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1. Introduction 

Digital Annealer (DA) is a new computing technology 

that Fujitsu Laboratories has started researching and 

developing in the mid-2010s for high-speed solving of 

combinatorial optimization problems, which are difficult 

to solve with existing general-purpose computers. The 

DA can handle combinatorial optimization problems 

mapped to an Ising model that is expressed by the energy 

function in which the spin states (−1, +1) are converted 

into binary values (0, 1). The DA can rapidly solve those 

problems by searching for a ground state, based on the 

Markov-Chain Monte Carlo (MCMC) method, where the 

energy of the Ising model system is the lowest. The 

inspiration for the architecture of the DA comes from 

quantum computers, which repeatedly apply unitary 

operations to multiple qubits, whereas the DA repeatedly 

applies stochastic transitions to classical bits which 

correspond to the aforementioned binary values. In order 

to accelerate this iterative operation of stochastic 

transitions for digital circuits, we have developed an 

architecture that performs parallel computation of 

subtraction operations for the finite differences of the 

energy function and its stochastic evaluation, in the 

collaboration with the University of Toronto in Canada. 

This parallel structure of the circuits eliminates the data 

transfer bottleneck between the memory and the 

arithmetic units by reducing movement of Ising model 

coupling coefficient data as much as possible [1]. 

 

(*1) Optimization Computing Project, ICT Systems Laboratory, Research Unit of Fujitsu Research 

In May 2018, Fujitsu commercialized the results of this 

research by launching its first generation DA cloud 

service for 1,024-bit problems [2], followed by the launch 

of a second generation cloud service in December 2018 

characteristically equipped with a dedicated processor 

(Digital Annealing Unit: DAU) [3][4] capable of handling 

8,192 bits. Compared with the first generation, this 

greatly increased the scale of problems that could be 

handled, and offered better problem-solving performance 

[5]. Unlike quantum annealing machines, DA technology 

has various advantages that make it suitable for practical 

use, such as not requiring cryogenic environment and 

having the features of fully coupled bit connectivity and 

high coupling resolution up to 64bits. Solving business 

problems with the DA has resulted in great benefits for 

many organizations. This technology has been applied to 

various fields in the real world, including logistics, 

finance, and drug discovery [6][7][8]. Research using the 

DA is also being actively conducted at universities and 

research institutes all over the world to develop 

applications in new fields [9–14].  

With the first and second generation DAs, energy 

functions to be minimized are handled as a quadratic 

unconstrained binary optimization (QUBO). Often, 

combinatorial optimization problems are subject to 

various constraints. In these situations, penalty terms, 

whose evaluation value increases with the violation of 

constraints, are also expressed in a binary quadratic form 

and added to the cost terms representing the original 

optimization targets. However, it is known that as the 
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numbers of constraints and variables increase, it becomes 

notoriously difficult to reach optimal or sub-optimal 

solutions [15]. To tackle this problem we have developed 

the third generation DA. This is a problem-solving system 

with a hybrid software and hardware configuration. The 

software component effectively finds good solutions in a 

large-scale solution space of 100,000 bits by analyzing 

constraint-violating conditions. The hardware component 

searches for optimal solutions in the neighborhood of 

these good solutions. The features of this third generation 

DA are described in Section 2 of this paper, and its 

performance evaluation results are presented in Section 3. 

 

2. Third generation DA 

2.1 Overview 

The overall configuration of the third generation DA is 

shown in Fig. 1. This is a hybrid problem-solving system 

in which a software intervention layer (SIL) cooperates 

with a search core to find optimal or sub-optimal 

solutions to a binary quadratic programming (BQP) 

problem of up to 100,000 bits. 

