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1. Introduction 
At Fujitsu, we aim to create a world where efficient decision-making can be achieved based on diverse 

data, even under uncertain conditions. To make efficient decisions in an era of rapid change, also known 
as VUCA (Volatility, Uncertainty, Complexity, Ambiguity), it is essential to not only use the data within 
one's own organization but also to integrate and analyze multiple data sources, including trends from 
surrounding organizations, regions, and other fields. Logical reasoning based on the causal relationships 
between data items is indispensable. 

In recent years, large language models (LLMs) have emerged, which are trained on vast amounts of 
various types of documents. These models can utilize a wide range of knowledge through natural 
language interfaces and are becoming useful tools for supporting decision-making. However, since the 
judgments made by LLMs are based on the general knowledge they encompass, they are not suitable 
for decision-making based on the latest data in specific specialized fields. For example, in a use case 
aiming to improve a company's profit margin, even if data such as employee satisfaction, number of 
stores, climate, and customer reviews—which are important factors for the company's sales—are 
provided to the LLM, effective support cannot be expected if the causal relationships between these 
factors are not clear. 

To address this issue, we propose the 'Causal Knowledge Graph.' This concept combines two 
technologies that Fujitsu has developed over many years: Knowledge Graph (KG) that visualizes the 
relationships between data items to support information exploration and reasoning, and causal analysis 
that estimates the causal relationships inherent in the data. The Causal Knowledge Graph integrates 
and stores the causal relationships contained in the data along with related knowledge. By using this 
graph, efficient decision-making based on data becomes possible. 

Furthermore, by accumulating Causal Knowledge Graphs from various fields, we can support deep 
analysis and decision-making across a wide range of domains. For example, in fields such as 
management, healthcare, sports, and manufacturing, it becomes possible to clarify the 
interrelationships and causal relationships among various related data, enabling more accurate analysis 
and predictions. This allows for customized data analysis and decision-making support tailored to the 
needs of customers in different fields.  

In this white paper, we will introduce the concept of the 'Causal Knowledge Graph,' which is 
indispensable for data-driven decision-making. Additionally, we will discuss the underlying 
technological trends, the technologies for constructing and utilizing the Causal Knowledge Graph, and 
its use cases. 

 Contents of each Chapter 
In Chapter 2, we will explain the technological trends of 'Causal Analysis' and 'Knowledge Graph (KG),' 

which are important technical elements of the Causal Knowledge Graph. Causal Analysis has primarily 
developed as a cutting-edge technology in data mining and statistical analysis, while KG has evolved as 
a form of knowledge representation in the internet age. We will discuss the fundamentals, research 
trends, and examples of the mutual utilization of these two technologies with the latest advancements, 
such as LLMs. 

In Chapter 3, we will explain Fujitsu's concept of the Causal Knowledge Graph, which aims to 
transform data-driven decision-making. This includes the basic concept, the definition of the Causal 
Knowledge Graph, and its use cases. Through this, we will elucidate why the Causal Knowledge Graph 
is necessary, its internal structure, and the value it provides. 

In Chapter 4, we will explain Fujitsu's suite of technologies for constructing and utilizing the Causal 
Knowledge Graph. Broadly, these technologies include: extracting known causal relationships from 
existing documents (Causal Extraction from documents), estimating unknown causal relationships from 
numerical data (Statistical Causal Discovery), estimating causal relationships from multiple numerical 
datasets (Integrated Causal Discovery), using known causal relationships as prior knowledge to estimate 
causal relationships (Causal Knowledge Transfer), integrating known and unknown causal relationships 
into a Causal Knowledge Graph (Causal Knowledge Creation), and utilizing the Causal Knowledge Graph 
(Root Cause Analysis, Causal Decision-making, and Causal Knowledge Graph Reasoning). 

In Chapter 5, we will introduce case studies where the suite of technologies presented in Chapter 4 
has been applied to three fields: 'ICT support,' 'human resources,' and 'healthcare and wellness.'  
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2. Technological Trends in Causal Analysis and 
Knowledge Graph 

Before delving into the explanation of the Causal Knowledge Graph that Fujitsu aims to achieve, this 
chapter will describe the technological trends of 'Causal Analysis' and 'Knowledge Graph (KG)' which 
are important technical elements of the Causal Knowledge Graph. Causal Analysis has primarily 
developed as a cutting-edge technology in data mining and statistical analysis, while KG has evolved as 
a form of knowledge representation in the internet age. In the following sections, we will explain the 
basic knowledge and technological trends in Causal Analysis and KG, as well as examples of their mutual 
utilization with the latest advancements, such as large language models (LLMs). 

