the end-to-end path of a
networked multimedia application. Note that al-
though we show two data ports within the block
of each simulation process, this is just for the sake
of presentation clarity. In practice, one data port
is sufficient.

A process P, before sending any message to
its immediate upstream process, needs to know

Fig.4– The concatenation of multiple simulation process.

Multimedia
Source

Multimedia
Destination

Stage 1 Stage 2 Stage K

133FUJITSU Sci. Tech. J.,33,2,(December 1997)

Yao-Min Chen: Internet Simulator for Testing Networked Multimedia

the machine name where the upstream process is
run and the connection port for the process. These
information items are entered by a user when he
or she initiates P. In Fig. 3, the Connection HOST
and Connection PORT entries in the top left block
are where the user specifies the information. An
implication of this scheme is that the order in
which the processes are invoked is from the most
upstream one (the application server) to the most
downstream one (the application client). When a
process starts, it announces its host name and
connection port so that the user can specify the
information when invoking the immediate down-
stream process.

Note that the three simulation processes
shown in the example in Fig. 5 are run at three
different hosts but this is not necessary. Our con-
nection mechanism allows multiple simulation
processes running at the same host because UNIX
Socket is an inter-process communication mecha-
nism where the communicating processes can be
at the same host or at distinct hosts.

We proceed to describe how each simulation
process handles a received message. Recall that
a message can be either a data or control mes-
sage. The handling of data has been described in
the previous chapter. As for the handling of con-
trol messages, we will describe below separately
for the request and acknowledgment messages.
Note that the messages are encapsulated in data-
grams. Hence we will refer to a datagram con-
taining a request (resp., acknowledgment) mes-

sage a request (resp., acknowledgment) packet.
Request packet.

Upon receiving the packet from its connec-
tion port, a simulation process looks up the
packet header to find out the IP address and
port number of the sender of the packet,
which corresponds to the host and control
port of the downstream process. The simu-
lation process also reads the first two bytes
in the payload portion of the packet and in-
terprets the two bytes as the port number of
the data port of the downstream process. The
simulation process uses its control port to
send the message to the connection port of
the upstream process, after altering the first
two bytes to its own data port number. In
this way, when the upstream process receives
the packet, it will know the number of the
data port of this process.

Acknowledgment packet.
Upon receiving the packet from its control
port, a simulation process uses its connec-
tion port to forward the packet to the control
port of the downstream process.
Note that as far as the application client is

concerned, the procedure of sending out a request
packet and eventually receiving an acknowledg-
ment packet is as if the client were directly com-
municate with the application server.

Finally we remark that we have been look-
ing into generalizing the connection scheme de-
scribed in this chapter to work for more general

Fig.5– An example of running several simulation process to model the end-to-end path of a networked multimedia application.

134 FUJITSU Sci. Tech. J.,33,2,(December 1997)

Yao-Min Chen: Internet Simulator for Testing Networked Multimedia

applications. One direction is to design the scheme
so that it can be applied to applications based on
the Real-time Transport Protocol8) (RTP). This is
an ongoing research issue.

4. Evaluating MPEG Audio Transmission
The project of MPEG audio over the Inter-

net provides us a solid system to test the simula-
tor. We have investigated a few novel techniques
to improve the reliability of the transmission. The
use of packet-level interleaving was reported in
Ref. 9). Our recent work10) is based on FEC and
applies priority encoding transmission11) to
achieve graceful quality degradation if lost data
cannot be fully recovered using FEC. Through our
experience, we have found the simulator a valu-
able tool. It is particularly useful in distinguish-
ing the merits of the different transmission tech-
niques.

In conducting our performance evaluation,
we first tried to understand how the packet loss
ratio, experienced by an audio stream, reacted to
changes in simulation parameters. We have con-
ducted numerous experiments. Due to space lim-
itation, here we describe two sets of such experi-
ments. The result of the first set of experiments
is depicted in Fig. 6. The figure summarizes the
experimental results of a set of MPEG audio trans-
missions where a simulation process was insert-
ed in the data path. The particular MPEG audio
stream tested had a data rate of 48 KB/s, fixed
packet size of 576 bytes, and duration of 21 sec-
onds. For the simulation process, we fixed the
values of buffer capacity and service rate to be 6
KB and 96 KB/s, respectively. We also restricted
the process to have only one background stream.
Then we selected a set of packet size values (100
bytes, 200 bytes, 400 bytes, 600 bytes, 800 bytes,
and 1000 bytes) for the background stream. For
each packet size, we varied the arrival rate of the
background traffic stream from 44 KB/s to 124
KB/s and recorded how packet loss ratio reacts.
Here, for each arrival rate, we conducted 8 simu-
lation experiments and took the average packet

loss ratio. Then, using the recorded average loss
ratios, we derived a curve which showed the rela-
tionship between loss ratio and arrival rate. Note
that in Fig. 6, packet size values were used to
label their corresponding curves.

