
39FUJITSU Sci. Tech. J.,33,1,pp.39-51(June 1997)

UDC 519.68: 681.326

1. Introduction
The performance of single, central processing

units has reached the limit of improvement, and
it is expected that the same is true for shared
memory parallel processing computers. Therefore,
distributed memory parallel computers in which
multiple processor elements (PEs: a PE is an op-
eration unit consisting of a CPU and memory) are
connected through a high-speed network are be-
ing investigated.

Therefore, Fujitsu has developed the VPP dis-
tributed-memory vector parallel supercomputer
and the AP scalar parallel server.

To make the best use of a distributed memory
parallel computer, it is necessary to distribute the
load among PEs evenly and reduce the overheads
for communication and synchronization between
PEs. Therefore, it is important to develop pro-
gramming techniques that can be used to meet
these requirements.

The parallel language processing system sup-

ports parallel programming techniques with fea-
tures that have not been implemented in conven-
tional programming.1),2)

2. Purposes of the Parallel Language
Processing System
The system was developed to satisfy the fol-

lowing requirements:
1) To provide a language environment that is

common to the VPP and AP systems,
2) to support multiple parallel processing meth-

ods, and
3) to achieve a higher processing rate.

2.1 Language environment common to
the VPP and AP systems
The VPP system is a vector parallel system

in which vector computers are used as nodes. The
AP system is a scalar parallel system in which
scalar computers are used as nodes. The VPP and
AP systems have their own optimal type of pro-

Parallel Language Processing System for
High-Performance Computing

VEiji Yamanaka VTatsuya Shindo
(Manuscript received April 22, 1997)

Fujitsu has developed a common parallel language processing system for the
VPP and AP distributed memory parallel computers. The parallel language process-
ing system includes a parallelizing compiler, libraries, and parallelizing support
tools.
The systems were developed to satisfy the following requirements :
1) To provide a language processing system that is common to the VPP and AP,
2) to provide multi-paradigms for parallel programming, and
3) to realize functions to achieve high performance.
The following have also been developed :
A Fortran parallelizing compiler that processes VPP Fortran. The compiler pro-
vides parallelizing notations for manual tuning and makes programming easy.
The MPI and PVM message passing libraries, which can be custom tuned to suit
a machine’s architecture.
The SSL II library of popular numerical calculation algorithms, which are
parallelized to achieve high performance.
A GUI programming support tool called Workbench that provides users with
several options for parallel programming.

40 FUJITSU Sci. Tech. J.,33,1,(June 1997)

E. Yamanaka et al.: Parallel Language Processing System for High-Performance Computing

gram, therefore, users should choose one of these
systems, or link them, according to the programs
to be executed.

The most important objective was to enable
programs to be ported between the two systems
easily.

For the parallel language processing system,
the parallel programming language, message
passing library, and numerical calculation library
were designed to be used on both the VPP and AP
systems. Also, user views in Workbench (the pro-
gramming environment) are unified to satisfy the
objective.

2.2 Support of multiple parallel
processing methods
There are two major methods of creating a

parallel program; one method uses parallel pro-
gramming languages and the other uses message
passing.

Parallel programming languages accept con-
ventional programs created by sequential process-
ing languages and are easy to write; however, they
also restrict parallel processing models due to
their syntax and they make other models hard to
write.

Message passing can describe various paral-
lel processing methods because communication
between processors (i.e., low-level implementa-
tion) is directly described by message passing.
However, message passing also makes program-
ming difficult.

Each method has its own advantages and dis-
advantages. Therefore, the VPP and AP systems
support both methods so that one or the other can
be applied according to the purpose.

For message passing, a number of specifica-
tions have been suggested and standardized. MPI
and PVM, which are in wide use, are supported in
both the VPP and AP systems as platforms. The
VPP system supports PARMACS, which is popu-
lar in Europe, and the AP system supports APlib,
which was developed for the AP1000. Users, there-
fore, have a wide selection.

2.3 In search of higher processing rates
The primary goal of high-performance com-

puting (HPC) is higher processing rates. The par-
allel language processing system focuses on pro-
viding specifications that speed up execution of a
parallel processing program and developing instal-
lation forms that exploit the hardware capabili-
ties.