2.1. Trends in Causal Analysis 

 Basics of Causal Analysis 
Causal Analysis is a method used to clarify the relationship between cause and effect, aiming to 

understand and predict how specific causes influence outcomes. By elucidating the causal relationships 
of 'things' and 'events,' it is possible to unravel complex structures and mechanisms. As a result, causal 
analysis is applied in a wide range of fields, including science, medicine, economics, and social sciences, 
and is also used in policy-making and business strategy formulation. 

When analyzing known causal relationships, the analyst predefines the causal relationships, setting 
the 'direction of causality' (which is the cause, and which is the effect) and defining the causal 
relationships to ensure that 'hidden common factors' do not appear. They then verify the presence and 
extent of the actual effects. However, to investigate unknown causal relationships, such prior settings 
by the analyst are not possible. Therefore, it is necessary to use experimental approaches or statistical 
approaches. 

A representative example of a statistical approach is 'statistical causal discovery.' This technique uses 
statistical processing to estimate causal relationships from data for events where the causal 
relationships are not obvious. This allows analysts to perform causal analysis even on things and events 
where the causal relationships are not self-evident. 

The most important challenge in causal analysis is to scrutinize the 'correct causal relationships.' Even 
when using statistical causal discovery as mentioned above, there is no guarantee that the correct causal 
relationships can always be estimated, and traditionally, manual verification by experts was necessary. 
Recently, with the advent of LLMs, there have been attempts to replace the expert verification process 
with LLMs. Below, we will explain the technological trends of the representative method, statistical 
causal discovery, and examples of using LLMs in causal analysis. 

 Technological Trends in Statistical Causal Discovery 
Statistical causal discovery is a method that uses statistical approaches to estimate the cause-and-

effect relationships from observed numerical data. This method goes beyond mere correlations to 
clarify how specific variables influence other variables. By doing so, it enables the scientific verification 
of the impact of strategies and the effects of interventions in areas such as business strategy formulation 
and treatment planning. 

Statistical causal discovery outputs a causal graph where each item in the data (e.g., diet, exercise, 
health) is represented as a node, and the estimated cause-and-effect relationships are represented as 
edges connecting the nodes (see Figure 1). The causal graph is a directed graph, where the node at the 
base of the arrow represents the cause, and the node at the tip of the arrow represents the effect. 
Additionally, the edges are annotated with 'causal effects,' which indicate the degree of influence the 
cause has on the effect. Typically, causal effects are represented as numerical values with positive or 
negative signs. A positive value means that as the cause increases, the effect also increases, while a 
negative value means that as the cause increases, the effect decreases. 
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Representative methods of statistical causal 
discovery include the Structural Equation 
Model (SEM) introduced by Pearl [1] and the 
Potential Outcomes Framework introduced by 
Rubin [2]. The Structural Equation Model allows 
for the visual and precise formulation of causal 
relationships by describing the causal effects 
from causes to effects as equations, thereby 
capturing the flow of causality. 

Under various assumptions, the causal 
discovery algorithms for observational data 
that follow the Structural Equation Model can 
be broadly divided into the following three 
types. 

⚫ Constraint-based methods ：  These 
methods replace the problem of causal 
relationships with the problem of 
conditional independence and estimate 
the Markov equivalence class (a class that 
shares the same conditional independence 
structure). The PC algorithm [3] is well-
known for this approach. 

⚫ Score-based methods：  These methods 
optimize a score defined for the causal 
graph to estimate the causal graph 
underlying the observational data. The 
GES algorithm [4] is an example of this 
approach. 

⚫ Function-based methods ： These 
methods directly estimate the equations 
that describe the Structural Equation Model. Models that are linear, additive, and have non-Gaussian 
error variables are known as LiNGAM, with DirectLiNGAM [5] being well-known. In recent years, 
extensions to various aspects, such as non-linear models [6], have also been recognized. 