The energy function of the system input consists of the 

two kinds of separated terms: an aggregated cost term and 

an aggregated penalty term, each of which can be set in 

binary quadratic form. It enables the system to analyze 

the violation of constraints, which was not possible with 

the first and second generation. To better handle 

constraints that frequently arise in practical problems, we 

have added two types of input: one is for a group of 

variables in which the sum of binary variables is 1 (one-

hot constraints), and the other is for linear inequality 

constraints. Functionalities for these equality and 

inequality constraints will be described in Section 2.2. By 

allowing the user to provide constraints explicitly, the 

 

(*2) The third generation DA receives a QUBO prepared for the second generation DA, by putting the QUBO to the cost terms of the 
energy function of the BQP IF and not putting any penalty terms and inequality constraints. 

third generation DA achieves better solving performance 

for these constrained problems. Furthermore, this 

interface simplifies the formulation of problems by 

eliminating the need to transform linear inequality 

constraints into penalty terms, as it was required with the 

previous generations of DA. These new interfaces, which 

take constrained problems into account in the third 

generation DA, are called BQP IF (as shown in Fig. 1) to 

distinguish it from QUBO IF in the first and second 

generation DAs(*2).  

The SIL (as shown in Fig. 1) is a software layer that 

controls the search core to have it perform efficient 

searches in the large-solution space, based on the analysis 

on the problem-solving progress. Its main functions are 

automatic temperature control, search start points 

generation, and automatic penalty coefficient adjustment. 

One of characteristics of the DA is MCMC-based 

search which controls the probability of state transitions 

by a control parameter called “temperature.” The DAU 

hardware (described below) incorporates a replica 

exchange method that executes parallel MCMC-based 

searches at multiple temperatures and exchanges the 

solution states between adjacent temperatures at 

appropriate times in order to escape from local minima 

Fig. 1: Overall configuration of the third generation DA 
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[3][4][16]. In the replica exchange method, the maximum 

/minimum temperature settings and the temperature 

interval setting have a significant effect on the solution 

quality and convergence time. The automatic temperature 

control sets these parameters appropriately by analyzing 

the distribution of the input energy function. 

The search start points generation is a function that 

generates new search start points from a set of past 

solution candidates obtained by the search core. When the 

search core has stalled in a local minimum, it generates 

new starting points, with randomness taken into 

consideration, which aims at guaranteeing diversity of 

search in a large space. 

The automatic penalty coefficient adjustment analyzes 

the influence of a cost term and a penalty term from the 

solution result obtained by the search core, and 

automatically adjusts the penalty coefficient (i.e., the 

weight of penalty term) so that the search core can easily 

find better solutions in subsequent search process. 

The SIL stops the search process when the evaluated 

energy as the lowest in the process is not being updated 

over a criteria time, when the total elapsed time exceeds 

the time limit, or when the target energy is attained, if the 

value is provided by the user. The SIL outputs a user-

specified number of solution candidates, including the 

best solution, including the pest-found solution, after the 

solution search is completed. 

The search core consists of a software-implemented 

constraint utilization search and DAU hardware. The 

constraint utilization search actively utilizes constraints 

in its search process, such as penalty term, one-hot 

constraints and inequality constraints, all set via BQP IF. 

The search process starts from a point generated by the 

SIL in the large-scale solution space to finally find a good 

solution by evaluating the violation of constraints above. 

The DAU hardware performs ultra-fast search based on 

MCMC to find the optimal solution in the neighborhood 

of this good solution. 

By operating cooperatively to make use of the 

characteristics of each search, the third generation DA is 

able to handle large-scale problems that could not be 

handled by the second generation DA, and by tackling 

constrained problems that are frequently encountered in 

practical problems, it can be used for a wider range of 

applications. 

2.2 BQP IF and constraint-related functions 

This section provides a detailed description of the 

constraint-related functions of the third generation DA 

including the BQP IF specification. 

(1) Separated cost and penalty terms interface 

Most practical optimization problems are subject to 

constraints that define the feasible search space. To 

handle those problems as minimizing a QUBO energy 

function, constraints are incorporated into the energy 

function as a penalty term with strictly positive values 

when any constraint is violated (Eq. (1)), and the energy 

function is expressed as a binary quadratic formula (Eq. 

(2)).  