The parallel processing compiler is a specially
developed parallel programming language called
VPP Fortran. VPP Fortran supports split alloca-
tion of arrays to multiple processors, highly ab-
stract parallel descriptions such as parallel ex-
ecution of DO loops, and a notation that enables
flexible control of system operations, including
block data transfer and synchronization.

To implement message passing, a lower layer
called MPlib was placed in the VPP and AP sys-
tems and all message passing libraries are located
on MPlib. The interface of MPlib is designed so
that overheads due to the layer are minimized.
Programs inside MPlib are tuned so that MPlib is
optimized for each machine.

The components of the parallel language pro-
cessing system are described in later sections.

3. Parallel Programming Language
The VPP and AP systems support the VPP

Fortran parallel programming language. This
section looks at VPP Fortran.

3.1 Purposes of VPP Fortran
VPP Fortran was designed originally for the

VPP500 system. When VPP Fortran was designed,
the situation regarding languages for distributed
memory parallel computers was as follows:
- There were no practical standard parallel lan-

guages for distributed memory parallel com-
puters.

- Techniques for implementing automatic
parallelization in distributed memory paral-
lel computers were not fully developed, and
it was expected that sufficient performance
could not be achieved by automatic paral-

41FUJITSU Sci. Tech. J.,33,1,(June 1997)

E. Yamanaka et al.: Parallel Language Processing System for High-Performance Computing

lelization using only compilers.
- Message passing differed greatly from mes-

sage passing in conventional sequential pro-
cessing programming, thus programmers who
created sequential processing programs could
not easily handle message passing.
Because of the above, VPP Fortran was de-

veloped so that general programmers could write
parallel processing programs for distributed
memory parallel computers.

3.1.1 Easy programming
Generally, programs for parallel computers

with distributed memory are hard to create, and
only users very familiar with parallel processing
can use such computers. Parallel computer sys-
tems for practical use must have sufficient per-
formance and easy programming features for gen-
eral programmers.

3.1.2 Application of existing
resources

Parallel computer systems for practical use
must be able to handle existing user programs.

3.1.3 Performance on the hardware
The performance of programs running on dis-

tributed memory parallel computers tends to be
much lower than the peak performance offered by
the hardware. To avoid this waste, new parallel
processing languages must fully exploit the
hardware’s performance.

3.2 Overview of VPP Fortran
VPP Fortran is a kind of Fortran 90 with par-

allel processing functions for distributed memory
parallel computers.

3.2.1 Logical configuration
Figure 1 shows the logical configuration of

VPP Fortran. A parallel computer with a layered
memory has a global space shared by PEs and lo-
cal spaces specific to each PE.

The global space is a shared virtual memory
space consisting of the operating system, execu-
tion libraries, and memory in each PE.

3.2.2 Features of VPP Fortran
1) Global array

One of the problems in creating programs for
distributed memory parallel computers is how to
locate a logical unit of data stored in physically
separated memory areas.

To solve this problem, VPP Fortran introduces
the global array using the global space provided
by the system. In practice, the global array is split
and assigned by a PE.

Use of the global array enables a unit of data
to be handled logically. Therefore, there is gener-
ally no need to change a conventional program-
ming style. Distributed memory parallel comput-
ers supporting the global array simplify porting
of programming styles and existing programs as
compared with conventional distributed memory
parallel computers.
2) Directive method

Parallel processing functions in VPP Fortran
are supported by directives and service subrou-
tines. Most parallel processing functions are de-
scribed by directives only. By regarding directives
as comments, programs with parallel processing
functions described by directives are guaranteed
to run in the same manner even if they are se-
quentially translated and sequentially executed.
This provides compatibility with programs in
other systems, and is useful for verifying parallel
processing programs.

PE

Local
Memory

PE PE

CPU CPU CPU

Virtual Global Memory

Local
Memory

Local
Memory

Fig. 1— Logical configuration of the system.