 Practical Examples and Service Cases of Causal Analysis 
Currently, many companies offer causal analysis services using statistical causal discovery, but the 

causal discovery techniques supported by each company vary. For example, some companies apply 
techniques that are also applicable to non-linear models, while others adopt a constraint-based 
approach for causal discovery algorithms. Some companies perform causal discovery based on Rubin's 
Potential Outcomes Framework rather than Pearl's Structural Equation Model. There are also companies 
that place more emphasis on estimating intervention effects and optimal intervention values rather than 
on causal discovery itself. 

In addition, causal discovery support products are also being offered. For example, user-friendly 
interfaces are provided that allow beginners to select and execute various discovery algorithms on their 
own. Furthermore, features that enable users to specify the presence or absence of specific edges, 
thereby leveraging their specialized knowledge, are also available. In this way, there are multiple players 
offering statistical causal analysis as a service. However, the basic functionality generally involves 
estimating causal structures from individual observational data held by users or providing consulting 
services. 

 Examples of Using Large Language Models (LLMs) in Causal Analysis 
In general, causal analysis requires interpreting the estimated causal structures between data items 

based on expert knowledge. Additionally, when estimating causal structures, any causal relationships 

Figure 1: Input and Output of Statistical 
Causal Discovery 
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that have been confirmed as expert knowledge need to be incorporated as prior knowledge. 
Traditionally, such tasks were labor-intensive and performed by experts. However, with the rapid 
development of LLMs in recent years, several studies have emerged that aim to support these tasks 
using LLMs. 

For example, by repeatedly querying the LLM about the validity of causal relationships during 
statistical causal discovery, it has been reported that it is possible to estimate causal structures that do 
not contradict expert knowledge [7]. However, there are also reports that current LLMs perform 
significantly poorly in logically distinguishing between correlation and causation, which is one of the 
most important challenges in statistical causal discovery [8]. 

As for services provided by companies, at present, the use of LLMs is limited to supporting the inputs 
and outputs of statistical causal discovery. There are no confirmed cases where LLMs have significantly 
advanced causal discovery algorithms. For example, using LLMs as an interface to answer questions like 
'What is the cause of the churn rate?' based on causal graphs, having LLMs suggest prior knowledge for 
statistical causal discovery or candidates for unobserved common causes, or having LLMs explain the 
results of causal analysis—these are mostly aimed at improving the usability of causal analysis rather 
than advancing the causal discovery itself. There are still many challenges to be addressed in 
significantly advancing statistical causal discovery through the combination with LLMs. 

2.2. Trends in Knowledge Graph 

 Basics of Knowledge Graph 
Knowledge Graph (KG) have been used as a term since around 1972 and have been continuously 

researched and developed as a form of knowledge representation since the 1980s. There are various 
definitions, but comprehensively, they can be described as graph-structured data aimed at 
accumulating and transmitting real-world knowledge. In KG, the nodes represent entities of interest 
(such as people, places, objects, concepts, etc.), and the edges represent the relationships between 
these entities (for example, 'X is part of Y,' 'X owns Z,' etc., see Figure 2).  

The main advantages of representing information or data as KG are as follows. 

⚫ Integration, Sharing, and Updating of Knowledge: By representing information from multiple data 
sources in a unified graph structure, it becomes easier to integrate and share data that differ in 
format and structure while maintaining compatibility. Additionally, the addition and updating of new 
data can be handled flexibly. 

⚫ Representation of Complex Relationships: It can easily represent complex relationships between 
entities, including many-to-many relationships, cyclic relationships, and hierarchical relationships, 
which are difficult to express in relational databases (RDB). 

⚫ Efficient and Flexible Search: It can 
efficiently execute complex queries 
that span multiple tables and include 
relationships concerning entities, which 
is challenging in relational databases 
(RDB). 

⚫ Enhanced Reasoning and Knowledge 
Discovery: It can apply both deductive 
reasoning, which derives new 
knowledge from existing knowledge 
using relationships, and inductive 
reasoning, which finds regularities in the 
graph structure to extract new 
knowledge. This enables knowledge 
discovery and the reasoning of 
unknown information. 

Figure 2: simple example of Knowledge 
Graph 
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In the following sections, we will explain the research trends in KG and examples of using LLMs in 
causal analysis. 

 Technological Trends in Knowledge Graph 
The field of KG is expansive, and the research areas can be largely divided into three categories: 

knowledge representation, knowledge acquisition, and reasoning. 