A similar set of experiments was conducted
and the results were shown in Fig. 7. The only
difference in this set of experiments was that the
background stream had an exponentially distrib-
uted packet size.

With the knowledge of how packet loss ratio
reacted to simulation parameters, we could con-
trol the simulation parameters to achieve a par-
ticular packet loss scenario. Note that the packet
loss ratio was still a random variable and the (ran-
dom) distribution of lost packets was still deter-
mined by the queueing model. One had to run
repetitive experiments to confirm or refute the ef-
fectiveness of a proposed transmission scheme.
However, the simulator helped very much in fo-
cusing the experiments around a particular loss
ratio so that we could get insight into how a par-
ticular transmission scheme performed under the
chosen loss ratio. Note that if instead we had run
experiments over the real Internet, this insight
would have been extremely difficult to acquire
because of the huge dynamic range of packet loss
ratios experienced by real Internet transmissions.

We used the simulator to evaluate the effec-
tiveness of using packet-level interleaving and/or
FEC to increase the quality of MPEG audio trans-
mission. We consider a scheme effective if packet
loss results in no distortion in perceptual quality.
Our preliminary findings were (i) packet-level in-
terleaving alone was effective when packet loss
ratio is low (less than 1%), (ii) the combination of
packet-level interleaving and FEC with 40% re-
dundancy bits was effective when packet loss ra-
tio is mediocre (1-5%), and (iii) graceful quality
degradation was achievable when packet loss ra-
tio was higher, using a special implementation of
FEC that assigned different degrees of redundan-
cy protection to different subband signals.

135FUJITSU Sci. Tech. J.,33,2,(December 1997)

Yao-Min Chen: Internet Simulator for Testing Networked Multimedia

5. Conclusions
In this paper, we described a simulator that

uses queueing systems to model the end-to-end
paths of networked multimedia. The simulator
serves the following purposes.

aIt is a performance evaluation tool for the
transmission of continuous multimedia such
as audio and video.

aIt facilitates subjective testing in real time,
such as real-time listening of audio.

aIt captures essential Internet characteris-
tics including packet loss, packet delay and
delay jitter.

The current implementation provides a proof
of concept that such a simulator can be built and
useful. By no means we declare the work com-
plete. In particular, we have the following direc-
tions for improvements.
Aggregation of events related to background
streams.

We need to alleviate the impact of timing in-
accuracy discussed in the introduction chap-
ter. An approach, which restricts the use of
operating system clock timers only to events
related to real data packets, was outlined in

Chapter 2. We will base on the outline to
modify the implementation of the simulator.

Improved event set implementation.
Currently we use a linked list to implement
the event set. Insertion of a new event record
may become time-consuming when the linked
list is long, which happens when there are
many packets in the queue or when there are
many background streams. To speed up in-
sertion, we can implement the Calendar
Queue algorithm described in Ref. 7), as dis-
cussed in the end of Chapter 2.

General background traffic types.
Currently we use Poisson processes for traf-
fic modeling. More general traffic models can
be added into the simulator. Candidates in-
clude multi-state Markovian modeling12) (a
generalization of Poisson modeling), self-sim-
ilar (long range dependence) processes,13),14),15)

and batch Bernoulli processes.16)

Incorporating Internet traffic traces.
Along with the above analytical models, we
can generate background traffic using real
Internet traffic traces such as those collect-
ed Ref. 17). We can also apply the random

Fig.6– Result of the first set of simulation experiments. Fig.7– Result of the second set of simulation experiments.

136 FUJITSU Sci. Tech. J.,33,2,(December 1997)

Yao-Min Chen: Internet Simulator for Testing Networked Multimedia

distributions derived from real Internet sta-
tistics such as the tcplib work.18)

Accommodating the testing of RTP-based ap-
plications.

RTP8) is becoming a standard for application
level framing.19) Many applications are be-
ing developed based on the protocol. It will
be desirable to extend the current connection
mechanism to accommodate applications
based on RTP, as we discussed in Chapter 3.

References
1) Ahn, J.S., Danzig, P.B., Liu, Z. and Yan, L.:

Evaluation of TCP Vegas: Emulation and Ex-
periment. Proceedings of ACM SIG-
COMM’94, Cambridge, Massachuttes, USA.
Computer Communications Review 25, 4, pp.
185-195, (October 1990).