42 FUJITSU Sci. Tech. J.,33,1,(June 1997)

E. Yamanaka et al.: Parallel Language Processing System for High-Performance Computing

3) Compatibility with subprograms in standard
Fortran

Subprograms in standard Fortran can be ap-
plied to VPP Fortran without any modification to
parallel processing. VPP Fortran enables effec-
tive use of existing program libraries.
4) Gradual parallel processing

To obtain high performance on distributed
memory parallel computers it is always necessary
to tune programs. For VPP Fortran, parallel pro-
cessing functions are equipped so that programs
can be tuned gradually. The users can gradually
tune programs to achieve the maximum parallel
performance. Thus, the performance that users
can obtain depends on the tuning.
5) Explicitly splitting function

Data transfer between PEs generally de-
grades the performance of parallel processing pro-
grams that run on distributed memory parallel
computers. If an area for a calculation assigned
to a PE does not correspond to the data area on
the PE, data must be transferred from another
PE to continue the calculation. Therefore, VPP
Fortran has specifications that ensure consistent
data partitioning and procedure partitioning. The
specifications minimize the data transfer fre-
quency to prevent a reduction in the performance
of parallel processing programs.
6) Explicit transfer

Although VPP Fortran is designed so that the
data transfer frequency is reduced, some programs
have structures that require data transfer be-
tween PEs. To maintain high performance, VPP
Fortran has specifications that enable users to
control patterns and data transfer timing. The
specifications guarantee that programs can trans-
fer data efficiently.

Table 1 shows a list of VPP Fortran parallel
processing functions.

3.2.3 Execution method of VPP
Fortran

A spread-barrier method is adopted for VPP
Fortran. The spread-barrier method basically con-
sists of two cyclic operations: spread and barrier.

Spread is a split execution in each PE. Barrier is
a simultaneous synchronization of all PEs.

Figure 2 shows an example of how a program
is executed. The program is handled by eight PEs.
parallel region indicates the beginning of the part
to be parallel processed, and end parallel indicates
the end of the part to be parallel processed. The
beginning and end of the part to be parallel pro-
cessed are indicated once in a program. spread
region indicates that parts C and D are allocated
to different PEs and parallel processed. spread
do indicates that iterations of the DO loop are di-
vided and parallel processed. end spread indicates
the end of the split execution. Barrier synchro-
nizes spread region/end spread and spread do/end
spread. Programs are executed with cycles of
spread and barrier.

Separating split execution from parallel pro-
cessing allows overheads due to parallel process-
ing to be reduced.

3.3 Performance and applicability of
VPP Fortran
3.3.1 Performance of VPP Fortran
Figure 3 shows the ratio of the estimated peak

performance to the actual performance of the
VPP500 hardware using the LINPACK program.
The data in the figure can be found in reference 3).
The LINPACK program written with VPP Fortran
uses the block LU decomposition that is suitable
for parallel processing. LINPACK is within the
scope of the VPP Fortran specifications; there are
no specific procedures such as program coding
using an assembler. Figure 3 shows that a VPP
Fortran program can be very efficient.

3.3.2 Applicability of VPP Fortran
Table 2 lists the number of parallel directives

added when application programs were improved
for parallel processing using VPP Fortran in the
field. VPP’s applicability can be measured by the
number of parallel directives required to change
a program for parallel processing. (Other impor-
tant factors are the ease of rewriting and the abil-
ity to represent the characteristics of parallel pro-

43FUJITSU Sci. Tech. J.,33,1,(June 1997)

E. Yamanaka et al.: Parallel Language Processing System for High-Performance Computing

Table 1. List of parallel processing functions in VPP Fortran

Syntax/Function Description

processor, proc alias subprocessor

index partition

local

global

parallel region / end parallel

spread region / end spread

spread do / end spread

spread move / end spread
Directive

overlapfix

movewait

broadcast

unify

barrier

lockon / endlock

Declares processor group forms or aliases used in the program.

Declares the partition type or scope.

Declares the local variables.

Declares the global variables.

Specifies the scope of the program to be parallel processed.

Specifies split execution for a part of the program.

Specifies split execution for the DO loop.

Specifies data transfer between PEs.

Specifies transfer of the boundaries.

Specifies to wait for the end of asynchronous data transmission.

Specifies broadcast data transmission.

Specifies data transfer between reduplicated local arrays.

Specifies barrier synchronization.

Specifies the critical section.

Inquires about the number of PEs used for execution.

Inquires about the identification numbers of PEs used for execution.

Post / wait type synchronization.

Common connection between global variables.

Memory sharing for local variables and global variables.

Virtual / actual connection between arguments for global variables and split arrays.