Knowledge representation is a technology that represents information and concepts on a computer 
so that the computer can understand and reason with human knowledge. Key knowledge 
representation formats used in KG include RDF (Resource Description Framework) [9] and property 
graphs. RDF is standardized by the W3C and represents data in triples of 'subject-predicate-object.' For 
example, 'X is part of Y' is represented as '<X>-<is_part_of>-<Y>.' It also identifies resources with URIs 
and uses standard vocabularies such as ontologies to define the meaning of data, enhancing 
interoperability and reusability. Property graphs are graph data with nodes and edges assigned multiple 
key-value pairs called properties. Properties can be added flexibly, and they have high compatibility 
with graph databases. Recently, as an extension of RDF, RDF-star has been proposed, which, although 
not yet standardized by the W3C, allows for the definition of meta-information for triples and has the 
expressive power of hypergraphs. 

Knowledge acquisition is a technology that extracts entities and their relationships from texts and 
databases to construct and expand KG. It is researched from three perspectives: relation extraction, 
entity discovery and entity linking, and KG completion and link prediction. Relation extraction is a 
technology that extracts relationships concerning entities from texts and is used for the automatic 
construction of KG. Entity discovery and entity linking are technologies that extract entities from texts 
and link them to the KG, thereby resolving entity ambiguities. 

Reasoning in KG is a reasoning technology that derives new knowledge or infers unknown information 
from the KG. Deductive reasoning is a technique that derives new knowledge deductively from existing 
knowledge, such as 'Socrates is a human' and 'All humans will eventually die,' leading to the new 
knowledge that 'Socrates will eventually die.' Inductive reasoning is a technique that applies machine 
learning to discover patterns and regularities on the KG to generate new knowledge. Recently, graph 
embedding techniques that use deep learning to embed entities and relationships into vector spaces 
and infer based on their similarities have been researched and applied. Additionally, technologies that 
explain these reasoning results in a human-understandable form using relationships between entities 
are also being researched. 

In recent years, with the rapid development of LLMs, numerous studies and applications combining 
KGs and LLMs have been published. 

 Practical Examples and Service Cases of Knowledge Graph 
Practical examples of using KG include search services, question-answering systems, and 

recommendation systems. In search services, they are used to present information about entities 
included in search queries. In question-answering systems, tracing the relationships between entities on 
the KG helps provide more appropriate answers. In recommendation systems, KG of product 
information are used to suggest related products based on information such as the genres of products 
the user has previously purchased. 

In addition, several KGs containing general information or information specific to certain fields have 
already been made public. For general information, there are DBpedia [10], which is based on data 
extracted from Wikipedia; YAGO [11], which integrates Wikipedia and WordNet; and the Google 
Knowledge Graph [12], which was built including DBpedia and FreeBase, the latter being based on 
human contributions. Examples of publicly available KGs in specific fields include DrugBank [13], which 
compiles information about drugs in the biomedical field; ROBOKOP [14] and Bio2RDF [15], which 
integrate DrugBank with PubMed article information and other data. Other examples include the 
Financial Industry Business Ontology [16], which provides a standard common language for the financial 
industry, and GOV.UK [17], which provides government-related information from the UK. Many of these 
KGs available on the internet are described in RDF, which ensures resource identifiability and high 
interoperability. 
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Databases for storing KGs can be broadly categorized into two types corresponding to knowledge 
representation: RDF stores and graph databases. Representative RDF stores include Virtuoso [18] and 
GraphDB [19]. Representative graph databases include Neo4j [20] and Amazon Neptune [21]. The query 
languages they support differ: RDF stores are compatible with SPARQL, which allows for searching 
triples, while Neo4j and similar databases support Cypher, which is designed for graph databases. 

 Examples of Using Large Language Models (LLMs) in Knowledge Graph (KG) 
As a problem with LLMs such as GPT-4, it has been pointed out that while LLMs excel at answering 

simple questions, their accuracy significantly decreases when answering complex questions that require 
multi-step reasoning with related information. Additionally, it is difficult to investigate the process and 
basis by which the answers were derived, making it challenging to determine whether the answers 
obtained from LLMs are correct. 

On the other hand, KGs are inherently difficult to construct, and existing methods particularly struggle 
with generating new facts and representing unknown knowledge. Therefore, research and development 
are progressing to integrate KGs and LLMs, leveraging their respective strengths and compensating for 
their weaknesses.  

According to a recent survey paper on the integration of LLM and KG [22], the forms of integration 
can be classified into the following three categories (see Figure 3). 