𝐸(𝒙) = 𝐶(𝒙) +  𝛼𝑃(𝒙) (1) 

𝒙 =  ( 𝑥ଵ, 𝑥ଶ, … , 𝑥௡ ) ：A set of binary variables  

𝐶(𝒙)：Cost term to be minimized as a target 

𝑃(𝒙)：Penalty term (constraint violation when P(x) > 0) 

𝛼：Penalty coefficient (positive) 

𝐸(𝒙) =  ∑ 𝐽௜௝𝑥௜𝑥௝ + ∑ ℎ௜௜ 𝑥௜  + 𝑐௜ழ௝  (2) 

𝒙 =  ( 𝑥ଵ, 𝑥ଶ, … , 𝑥௡ ) ：A set of binary variables  

𝐽௜௝：Coupling coefficient between variables 𝑥௜ and 𝑥௝ 

ℎ௜ : Bias coefficient for variable 𝑥௜ 

𝑐：Constant term 

 
In the first and second generation DA, this binary 

quadratic function (Eq.(2)), in which 𝐶(𝒙)  and 𝑃(𝒙) 

are up-front combined, should be set via the 

corresponding QUBO IF. On the other hand, in the third 

generation DA, those terms are set as separate binary 
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quadratic forms (Eqs.(3) and (4)) via the corresponding 

BQP IF. 

 

𝐶(𝒙) =  ∑ 𝐽௜௝
௖ 𝑥௜𝑥௝ +  ∑ ℎ௜

௖𝑥௜ + 𝑐௖
௜௜ழ௝  (3) 

𝑃(𝒙) =  ∑ 𝐽௜௝
௣

𝑥௜𝑥௝ +  ∑ ℎ௜
௣

𝑥௜ + 𝑐௣
௜௜ழ௝  (4) 

𝒙 =  ( 𝑥ଵ, 𝑥ଶ, … , 𝑥௡ ) ：A set of binary variables  

𝐽௜௝
௖ ,ℎ௜

௖,𝑐௖：Coupling coefficient, bias coefficient, and 

constant term of Cost term 

𝑗௜௝
௣
,ℎ௜

௣
,𝑐௣：Coupling coefficient, bias coefficient, and 

constant term of Penalty term  

The penalty coefficient 𝛼 in Eq. (1), which represents 

the weight of the penalty term, can be manually set to a 

strictly positive integer value or automatically adjusted.  

The remainnder of this section uses the Quadratic 

Assignment Problem (QAP) to explain in more details the 

difference between the conventional QUBO formulation 

process and the formulation process when using the third 

generation DA.  

The facility location problem, which is one kind of QAP, 

involves assigning 𝑛 facilities to 𝑛 locations in such a 

way as to minimize the cost term expressed as the sum of 

the distance between each pair of facilities multiplied by 

the flow of goods between these facilities. 

𝐶(𝒙) =  ∑ ∑ ∑ ∑ 𝑓௜௝𝑑௞௟
௡
௟ୀଵ

௡
௞ୀଵ

௡
௝ୀଵ

௡
௜ୀଵ 𝑥௜௞𝑥௝௟ (5) 

𝑥௜௞ : Binary variables, 1 if facility  𝑖  is assigned to 

location 𝑘 , 0 otherwise 

𝑓௜௝  : A quantity representing the flow of goods between 

facilities  𝑖  and 𝑗  

𝑑௞௟  : Distance between locations 𝑘 and 𝑙 

This problem is subject to the constraints that only a 

single facility should be assigned to each location, and 

only a single location should be assigned to each facility, 

which are expressed in Eqs. (6) and (7) respectively. 

∑ 𝑥௜௞
௡
௞ୀଵ = 1  (𝑖 = 1, 2, ･･･ , 𝑛) (6) 

∑ 𝑥௜௞
௡
௜ୀଵ = 1  (𝑘 = 1, 2, ･･･ , 𝑛) (7) 

The penalty term that satisfies the constraints of Eqs. 

(6) and (7) can therefore be expressed as follows. 

𝑃(𝒙) = ∑ (∑ 𝑥௜௞
௡
௞ୀଵ − 1)ଶ ௡

௜ୀଵ  + ∑ (∑ 𝑥௜௞
௡
௜ୀଵ − 1)ଶ ௡

௞ୀଵ  (8) 

Equation (8) has value 0 if all the constraints are 

satisfied, has a strictly positive value if any of them are 

violated, and increases with the number of violations, 

thereby it works as an appropriate penalty term. The 

energy function of the facility location problem is 

obtained by substituting Eqs. (5) and (8) into Eq. (1). 