Introduces parallel I / O.

novproc, norproc

idvproc, idrprocService procedure

postevt, waitevt

common

equivalence

Procedure interface
Promotion of Fortran
acceptance

Input / Output

PE1

H

G

PE2 PE3 PE4 PE5 PE6 PE7 PE8

F1 F2 F3 F4 F5 F6 F7 F8

E

B

C D

A

processor P(8)

 A
parallel region
 B
spread region /P(1 : 2)

 C
region /P(3 : 8)
 D
end spread

 G
end parallel

 E
spread do /(P)
DO I=1,N
 F
 END DO
end spread

 H
END

Fig. 2— Spread-barrier execution.

	 :	 VPP500
	 :	 Intel Paragon XP/S MP
	 :	 HITACHI SR2201
	 :	 Cray T3D
	 :	 IBM SP2-T2
	 :	 Thinking Machines CM-5

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350
Peak performance (Gflops)

E
ffi

ci
en

cy
 (

%
)

Fig. 3— Efficiency of LINPACK program.

44 FUJITSU Sci. Tech. J.,33,1,(June 1997)

E. Yamanaka et al.: Parallel Language Processing System for High-Performance Computing

cessing.)
For VPP Fortran, the percentage of parallel

directives is 10% or less in most programs in each
field. This fact indicates the wide applicability of
VPP Fortran.

4. Message Passing
Message passing techniques are based on

interprocess communication. The message pass-
ing techniques were developed in the early 1980s,
mainly in the USA. Currently, MPI, PVM, and
PARMACS are the most popular.

4.1 Approach to message passing
Fujitsu started using message passing in the

HPC field in 1993. Table 3 shows the message
passing libraries for the VPP and AP systems cur-
rently provided by Fujitsu.

4.2 Message passing programming
Parallel processing programs using message

passing are created by adding library calls for com-
munication between PEs to sequential processing
programs. Functions to create processes, trans-
fer and receive messages, and exclusively control
synchronization are essential for message pass-
ing.

Figure 4 shows a message passing program
with a simple MPI used as an example.

The features of message passing parallel pro-
grams can be clearly identified by comparing mes-

sage passing parallel programs with data-paral-
leled programs such as VPP Fortran programs.
Table 4 gives a basic comparison of the features.

4.3 Features for installing the message
passing function
The VPP and AP systems do not install the

message passing function directly on the hardware
or operating system. Instead, they install the
message passing function on a core library called
MPlib, which is a common layer.

MPlib is fully capable of handling the high-
speed networks in the VPP and AP systems to

Table 3. Major message passing libraries

Type Developer Features

MPI MPI Forum Supports group communication functions
and communication space.

PALLAS Inc.(FRG)

Oak Ridge National
Research (USA)

PVM Supports hereto-environments using
daemons.

Supports process topologies.PARMACS

main (argc, argv)
{
MPI_Init (&argc, &argv) ;	 /*Initialization 	 */
if (rank == A) {
strcpy (msg, "How are you?") ;	 /*Posts the message "How are you?"	 */
MPI_Send (msg, …, B, …) ;	 /*from A to B.	 */

}
eles {
MPI_Recv (msg, …, A, …) ;	 /*B receives the message	*/

}	 /*from A.	 */
MPI_Finalize() ;	 /*End	 */
return 0 ;

}

Fig. 4— MPI program.

Table 4. Features of message passing

Function

Data space Local space only Global variables and local
space are used in parallel.

Split allocation is supported.

Frequently used data is put
in stationary patterns.
Possible (Transfer is
automatic.)

Mainly handles DO loops.

No split allocation is
supported.

Flexible

Impossible (Explicit
transfer is required.)

Flexible

Data transfer

Direct quotation from
another PE's data

Parallel processing
 method

Data allocation

Message passing Data paralleled
(VPP Fortran)

Table 2. Parallelization of application program

13 765

Field

Computational
hydrodynamics

Meteorology

Petroleum

Particle simulation

Quantum
chromodynamics

Total number of steps Number of directives Content ratio

83 0.6%

7.5%

13.6%

9.8%

14.3%

3.2%

5.3%

2.9%

1.0%

7.8%

4 019 303

5 711 777

3 645 356

5 302 760

11 779 381

904 48

479 14

6 623 66

1 209 94

45FUJITSU Sci. Tech. J.,33,1,(June 1997)

E. Yamanaka et al.: Parallel Language Processing System for High-Performance Computing

make the best use of the hardware.
This mounting method enables the above

message passing function to be standardized for
the VPP and AP systems.