2) Kamada, J., Yuhara, M. and Ono, E.: User-
level Realtime Scheduler Exploiting Kernel-
level Fixed Priority Scheduler. Multimedia
Japan ’96, March, 1996.

3) Bertsekas, D. and Gallager, R.: Data Net-
works. 2nd Ed., Prentice Hall, Englewood
Cliffs, NJ, 1992.

4) Kleinrock, L.: Queueing Systems. 1, Wiley,
New York, 1975.

5) Chen, Y.-M.: Internet Simulator for Testing
Networked Multimedia. Technical Memoran-
dum FLA-MTM96-05, Fujitsu Laboratories
of America, Santa Clara, CA, November 1996.

6) Jones, D.W.: An Empirical Comparison of Pri-
ority-Queue and Event-Set Implementations.
Communications of the ACM, 29, 4, pp. 300-
311 (April 1986).

7) Brown, R.: Calendar Queues: A fast O(1) pri-
ority queue implementation for the simula-
tion event set problem. Communications of
the ACM, 31, 10, pp. 1220-27 (October 1988).

8) Schulzrinne, H., Casner, S., Frederick, R. and
Jacobson, V.: RTP: a Transport Protocol for
Real-Time Applications. Internet RFC 1989,
January 1996.

9) Yao, J.-H., Chen, Y.-M. and Verma, T.: MPEG-

Based Audio-on-Demand Experiment for the
Internet. Interworking ’96, Nara, Japan, Oc-
tober 1996. Global Information Infrastruc-
ture (GII) Evolution, ed. S. Rao, H. Uose, and
J. C. Luetchford, IOS Press, Amsterdam,
Netherlands, 1996, pp. 503-511.

10) Chen, Y.-M.: Robust MPEG Audio for the In-
ternet. Technical Memorandum FLA-
MTM96-10, Fujitsu Laboratories of Ameri-
ca, Santa Clara, CA, March 1997.

11) Albanese, A., Bloemer, J., Edmonds, J., Luby,
M. and Sudan, M.: Priority Encoding Trans-
mission’’. Proceedings of 35th Annual Sym-
posium on Foundations of Computer Science,
IEEE Computer Science Press, 1994.

12) Li, S.Q. and Huang, C.L.: Queue Response to
Input Correlation Function: Continuous
Spectral Analysis. IEEE/ACM Transactions
on Networking, 1, 3, pp. 678-692 (June 1993).

13) Beran, J., Sherman, R. and Willinger, W.: Long
Range Dependence in Variable Bit Rate Vid-
eo Traffic’’. IEEE Transactions on Commu-
nications, 43, 3, pp. 1566-79 (February 1995).

14) Leland, W.E., Taqqu, M.S., Willinger, W. and
Wilson, D.V.: On the Self-Similar Nature of
Ethernet Traffic (Extended Version). IEEE/
ACM Transactions on Networking, 2, 1, pp.
1-15 (February 1994).

15) Paxson, V. and Floyd, S.: Wide Area Traffic:
The Failure of Poisson Modeling. IEEE/ACM
Transactions on Networking, 3, 3, pp. 226-244
(June 1995).

16) Bolot, J.-C.: End-to-End Packet Delay and
Loss Behavior in the Internet. Proceedings
of ACM SIGCOMM’93, San Francisco, CA.
Computer Communications Review, 23, 4, pp.
289-299 (September 1993).

17) A National Laboratory for Applied Network
Research (NLANR): Internet Information
Presentation. http://www.nlanr.net/INFO.

18) Danzig, P.B. and Jamin, S.: tcplib: A library
of TCP/IP traffic characteristics. USC Tech.
Report, USC-CS-91-495 (http://netweb.usc.edu/
jamin/tcplib/tcplibtr.ps.Z), October 1991.

137FUJITSU Sci. Tech. J.,33,2,(December 1997)

Yao-Min Chen: Internet Simulator for Testing Networked Multimedia

19) Clark, D.D. and Tennenhouse, D.L.: Archi-
tectural Considerations for a New Genera-
tion of Protocols. Proceedings of ACM SIG-

COMM’90, Philadelphia, Pennsylvania, USA.
Computer Communications Review, 20, 4, pp.
200-208 (September, 1990).

Yao-Min Chen is a Member of Re-
search Staff with Fujitsu Laboratories
of America, Santa Clara, California,
USA. He received the Ph.D and M.S.
degrees in Electrical and Computer En-
gineering from the University of Texas
at Austin, in 1994 and 1991 respective-
ly, and the B.S. degree in Electrical
Engineering from National Taiwan Uni-
versity in 1987. In 1995, he conducted
post-doctoral research in University of

Hawaii at Manoa before joining Fujitsu. His research interests
are in communication networks, multimedia, and algorithms.