𝐸(𝒙) = 𝐶(𝒙) +  𝛼𝑃(𝒙)  

= ∑ ∑ ∑ ∑ 𝑓௜௝𝑑௞௟
௡
௟ୀଵ

௡
௞ୀଵ

௡
௝ୀଵ

௡
௜ୀଵ 𝑥௜௞𝑥௝௟ + 

  𝛼[∑ (∑ 𝑥௜௞
௡
௞ୀଵ − 1)ଶ௡

௜ୀଵ + ∑ (∑ 𝑥௜௞
௡
௜ୀଵ − 1)ଶ௡

௞ୀଵ ] (9) 

 

The two-dimensional array of binary variables in this 

problem 

𝒙 = (𝑥ଵଵ,𝑥ଵଶ, … ,𝑥ଵ௡,𝑥ଶଵ,𝑥ଶଶ,… … , 𝑥௡௡) 

can be expanded into a one-dimensional array with 𝑛ଶ 

elements, 

𝒙 = (𝑥ଵ,𝑥ଶ,𝑥ଷ, … … , 𝑥௡మିଵ, 𝑥௡మ)  

and when redefined in this way, Eq. (9) can be 

transformed by reorganizing the coefficients as follows: 

 

𝐸(𝒙) =  ∑ 𝐽௜௝𝑥௜𝑥௝ + ∑ ℎ௜௜ 𝑥௜  + 𝑐௜ழ௝  (10) 

allowing it to be treated as a QUBO problem. However, 

the user needs to adjust 𝛼  by iteratively changing its 

value when solving the QUBO, analyze the obtained 

solution by checking if it satisfies the constraints and its 

cost value is low enough, and repeat the process until the 

application requirements are satisfied. In general, it is 

difficult and cumbersome to obtain those solutions 

because of this trial-and-error approach.  

In the BQP IF of the third generation DA, the cost term 

in Eq. (5) and the penalty term in Eq. (8) are converted 

into the binary quadratic form of Eqs. (3) and (4), 

respectively, and can be set separately so that the 

automatic penalty coefficient adjustment part in the SIL 

analyzes the influence of the penalty term in the search 

process and adjusts 𝛼 appropriately, so that the solution 

converges to optimal solutions.  
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Though the above QAP has two types of constraints 

(Eqs. (6) and (7)), practical problems often have more 

constraints. Since the third generation DA only handles 

one penalty term separately from the cost term, the user 

has to adjust the individual weights for constraints to be 

incorporated in 𝑃(𝒙)  if there are multiple constraints. 

Equation (8) is an example where the weights of the 

constraints in Eqs. (6) and (7) are all the same. 

(2) One-hot constraints 

Optimization problems that deal with binary variables 

often include equality constraints where a group of 

variables has a sum value of 1, such as Eqs. (6) and (7) in 

the QAP. This type of constraint is called a one-hot 

constraint. The third generation DA incorporates a 

mechanism that makes it possible to solve problems faster 

by explicitly specifying groups of variables subject to 

one-hot constraints. 

As a specific example of a one-hot constrained 

problem, we will discuss a facility location problem with 

four facilities and four locations. In this case, the number 

of variables is 16, and the variables can be arranged in a 

two-dimensional matrix as shown in Fig. 2 reflecting the 

relationships between the facilities and locations. The 

variable groups indicated by rounded-rectangles in Fig. 2 

(a) and (b) become the one-hot constraint groups 

corresponding to Eqs. (6) and (7), respectively. Since the 

variable groups in Fig. 2 (a) and (b) point in different 

directions respectively, this is called a 2way1hot 

constraint. If we redefine the two-dimensional matrix 

𝑥௜௝  of Eq. (8) into a one-dimensional array 

( 𝑥ଵ, 𝑥ଶ, … , 𝑥ଵ଺ ), the penalty term turns into Eq. (11). 