Also, by setting MPlib as a common layer and
using execution information obtained by MPlib,
all programs can be executed using a common
operation method regardless of the types of the
above message passing function.

4.4 Performance of the message passing
function
The VPP and AP systems are parallel com-

puters with distributed memory. Their perfor-
mance depends on their network communication
capabilities.

The following two values were measured as
indexes of data transmission capability using a
program (PingPong program) for transferring
messages between two processes:
- Latency: Data transmission time for data

with length 0 (Time required to start data
transfer)

- Bandwidth: Data transmission rate for a
specified amount of data
Table 5 shows the performance of the major

message passing libraries, including those in other
vendors’ distributed memory parallel computers.
The rates in “Bandwidth” indicate that the VPP
and AP systems make the best use of their high-
speed networks.

Figure 5 shows the performance efficiency for
application software using PARMACS on the
VPP500.

In general, the greater the transmission over-
head due to process addition, the less the efficiency
of parallel processing. However, in the VPP sys-
tem, the rate at which the efficiency is decreased
is low. This effect is due to the cross-bar network,
which enables fast and highly efficient operations
in the VPP system.

5. Technological Computation Libraries
for Parallel Processing
Fujitsu has developed parallel numeric com-

putation libraries SSL II/VPP and SSL II/AP for
the VPP and AP systems.

5.1 Overview of SSL II/VPP
and SSL II/AP
SSL II/VPP and SSL II/AP are new, parallel

numeric computation libraries that are highly
tuned to bring out the hardware capabilities of
the VPP and AP distributed memory parallel com-
puters. SSL II/VPP and SSL II/AP feature high
capabilities and scalability.

The parallel numeric computation algorithms
are provided in the form of easy-to-use VPP For-

Table 5. Performance of message passing

System

VPP system

Note) The values for PARMACS were measured by PALLAS Inc.(FRG).

MPI 26 429

15 323

17 470

68 60

60 25

56 23

18 25

PVM

PARMACSNote)

PARMACSNote)

PARMACSNote)

PARMACSNote)

MPIAP system

T3D (CRAY)

SP2 (IBM)

CM5E
(Thinking Machines)

Type Latency
(µs)

Bandwidth
(megabytes/second)

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

Number of PEs

P
er

fo
rm

an
ce

 e
ffi

ci
en

cy

Fig. 5— Performance efficiency.

46 FUJITSU Sci. Tech. J.,33,1,(June 1997)

E. Yamanaka et al.: Parallel Language Processing System for High-Performance Computing

tran subroutines.
Data for calculations is stored in global ar-

rays that are separated and located in PEs. To
store sparse matrixes, the Ellpack format and di-
agonal format are supported.

These parallel numeric computation algorith-
mic procedures were developed jointly by Fujitsu
and a group studying numeric computation at the
Australian National University. Members in the
group have been leading users of parallel comput-
ers, and they are an authority on numeric compu-
tation.

SSL II/VPP and SSL II/AP use the same par-
allel numeric computation algorithm and inter-
face to maintain compatibility between programs
on the VPP and AP systems.

5.2 Functions in SSL II/VPP
and SSL II/AP
SSL II/VPP and SSL II/AP provide functions

that are used frequently or applied to sizable cal-
culations. The following functions are provided:
- Linear equation solver for dense matrices

(real matrix, positive definite symmetric ma-
trix, complex matrix)

- Linear equation solver for banded matrices
(real matrix, positive definite symmetric ma-
trix)

- Linear equation solver for sparse matrices
(real matrix, positive definite symmetric ma-
trix)

- Matrix multiplication of real matrices, real
sparse matrix vector multiplication

- Inverse of real matrices
- Fourier transforms (uni-dimensional to three-

dimensional complex transforms, uni-dimen-
sional to three-dimensional real transforms)

- Eigenvalue problem (real symmetrical matrix,
tri-diagonal matrix, generalized eigenvalue
problem)

- Singular value decomposition
- Least square solution
- Uniform random numbers

5.3 Overview of the algorithm
We developed the latest numeric computation

algorithm to implement the functions listed above
on distributed memory parallel computers. For
large-scale calculations, the algorithm provides
high-speed processing almost proportional to the
number of PEs.

