

Fujitsu All Photonic Network Vision

Our purpose

Make the world more sustainable by building trust in society through innovation.

A borderless world

Future

- The virtual world can enable more inclusive experiences for everyone
- The mirror world has the potential to enhance the resilience of our physical world.
- The physical, virtual and mirror worlds will gradually merge. This will create a seamless, borderless world.

Network Architecture and Platforms All Photonic Network

Technology Trends for Realizing a borderless world

Deploying end-to-end fully virtualized cloud-native networks throughout the world

Open & Disaggregation

All Photonic Network, Mobile Base Stations (Open RAN), Computer System

Intelligent Network

Network Visualization, Automation & Optimization, Al/Machine Learning

Green Technology

Sub-terahertz, Photoelectronic Fusion, liquid-cooling Technology

All Photonic Network (APN) Concept

Open APN: Optical Transport System

- Transitioning from a conventional all-in-one-box type system to a disaggregated system
 - SDN control allows for optimal, rapid network building
 - Optimized power consumption across the network

Open APN: Open Line System (OLS)

APN Interconnections by Multi Orchestrator

```
FUJITSU
```

Data centric infrastructure for various type of data processing by all photonic network interconnection of function dedicated node

Use Case APN in Long haul/Metro Domain

• Metro/Nation-wide Distributed Data Center interconnection by APN for resilient DC services

APN in Access/xhaul Domain Use Case

ເມິ່<mark>ກຽບ</mark>

FU

Use Case APN in Data Center/Computing Domain

Connecting the borderless world with APN

FUJITSU

Fujitsu is developing future network technologies to create seamless experiences and a sustainable future

Note: The above is based on Fujitsu's current projections and is subject to change without notice.

Enabling technologies and Fujitsu Products

Fujitsu's Product Overview

COMMS INTEGRATOR(CI)

C20x : 36 port Communications Integrator Rack Manager

HOUSING

6 Blade Housing Power Distributor

Multi-Functional Programmable Blades Optimized for SDN

APN T/G/I nodes : 1FINITY Ultra Optical System

- New Optical Transport platform achieves top-level long-distance transmission capacity of 1.2Tbps
- Incorporate the latest technologies
 - A digital signal processor (DSP) LSI using latest semiconductor processes
 - Liquid cooling delivers 2x the cooling capacity
 - C+L ROADM architecture able to handle multiple wavelength bands in one product
 - Forward Raman amplification
- 60% reduction in CO2 emissions
- Support for AI/ML automation to optimize performance

FUJITSU

1FINITY L900 terabit-optimized OLS

- C+L band in one device ensures high reliability
- Using optical backboards to reduce cable connections during initial construction
- Forward Raman amplification increase maximum transmission
- Max transmission capacity 76.8Tbps, Max 16degree

1FINITY T900/T950 extreme-performance transponder

- High Baud Rate and Compensation Technology Realize High OSNR and Long-Distance transmission
- Space saving and low power consumption by liquid cooling technology
- Max transmission capacity 1.2Tbps/Lambda, 14.4Tbps/blade

APN Terminal node : Latency Engineering Solution

OTN terminal product overcoming distance constraints

Network challenges between geographically distant sites

- Physical latency during optical fiber propagation due to distance difference
- Transmission latency caused by passing through the devices
- Latency caused by variations in network quality

Transmission-time Visualization and adjustment

Measure the latency in the NW between sites on a path-by-path basis to visualize and adjust the latency difference in transmission time.

Low power consumption and large-capacity communication

Low power and high capacity optical transmission (OTU4) as terminal equipment for All Photonic Network

Achieve a fair, high-quality and sustainable communications infrastructure

Achieve a sustainable network by maintaining fair network quality among sites A range of services that transcend space and do not require movement

Example of Point to Point Network configuration

Service applications examples: Multi-site video broadcasting, telemedicine, and e-SPORTS

APN Controller : Virtuora NC

- On-demand optical path control : An optical path can be controlled on demand and a fixed optical path can be set between arbitrary terminals
- Domain Controller Management : Integrated management of multi-vendor networks with end-to-end, containing a domain controller (EMS) terminating vendor IF
- Multi-tenant Management : Supports network view management for multiple operators to provide services on the same network

Fujitsu's Advanced Photonics Research for APN

FUJITSU

Scalable transceivers

In optical transmission and computing – reduced power consumption and improved data transfer

Photoelectronic Fusion Device

Compactness and high energy efficiency is achieved by implementing optical and electrical processing in the same package

Si photonics chip 2.75 x 4.0 mm

%This technology is based on results obtained from a project.JPNP13004,14004,16007 commissioned by the New Energy and Industrial Technology Development Organization (NEDO).

Ultra-wideband transmission (Beyond C+L)

- Ultra-wideband optical transmission node to expand the operating wavelength band
- Enable to connect multi-band network for direct optical path

- Fujitsu has unique and novel **ultra-wideband system concept using wavelength conversion technology** and introduce the concept into the node through a collaboration with partners
 - Convert the WDM signals to any wavelength bands
 - No need to develop the new transponders for S band or U band

Example of ultra-wideband node configuration

Wavelength conversion (example of upgrade)

Photonics Tomography End-to-end photonic network monitoring

Optical Network Digital Twin

Fujitsu Collaboration

-(Open Optical/Ra	dio Network				-	Open Softwa	re Platform	
	cbrs	IOWN	GLOBAL FORU	I M	MEF		ONA	P ON	IF
	Open air interface		Open RAN Open ROA		DM	OPEN DAY		.IGHT	Warrior
	O-RAN OREX TELECOM INFRA PROJECT				ECT	LINUX Foundation			
	Standards develo	andards development organization/Certification, Academic community							
	ARIB	ETSI	3GPP	IEEE	ITU		OIF	OPTICA	TTC
-	Industry A	Affiliations							
	atis	Beyond	5G promotio	сса		CIAJ	Ethernet Alliance		
	National Rural Electric Cooperative Association Next G al						e Next generation Mobile N		bile Network
	NTC	A	SCTE	TechTitans	TIA	L.	tmforum	U	гС

Thank you