𝑃(𝒙) = ∑ ( ∑ 𝑥௜ − 1 )ଶସ௞ାସ
௜ୀସ௞ାଵ

ଷ
௞ୀ଴ +

               ∑ ( ∑ 𝑥௞ାସ௜ାଵ − 1 )ଶଷ
௜ୀ଴

ଷ
௞ୀ଴     (11) 

When this is rearranged into the form of Eq. (4), the 

coupling coefficient matrix of the penalty term is the 

matrix 𝑱 shown in Fig.3, the bias coefficients are all -2, 

and the constant term is 8. The user has to set these values 

as a penalty term. Furthermore, successive variable array 

( 𝑥ଵ, 𝑥ଶ, … , 𝑥ଵ଺ )  are specified as a group subject to 

2way1hot constraints. In this way, the search core’s 

constraint utilization search can flip the state of variables, 

avoiding the violation of the constraint specified as a 

2way1hot group, thereby obtaining a good solution at 

high speed. Section 3 shows the results of evaluating the 

performance of the third generation DA in solving QAPs. 

 In the facility location problem as shown in Fig. 2, 

only one 2way1hot group is specified, but it is possible to 

specify more than one 2way1hot groups with different 

numbers of variables and the value of the number should 

be square. And the index of variable should be 

consequtive within group and have no gap between 

groups.  

Fig. 3: Coupling coefficient matrix of the penalty term in a facility location problem (Fig. 2) 

Fig. 2: 2way1hot constraint in a facility location problem 
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Other than specifying 2way1hot constraint group, it is 

also possible to specify another type of one-hot group as 

a constraint where the sum of a one-dimensional series of 

variables is 1. This is called a 1way1hot constraint (*3). As 

an example of 1way1hot constrained problem, we will 

discuss a Graph Coloring Problem (GCP). In one type of 

GCP called a vertex coloring problem, a set of 𝑛 vertices 

defines a graph, and one color out of 𝑚  colors is 

assigned to each vertex so that no edge in the graph 

connects two vertices of same color, which can be applied 

to practical problem such as the channel assignment in 

wireless communication systems. 

In GCP, if variables are defined such that 𝑥௜௝ = 1 when 

color 𝑐௝ is assigned to 𝑣௜ (and  𝑥௜௝ = 0 when it is not),  

then the constraint can be expressed as follows: 

∑ 𝑥௜௝
௠
௝ୀଵ = 1  (𝑖 = 1, 2, ･･･ , 𝑛) (12) 

This means that only one of 𝑚 colors can be assigned 

to each vertex. Fig. 4 shows states corresponding to 

constraint satisfaction (Fig. 4 (a)) and constraint violation 

(Fig. 4 (b)) for the example of a graph coloring problem 

with 𝑚 = 3 and 𝑛 = 5. In the second equation of one-

hot constraint in Fig. 4 (b), right-hand-side value of the 

 

(*3) Although a 1way1hot constraint does not have similar geometric orientation as a 2way1hot constraint, it is referred to as “1way” 
in the third generation DA specification in order to clearly distinguish it from a “2way” constraint. 

equation is 0, which means no color is assigned to the 

vertex 2. 

Another constraint of GCP which prohibits the same 

color from being assigned to a pair of vertices of edges 

can be expressed as follows: 

∑ ∑ 𝑥௜௞
௠
௞ୀଵ 𝑥௝௞(௜,௝)∈ா    (13)  

In Eq. (13), ( 𝑖 ,  𝑗 ) indicates an edge that connects 

vertices  𝑣௜ and 𝑣௝ , and 𝐸 is a set of edges in the graph. 

Eq. (13) equals to 0 when no edge in the graph connects 

the vertices of same color, and increases with the number 

of violated edges 

If the two-dimensional variable array in Fig. 4 is 

redefined into a one-dimensional array consisting of 15 

variables ( 𝑥ଵ, 𝑥ଶ, … , 𝑥ଵହ ), and the weights of each one-

hot constraint are uniform, the penalty term related to 

one-hot constraint becomes 

∑ ( ∑ 𝑥௜ − 1  )ଶଷ௞ାଷ
௜ୀଷ௞ାଵ

ସ
௞ୀ଴    (14) 

 

To make up one penalty term of the BQP IF from all 

two types of constraints in GCP corresponding to Eqs. 

(12) and (13) respectively, the user also transforms Eq. 

(13) into a binary quadratic formula using the variables 

(𝑥ଵ, 𝑥ଶ, … , 𝑥ଵହ) above, applies a proper weight to it and 

adds its result to Eq. (14). Finally the user redefines this 

into Eq. (4) and has to set it as the penalty term. 