The algorithm has the following features:
- For the linear equation solver, a blocked di-

rect computational method is used. In this
method, the optimal load balance is main-
tained by dynamically redistributing the data
among PEs, and data transfer and computa-
tion are overlapped.

- For the sparse matrix solver, the precondi-
tioned conjugate gradient method (CG
method) and the solid, modified generalized
conjugate residuals method (MGCR method)
are used.

- For Fourier transform kernels, a recursive 5-
step algorithm suitable for vector computers
is used.

- Double-precision uniform random numbers
have a long period of 1052 or more, and an al-
gorithm with good statistical characteristics
is used.

- For eigenvalue problems and singular value
problems, the one-sided Jacobi method is used
due to its good scalability.

5.4 Performance of SSL II/VPP
This part describes some examples of the per-

formance of SSL II/VPP on the VPP700 (1 PE: 2.2
Gflops).
- SSL II/VPP can solve a real coefficient linear

equation with 50,000 elements in 1,746 sec-
onds using 27 PEs. (A restriction on memory
prevents operation of just a single PE; how-
ever, if a single PE could be used to solve the
equation, it would take about 10 hours.) With
27 PEs, the performance is 47.72 Gflops,
which is about 80% of the peak hardware per-
formance.
Figure 6 shows the relationship between the

47FUJITSU Sci. Tech. J.,33,1,(June 1997)

E. Yamanaka et al.: Parallel Language Processing System for High-Performance Computing

number of PEs and the performance.
- SSL II/VPP can compute a matrix multipli-

cation with 10,000 elements in about 93 sec-
onds using 10 PEs, yielding a performance of
about 98% of the peak hardware performance.
Figure 7 shows the relationship between the

number of PEs and the performance.
- SSL II/VPP can process a uni-dimensional/

three-dimensional large-sized complex FFT at
a high rate.
Problems that are too large to store in a PE

can also be handled. For example, using 25 PEs,
a uni-dimensional FFT with 228 elements and a

three-dimensional FFT with 1,024 × 1,024 × 1,024
elements can be calculated in 1,536 seconds (24.46
Gflops, 44.4% of peak hardware performance) and
10.35 seconds (15.56 Gflops, 28.2% of peak hard-
ware performance), respectively. These perfor-
mance figures are some of the highest in the field
of large-scale FFTs.

Figure 8 shows the relationship between the
number of PEs and the performance.
- SSL II/VPP can generate 250 M double-precision

uniform random numbers per second per PE.
Figure 9 shows the relationship between the

number of PEs and the performance.

	 :	Maximum number of
		 storable elements
	 :	10,000 elements

0 5 10 15 20 25
Number of PEs

0

5

10

15

20

25

30

35

40

45

G
fl

o
p

s

Fig. 6— Linear equation solver.

0

10

20

30

40

50

60

0 5 10 15 20 25

Number of PEs

G
fl

o
p

s

Fig. 7— Matrix multiplication(10,000 elements).

0

5

10

15

20

25

0 5 10 15 20 25

Number of PEs

G
fl

o
p

s
:	 Three-dimensional(256 × 256 ×
	 256 elements)
:	 Three-dimensional(Maximum
	 number of storable elements)
:	 Uni-dimensional(16,777,216 elements)
:	 Uni-dimensional(Maximum number
	 of storable elements)

Fig. 8— Complex Fourier transform.

0 5 10 15 20 25
0

1 000

2 000

3 000

4 000

5 000

6 000

7 000

Number of PEs

M
 /

se
co

nd
s

Fig. 9— Uniform random number.

48 FUJITSU Sci. Tech. J.,33,1,(June 1997)

E. Yamanaka et al.: Parallel Language Processing System for High-Performance Computing

6. Program Development Environment:
Workbench
Workbench is an integrated environment for

developing programs for the VPP and AP systems.
It supports a series of processes for developing
programs from the user’s point of view.

6.1 Features of Workbench
Workbench features the following:

1) Graphical user interface (GUI) with high op-
erability using Motif Note 1)

2) Integrated environment for program develop-
ment activities such as editing, translation,
debugging, performance analysis, and opera-
tions

3) Operated in the same way as the Fujitsu engineer-
ing development environment for SPARCNote 2)

Workbench is compatible with programming
environments in workstations because it is oper-
ated in the same way as the engineering develop-
ment environment for SPARC. Therefore, flexibil-
ity in development styles is allowed. For example,
the fundamental parts of a program can be cre-
ated on a workstation first, then the program can
be handled on the VPP or AP system for the change
to vectorization or parallel processing.