 

Figure 3: Integration patterns of LLM and KG 
Source: Created based on Fig. 6 from [22] 

(a) KG-enhanced LLMs: Improving the performance and interpretability of LLM using KGs 
⚫ Applying KGs during pre-training, using KGs for LLM inference, and utilizing KGs to understand 

and interpret the knowledge learned by LLMs and their reasoning processes. 

(b) LLM-augmented KGs: Enhancing KG tasks using by LLMs 
⚫ KG embedding using LLMs, KG completion using LLMs, KG generation using LLMs, text generation 

from KGs using LLMs, and KG-based question answering using LLMs 
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(c) Synergized LLMs + KGs: Synergistic effects of LLMs and KGs 
⚫ Integrating LLMs and KGs into a unified framework to mutually enhance each other 

As mentioned above, in the field of basic research, the development of technologies that integrate 
KGs and LLMs to complement each other is attracting attention. On the other hand, although still few, 
there are some examples in the business field where both are integrated and utilized. For example, the 
application of LLMs to interactive AI assistants for enterprise search is a representative case. By 
leveraging KGs, it is possible to derive appropriate answers even for questions that require generating 
responses from multiple pieces of evidence [23] [24]. 

Another application example is the development of technologies that use KGs to verify the answers 
output by LLMs. For instance, KGs created from open clinical data are being used to improve the 
accuracy of responses from medical LLMs [25]. These application examples correspond to 'a. KG-
enhanced LLMs' in Figure 3, where KGs are utilized to address the challenges of LLMs. 

Similarly, there are examples corresponding to 'b. LLM-augmented KGs' in Figure 3, where LLMs are 
utilized to address the challenges of KGs. Recently, services have been offered that use generative AI, 
including LLMs, to quickly create KGs from unstructured data such as PDFs, web pages, and documents 
[26]. In addition to these examples, the integration and utilization of LLMs and KGs are expected to be 
applied in various areas, including risk assessment of financial data, summarization of legal documents, 
analysis of traffic patterns and social media, recommendation systems for products and content in e-
commerce and retail, and the provision of personalized education and healthcare in the education and 
healthcare sectors [27]. 
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3. Causal Knowledge Graph proposed by Fujitsu 
In this chapter, we will explain the concept of Fujitsu's Causal Knowledge Graph, which aims to 

transform data-driven decision-making. This includes the basic concept, the contents of the Causal 
Knowledge Graph, and its use cases (provided value). 

3.1. Basic Concept of Causal Knowledge Graph: Why Causal 
Knowledge Graph is Necessary? 

In corporate management, achieving data-driven decision-making requires more than just the 
'correlations' extracted through conventional data mining and statistical analysis. Correlations often 
involve spurious correlations or latent common factors, making it impossible to make logical decisions 
based on them. For example, if a correlation is found between the number of Nobel Laureates and 
chocolate consumption (see Figure 4), it would be meaningless to implement a policy of distributing 
free chocolate to employees with the aim of producing Nobel Laureates from within the company based 
on that result. 

 

Figure 4: Scatter Plot of Chocolate Consumption and Nobel Laureates  
Source: Created based on Fig.1 in [28] 

Such measures are based on superficial correlations that ignore causal relationships, making it unlikely 
to achieve actual results. Therefore, for companies to truly make data-driven decisions, it is important 
to accurately capture causal relationships beyond mere correlations. By understanding the correct 
causal relationships, it becomes possible to make logical and effective decisions based on data, leading 
to business success. 
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Here, there are significant challenges in capturing causal relationships. To establish accurate causal 
relationships, extensive verification work by experts is usually required, which involves considerable cost 
and time. There are two main reasons for this. First, much of the known causal relationships are 
described in natural language (referred to as unstructured data), making them not easily processable 
by computers. Experts need to structure the information and concepts so that they can be understood 
by computers. Second, in many cases, clear causal relationships are not known, necessitating additional 
analysis and verification by experts to discover these relationships. These challenges make it difficult to 
accurately capture the causal relationships that support data-driven decision-making. 

In response to the two reasons mentioned above, as we have seen in Chapter 2, the following two 
technologies have been developed. For known causal relationships, there is a technology that 
automatically extracts causal relationships from documents using LLMs. For unknown causal 
relationships, there is a technology that automatically estimates causal relationships between data items 
using statistical causal discovery. 