Furthermore, five consecutive variable groups 

(𝑥ଵ, 𝑥ଶ, 𝑥ଷ), (𝑥ସ, 𝑥ହ, 𝑥଺) , ･ ･ ･ ， (𝑥ଵଷ, 𝑥ଵସ, 𝑥ଵହ)  are 

specified as 1way1hot constraint groups. By this 

specification, the constraint utilization search flips the 

state of variables, avoiding the violation of the constraints 

specified as 1way1hot groups.  

In the GCP as shown in Fig. 4, all five 1way1hot 

groups have same number of variables. but it is possible 

to specify different number per each group. And the index 
Fig. 4: Example of 1way1hot constraints in a graph coloring 

problem 
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of variable should be consequtive within group and have 

no gap between groups.  

(3) Linear inequality constraints 

A linear inequality constraint is a constraint that 

frequently appears in practical combinatorial 

optimization problems. In the BQP IF of the third 

generation DA, multiple linear inequality constraints can 

be set directly without being converted to a quadratic 

form of equal constraints. For linear inequality 

constraints defined by Eq.(15) with a set of variables 𝒙 =

(𝑥ଵ,𝑥ଶ,…,𝑥௡ ), user can set the coefficients 𝑎௝௜  and 

right-hand-side values 𝑏௝ directly. 

∑ 𝑎௝௜𝑥௜
௡
௜ୀଵ ≤ 𝑏௝   (𝑗 = 1, 2, ･･･ , 𝑘) (15) 

To demonstrate easier handling of problems with linear 

inequality constraints on the third generation DA, we 

explain the differences between the QUBO formulation 

and the formulation for BQP IF for a knapsack problem 

with one knapsack and 𝑛 items as an example. Let 𝑎௜ 

and 𝑐௜  denote the weight and the value of each item 𝑖 

respectively, and 𝑏 the weight capacity of the knapsack. 

Let us define variable 𝑥௜  for each item 𝑖 so that it has 

the value 1 when the item 𝑖  is in the knapsack, and 0 

otherwise. A knapsack problem, in which the sum of the 

values of the items in the knapsack is maximized while 

satisfying the constraint on the capacity such that the sum 

of the weights of items does not exceed the knapsack 

capacity, is formulated as the minimization of the 

following energy function.  

𝐸(𝒙, 𝒚) =  − ∑ 𝑐௜𝑥௜
௡
௜ୀଵ +   

                    𝛼ൣ൫𝑏 − ∑ 𝑚𝑦௠
௔೘ೌೣିଵ
௠ୀ଴ ൯ − ∑ 𝑎௜𝑥௜

௡
௜ୀଵ ൧

ଶ
+

                    𝛽൫∑ 𝑦௠
௔೘ೌೣିଵ
௠ୀ଴ − 1൯

ଶ
   (16) 

In Eq.(16), 𝑎௠௔௫   and 𝑦௠  are the maximum weight 

over all items and the binary auxiliary variable, 

respectively. Considering the room of the knapsack and 

the maximum weight over all items, you can formulate 

the knapsack problem using the value 𝑎௠௔௫ . 

The first term is the cost term that represents the value 

to be maximized. The second and the third terms are 

linear inequality constraints converted to equality penalty 

terms regarding the sum of items, which implies: 

∑ 𝑎௜𝑥௜
௡
௜ୀଵ = (𝑏 − 𝑚)  ≤ 𝑏  (17) 

By expanding Eq. (16), we now get the energy function 

to be minimized in a form of Eq. (2), which means we can 

handle a problem with linear inequality constraint as a 

QUBO problem. However, as mentioned above, the 

QUBO formulation of inequality constraints is complex, 

and the introduction of auxiliary variables has the 

disadvantage of increasing the scale of the problem. 

Furthermore, since practical problems often have 

multiple inequality constraints, the user needs to repeat 

the conversion discussed above for the number of 

inequality constraints. Moreover, the user needs to 

determine a proper weight for each constraints (a penalty 

coefficient for each penalty term converted from a 

constraint) when putting them together into the energy 

function, making it even harder to obtain a solution. 