6.2 Functions of Workbench
The following shows the correspondence be-

tween programming steps and functions provided
by Workbench:

6.2.1 Editing
Activates an editor. The user can select the

editor.
6.2.2 Compile
Activates the compiler. The user can select

compile options using buttons.
6.2.3 Execution
Executes the program on the VPP or AP sys-

tem. The user can select execution options using

buttons in the same way that translation options
are selected.

6.2.4 Debugging
Displays a source program, and enables

breakpoints to be set and variables to be displayed
using the mouse. Vector programs can be de-
bugged on the VPP system.

6.2.5 Performance analysis
Enables the performance analysis tools in the

VPP and AP systems to be operated from Work-
bench.

6.2.6 Job management
Enables programs to be entered, monitored,

and canceled as batched jobs using a GUI. Sup-
ports not only development of programs but also
system operations.

Figure 10 shows the widows of Workbench.

6.3 Operating environment for
Workbench
The components of Workbench are located in

a workstation and the VPP or AP system; the com-
ponents are linked with each other. Figure 11

shows the operating environment in the VPP sys-
tem.

Making the GUI functions usable on the work-
station provides a distributed development envi-
ronment and reduces the load to the VPP and AP
system mainframes.

Note 1) Registered trademark of OSF (Open Soft-
ware Foundation, Inc.)

Note 2) Registered trademark of SPARC Interna-
tional, Inc. Fig. 10— Windows of Workbench.

49FUJITSU Sci. Tech. J.,33,1,(June 1997)

E. Yamanaka et al.: Parallel Language Processing System for High-Performance Computing

7. System-specific functions
In addition to a parallel processing system

that is common to the VPP and AP systems, sys-
tem-specific functions are provided to exploit vari-
ous features and improve performance.

7.1 Functions specific to the VPP
system
7.1.1 Automatic vectorization/LIW

optimization functions
The VPP system has a vector parallel archi-

tecture. In this architecture, each PE corresponds
to a conventional supercomputer. Thus, conven-
tional programs can be used without performance
deterioration even if the programs are not modi-
fied for parallel processing.

If the programs run satisfactorily on the VPP
system, there is no need to modify the program
for parallel processing. To obtain a higher perfor-
mance, the programs must be modified for paral-
lel processing.

For more effective use of the PE’s vector ar-
chitecture, the VPP system supports automatic
vectorization and optimization functions that have
proved reliable on the VP series. The main func-
tions of automatic vectorization and optimization
are as follows:
- Vectorization of nested DO loops
- Vectorization of DO loops containing control

statements such as IF statements
- Vectorization of DO loops containing intrin-

sic functions

- Partial vectorization of DO loops
- Vectorization of total sums, inner product op-

erations, maximum value/minimum value
retrievals, and collection/diffusion operations

- Vector pipeline schedule
- Optimization for LIW

7.1.2 Analyzer
When creating new programs or porting pro-

grams developed for other systems, performance
tuning is always necessary. The VPP system sup-
ports an analyzer sampler and PEPA/MPA for
performance tuning.
1) Sampler

The sampler is a sampling performance analy-
sis tool. In sampling, an executed program is
checked at various points by periodic CPU inter-
rupts to analyze the performance.

Sampling does not require retranslation of
programs and enables performance analysis us-
ing programs in the standard executable format.

In vector program analyses, the distribution
of cost (percentage of CPU interrupts for each pro-
cedure, loop, and array; and average physical vec-
tor length) is displayed by a routine and loop.

Using the information displayed, high-cost
parts can be identified and programs can be ef-
fectively tuned.

For parallel processing programs, the paral-
lel processing, parallel processing rate, parallel
processing acceleration rate, load balance between
PEs waiting for synchronization, and asynchro-
nous transfer wait rate are displayed for the en-
tire program or a specific procedure.

By using the above information, program per-
formance can be improved by increasing the par-
allel processing rate and reducing the wait-time
for synchronization and asynchronous transfer.
2) PEPA/MPA

PEPA/MPA checks how the hardware is used
while the sampler analyzes the performance
checking software’s characteristics (procedures
and loops).