However, the current two technologies each have the following limitations. First (Limitation 1), in the 
extraction of causal relationships from documents, all extracted causal relationships are qualitative. 
Therefore, it is not possible to predict the probability or impact of another event (effect) occurring when 
a certain event (cause) happens. Next (Limitation 2), in statistical causal discovery from data, since all 
causal relationships are estimated from the data, biases within the data or a lack of data can lead to the 
derivation of causal relationships where the true cause and effect are reversed. Furthermore (Limitation 
3), current statistical causal discovery can only derive causal relationships within the scope of the given 
data. As a result, it cannot combine multiple datasets with different observation conditions (e.g., 
different observed subjects, different observation items, different measurement conditions at the time 
of observation) to derive causal relationships. Overcoming these limitations requires more advanced 
technologies and approaches. 

To overcome these limitations and achieve a transformation in data-driven decision-making, Fujitsu is 
working on the following technological developments. 

⚫ Technology to overcome Limitation 1: By integrating causal relationships extracted from 
documents with statistical causal relationships estimated from data, it becomes possible to measure 
causal effects and impact even for causal relationships that were previously understood only 
qualitatively. For example, in employee engagement, the causal relationships between engagement 
perspectives and initiatives can be understood from organizational behavior textbooks. By 
combining this with the causal effects estimated from the actual engagement survey results of the 
company, it becomes possible to formulate initiatives that include quantitative expected effects. 

⚫ Technology to overcome Limitation 2: Accumulate known causal relationships extracted from 
documents and set these known causal relationships in advance when performing statistical causal 
discovery on numerical data. This approach allows for the estimation of unknown causal 
relationships while resolving contradictions between the causal relationships derived from 
statistical causal discovery and the known causal relationships. 

⚫ Technology to overcome Limitation 3: Develop a technology that automatically determines the 
data distribution common to different domains, enabling the combination of numerical data with 
different observation conditions and granularity for statistical causal discovery. This will allow for 
causal discovery that learns and continues to grow from large datasets. 

To achieve the above, we will adopt the 'Knowledge Graph (KG)' as the data structure. KG is a form 
of knowledge representation, and it is particularly suitable for naturally expressing causal relationships, 
making it ideal for our purpose. Additionally, one of the application areas of KG is data integration, which 
offers the advantage of easily integrating causal relationships extracted from multiple data sources such 
as documents and numerical data. 

In summary, the 'Causal Knowledge Graph' that Fujitsu aims to achieve, equipped with the 
technologies and data structures, is designed to transform data-driven decision-making in corporate 
management. 
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3.2. Definition of Causal Knowledge Graph: What are the 
Contents of Causal Knowledge Graphs? 

Figure 5 shows an image of the 'Causal Knowledge Graph' that Fujitsu aims to achieve.  

 

Figure 5: Fujitsu's Causal Knowledge Graph (Conceptual Diagram) 

As shown in Figure 5(a), since the KG is the basic form, the basic unit is a triple consisting of two nodes 
(ellipses) connected by a single edge (arrow). The nodes represent events, with the event at the base 
of the arrow being the cause and the event at the tip of the arrow being the effect. Therefore, the solid 
line in Figure 5(a) represents 'Event X (cause) causes Event Y (effect) (there is a causal relationship),' 
which is the basic form. 

The dotted lines in Figure 5 represent optional additional information, and Figure 5(a) shows an 
example where 'causal effect' is added. Since causal effects are usually represented numerically, they 
are shown as string types (squares) rather than entity types (ellipses). 

Figure 5(b) is an example where meta-information is added. You can add a name (graph name) to the 
causal relationship or include information about the data source or the program used to create the 
causal relationship. Additionally, if it is numerical data, you can include conditions at the time of 
observation or statistical values such as mean and variance. 

Figure 5(c) is an example where several causal relationships are overlaid. Here, the meta-information 
indicates that 'Graph1 was created from Document1 using a causal extraction program,' and it shows 

that two causal relationships were extracted: 'Event A (cause) → Event B (effect)' and 'Event B (cause) 

→ Event C (effect).' Similarly, for Graph2, it indicates that 'Graph2 was created from Data2 using a 

statistical causal discovery program,' and it shows that the causal relationships 'Event B (cause) → Event 

C (effect),' 'Event C (cause) →  Event D (effect),' and 'Event C (cause) →  Event E (effect)' were 
estimated with causal effects. 
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Here, 'Event B (cause) → Event C (effect)' is extracted or estimated from both Document1 and Data2. 
By overlaying this, it is possible to integrate causal relationships extracted from multiple data sources. 