To resolve this problem, the third generation DA has an 

interface for the user to directly specify linear inequality 

constraints in the form of Eq. (15), thereby eliminating 

the process of incorporating the inequality constraints to 

a QUBO problem. This makes things more convenient for 

the user, and greatly enhances the problem-solving 

performance. In the case of the knapsack problem 

described above, only the first term of Eq. (16) 

𝐸(𝒙) =  − ∑ 𝑐௜𝑥௜
௡
௜ୀଵ   (18) 

is set as a cost term, and there is no need to set a penalty 

term. When there are multiple inequality constraints, for 

example, a volume for each item and a volume capacity 

of the knapsack are given in addition to the problem 

discussed above, the user can input the inequality 
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constraints for the weight capacity and the volume 

capacity separately. By directly setting linear inequality 

constraints, the third generation DA can perform 

optimization with the constraint utilization search 

evaluating the penalty of inequality constraints. The 

weighting between inequality constraints is automatically 

adjusted in the SIL. In Section 3, we present the results of 

evaluating the performance of solving problems with 

inequality constraints.  

This Section 2 described the features of the third 

generation DA, its interfaces and functions related to 

constraints. Table 1 shows a comparison of the second 

and third generation DAs. 

3. Performance evaluation 

In this section, we compare the search performance of 

the second and third generation DAs with regard to one-

hot and inequality constraints, which are new features of 

the third generation DA. We also show the performance 

in solving large-scale problems that are not handled by 

the second generation DA. 

(1) One-hot constraints 

We evaluated the performance in problems with one-hot 

constraints by using the QAP described in Section 2.2(1). 

As a benchmark problem, we used Lipa70a (a facility 

location problem with 70 facilities and 70 locations) from 

the QAPLIB dataset [17], which is referenced in 

numerous papers. The scale of this problem is 4,900 

(=70×70) bits. 

The second generation DA solves this problem as a 

QUBO that integrates the cost term and the penalty term 

with a penalty coefficient α manually adjusted in advance. 

On the other hand, the third generation DA uses a 

separated cost and penalty terms interface. The cost term 

consists of the products of distances and flows between 

facilities as represented by Eq. (5), and is set separately 

from the penalty term related to the constraints for the 

facility allocations and the locations shown in Eq. (8). 

Furthermore, all variables are specified as a 2way1hot 

group. By setting input such way, we can expect that the 

automatically adjusted penalty coefficient 𝛼  and the 

constraint utilization search work to contribute to solve 

the problem quickly. We conducted 10-time trials of 

optimization with a different random seed, a parameter 

that affects stochastic transitions in the MCMC method, 

for each DA, and compared the each transition of the 

value of the energy function against the execution time.  

The evaluation results are shown in Fig. 5. The 

horizontal axis shows the execution time, and the vertical 

axis shows the solution energy. The median of the 10 

trials is shown as a solid line, and the region between the 

maximum and minimum energies of the 10 trials is shown 

as a shaded area to indicate the variation of the energy 

transition between trials. Even after 300 seconds of search, 

the second generation DA was not able to obtain solutions 

with an energy lower than 170,374. On the other hand, the 

 Problem Scale 
Full-Coupling  
Coefficient Precision  

Specific Function for Constraints 
Search Engine 
Implementation 

The Second 
Generation 

up to 4,096 bits 64-bit signed integer 
None Dedicated Processor 

up to 8,192 bits 16-bit signed integer 

The Third 
Generation 

up to 100,000 bits 64-bit signed integer 
･ Separated Cost and Penalty Terms 
･ 2way/1way 1hot Constraints 
･ Linear Inequality Constrains 

Software and 
Dedicated Processor 
Hybrid Architecture 

 

Table 1: Comparison of second and third generation DAs 
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third generation DA obtained the optimal solution with 

the energy of 169,755 within 11 seconds at most. We 

confirmed the significant performance improvement by 

the separated cost and penalty terms and the 2way1hot 

constraint group specification. 