The PEPA (PE performance analyzer) collects
events related to PEs. It collects the VU busy rate

VPP systemWorkstation

VPP-WB
Manager

Job Mgr Log

X-Server

Editor

VPP-WP
BODY

Compiler

Fdp

etc.

Start

Operation

Fig. 11— Working environment.

50 FUJITSU Sci. Tech. J.,33,1,(June 1997)

E. Yamanaka et al.: Parallel Language Processing System for High-Performance Computing

(fraction of time the vector pipeline is operating),
All-PE average performance (ratio of operations
using a floating point for scalar instructions to
operations using a floating point for vector instruc-
tions), number of operations (total number of op-
erations using a floating point for scalar instruc-
tions or vector instructions), measurement time
(time needed to collect data).

MPA (mover performance analyzer) collects
events related to the DTU (data transfer unit
hardware), which handles data transfers between
PEs.

The PEPA and MPA are provided as subrou-
tines. The PEPA/MPA can be used by adding calls
for these subroutines to the beginning and end of
parts to be analyzed. It is also possible to analyze
the entire program by specifying environment
variables without modifying the source program.

7.2 Functions specific to the AP system
7.2.1 APlib (AP1000 compatible

library)
The AP3000 supports APlib, which was origi-

nally designed for the AP1000 communication li-
brary.

APlib inherits software resources developed
on the AP1000; it permits multi-thread program-
ming methods to be used on each node.

Tasks created using APlib are mapped onto
threads on the AP3000. A node in the SMP con-
figuration permits the tasks to be processed in
different CPUs.

7.2.2 Parallel profiler
The AP system is provided with a parallel

profiler and performance analysis tool for analyz-
ing the performance of programs created in VPP
Fortran.

After execution of a parallel processing pro-
gram, the parallel profiler indicates the total time
and calculation, communication, and synchroni-
zation times for each subroutine, functional pro-
cedure, or DO loop.

The performance analysis tool accumulates

information about all events. Therefore, to avoid
a data space shortage, the performance analysis
tool should be used only for a specific portion of a
parallel processing program.

When tuning a parallel processing program,
it is recommend to first apply the parallel profiler
to the entire program to locate the portions that
take much time to process. Then, the performance
analysis tool can be used for individual sections
to check the details.

8. Conclusion
This paper outlined the parallel programming

language, message passing libraries, numeric com-
putation libraries, and programming tools of the
parallel language processing system developed for
the VPP and AP systems. These parallel language
processing system tools enable general users to
use distributed memory parallel computers for
practical purposes.

Current indications are that there is a limit
to the performance of shared memory parallel
computers. Therefore, distributed memory paral-
lel computers will become more important in HPC.

In response, we intend to enhance the func-
tions, implement an automatic parallelization
function for distributed memory parallel comput-
ers (which still remains to be achieved), and pro-
mote standard languages for parallel computers.

References
1) M. Nakanishi, H. Ina, and K. Miura: A High

Performance Linear Equation Solver on the
VPP500 Parallel Supercomputer. Proceedings
of Supercomputing’94, pp.803-810 (1994).

2) S. Kamiya, P. Lagier, W. Krotz-Vogel, and N,
Asai: Two Programming Paradigms on the
VPP System. Proceedings of the International
Symposium on PDSC’95, pp.35-44 (1995).

3) J.J.Dongarra: Performance of Various Com-
puters Using Standard Linear Equations
Software. August 12, 1996.

51FUJITSU Sci. Tech. J.,33,1,(June 1997)

E. Yamanaka et al.: Parallel Language Processing System for High-Performance Computing

Tatsuya Shindo received the B.S. de-
gree in Electrical Engineering from
Waseda University, Japan in 1983.
He joined Fujitsu Laboratories Ltd. in
1983, where he was engaged in re-
search of parallel processing. From
1990 until 1992 he was a visiting re-
searcher at Stanford University on sab-
batical leave. He is currently a man-
ager of parallel software development
at Fujitsu Ltd.

Eiji Yamanaka received the Master
degree in Control Engineering from the
Tokyo Institute of Technology, Tokyo,
Japan in 1988.
He joined Fujitsu Ltd., Numazu, Japan
in 1988, where he is currently engaged
in research and development of paral-
lel compilers for Fujitsu’s VP and VPP
computer series.