(2) Linear inequality constraints 

The performance of the third generation DA for 

problems with inequality constraints was demonstrated 

by applying it to the quadratic knapsack problem (QKP) 

– a variant of the knapsack problem described in Section 

2.2(3) that uses quadratic terms for value calculations. It 

is defined as follows: 

𝐸(𝒙, 𝒚) =  − ∑ 𝑐௜𝑥௜ −  ∑ 𝑐௝௜𝑥௜𝑥௝ + ௡
௜ழ௝

௡
௜ୀଵ   

 𝛼ൣ൫𝑏 − ∑ 𝑚𝑦௠
௔೘ೌೣିଵ
௠ୀ଴ ൯ − ∑ 𝑎௜𝑥௜

௡
௜ୀଵ ൧

ଶ
+  

 𝛽൫∑ 𝑦௠
௔೘ೌೣିଵ
௠ୀ଴ − 1൯

ଶ
  (19) 

The definition of the variables here is the same as in Eq. 

(16). Compared with the knapsack problem shown in 

Eq.(16), another value is added to the cost term. This 

additional value accrues when variables 𝑥௜   and 𝑥௝  are 

both 1, i.e., when two items enter the knapsack at the 

same time. QKP is a problem that the value is determined 

based on the relationship between two items selected 

from the candidates under the constraints not to exceed 

the weight capacity of the knapsack. An example of 

possible QKP applications is the selection of the 

construction locations for wireless base stations or 

airports under the constraint of a limited budget. Here, we 

used a benchmark problem with a size of 𝑛= 300 items 

generated by the method shown in Billionnet et al. [18]. 

In the second generation DA, we added 50 bits of 

auxiliary variables in the formulation of Eq. (19), and 

solved the problem as a QUBO with 350 variables. On 

the other hand, for the third generation DA we formulated 

a binary quadratic problem with 300 variables and the 

cost term set up as follows: 

𝐶(𝒙) =  − ∑ 𝑐௜𝑥௜
௡
௜ − ∑ 𝑐௜௝𝑥௜𝑥௝

௡
௜ழ௝   (20) 

and we directly set the coefficients of the linear inequality 

(weight for each item) and the comparison value (weight 

capacity of the knapsack) separately from the cost terms. 

As before in Section 3(1), we performed 10 optimization 

trials with different random seed values for each DA.The 

evaluation results are shown in Fig. 6. The notation of the 

graph is the same as in Fig. 5. The second generation DA 

could only find a score of about -960,000 after 300 

seconds, while the third generation DA found the best 

known solution of -996,070 in one second. We therefore 

confirmed that there was a significant performance 

improvement in solving problems with inequality 

constraints.  

 

(3) Large-scale problems 

As shown in Section 2, the third generation DA can 

efficiently handle problems with a scale of 100,000 bits 

Fig. 5: Energy transition of the second and third generation 
DAs in a QAP (Lipa70a) 

Fig. 6:  Energy transition when solving QKP with the second 
and third generation DAs 
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and find good solutions by using a hybrid configuration 

of software and hardware. To evaluate the performance 

with large-scale problems, we applied the third generation 

DA to five large-scale problems from the QAPLIB: 

sko100e, esc128, tho150, tai150b, and tai256c. For each 

problem, the execution time was limited to 300 seconds. 

As in Section 3(1), the cost term and the penalty term of 

2way1hot constraint were set separately, 2way1hot group 

is specified, and 10 trials with different random seeds 

were conducted for each problem. 

For each problem, Table 2 shows the number of 

facilities/locations n, the best known solution, the number 

of times the third generation DA reached the best known 

solution in 10 trials (#BKS), the percentage gap between 

the average minimum energy reached in 10 trials and the 

best known solution, and the average time taken to reach 

the solution. For problems with 𝑛=100 and 𝑛=128, the 

best known solutions were reached in 108.6 and 8.0 

seconds on average respectively, and for problems with a 

larger number of 𝑛 = 150 and 𝑛 = 256, an energy level 

with a very small gap was reached after 300 seconds. 

4. Conclusion 

We have shown how the DA, which can perform fast 

MCMC-based search through the practical means of 

digital circuits, has evolved into a new generation by 

combining software that controls effective transitions in 

the large-scale solution space and search techniques that 

actively utilize constraints. This third generation DA has 

been available as a cloud service since February 2021. 

Fujitsu will continue to pursue research and development 

aimed at further advancing the DA technology to tackle a 

variety of social issues and support the ongoing digital 

transformation of its customers. 
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