Notably, the 'Event B (cause) → Event C (effect)' extracted from Document1 serves to resolve the 
'contradictions in statistical causal discovery,' which is Limitation 2 mentioned in the previous section. 

Meanwhile, the 'Event B (cause) →  Event C (effect)' with causal effects estimated from Data2 
corresponds to the 'integration of causal relationships extracted from documents and statistical causal 
relationships estimated from data,' which is Limitation 1 mentioned in the previous section. 

Figure 5(d) is an example where additional information other than causal effects is attached to the 
causal relationships themselves as an option. This allows for the description of mediators or side effects 
that occur when a certain causal relationship takes place. 

 

3.3. Use Cases: What Value provided by the Causal 
Knowledge Graph? 

In this section, we will explain the value provided by the Causal Knowledge Graph through two future 
scenarios. 

 Future Scenario 1: The Case of Ms. Tanaka in the Human Resources Department 
Ms. Tanaka in the human resources department is supporting action-taking aimed at improving 

workplace engagement. She provides guidance on how to interpret the results of the Engagement 
Survey (ES) and offers advice on initiatives to various department in her company, but she is also 
concerned about whether she is proposing initiatives that are suitable for each department. Today, she 
received a consultation from Mr. Sato, the division manager, who said, 'I’m told to increase 'motivation' 
and 'fulfillment' to boost engagement, but I don’t really know what to do in practice.’ 

So, Ms. Tanaka decided to try Fujitsu's Causal Knowledge Graph. The Causal Knowledge Graph has 
pre-analyzed organizational management textbooks and stored causal relationships such as 'supporting 
skill development' and 'assigning to growth areas' increase 'career opportunities,' and 'clarification of 
the vision' and 'assigning to growth areas' enhance 'the company's future' (upper part of Figure 6). In 
addition to this, Ms. Tanaka had the engagement survey results of Mr. Sato's department analyzed. 
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Figure 6: Causal Knowledge Graph generated  
from Management Textbooks and Engagement Surveys 

With Fujitsu's Causal Knowledge Graph, it is possible to estimate the causal relationships between 
each item in the engagement survey. It was found that 'to increase "motivation," "willingness to 
contribute" and "career opportunities" are the causes,' and 'to increase "fulfillment," "the company's 
future" is the cause,' among other things (lower part of Figure 6). Here, 'career opportunities' and 'the 
company's future' become key, and by combining the known causal relationships with the estimated 
causal relationships, it was determined that three initiatives—support of skill development, assigning to 
growth areas, and clarification of the vision—are effective in increasing "motivation" and "fulfillment."  

So, Ms. Tanaka advised Mr. Sato on two initiatives: 'assigning to growth areas' and 'clarification of the 
vision.' Additionally, when she analyzed the engagement survey results of other departments, she found 
that in every department, 'career opportunities' were the cause of increasing 'motivation.' Therefore, 
she decided to propose to the HR director the enhancement of e-learning education as an initiative to 
support skill development. 

The HR director asked, 'Why is support of skill development important?' and 'What is its effect?' Ms. 
Tanaka, while showing the Causal Knowledge Graph, was able to explain that 'it is an important initiative 
to increase motivation' and that 'by increasing career opportunities, motivation can be improved by 5 
points.' 

 Future Scenario 2: The Case of Mr. Suzuki in Sales Department 
Mr. Suzuki in sales department is busy working as a manager every day. Recently, inquiries about the 

products he handles have increased, and the number of business negotiations has doubled compared 
to before. However, since the products are in a relatively new field, the win rate of the negotiations is 
not very high. The department head has instructed him to 'analyze the factors behind the wins and 
losses in the negotiations.' Meanwhile, the results of the Engagement Survey in December have come 
back, and the HR department is urging him to 'analyze the Engagement Survey results and come up 
with initiatives for each team.' Honestly, Mr. Suzuki feels that 'I am too busy with daily tasks to have time 
for analysis. 

One day, Mr. Suzuki heard the phrase 'Enhancing employee engagement is the key to business 
success' at a lecture. Although he was skeptical, thinking 'Really?', he decided to use Fujitsu's Causal 
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Knowledge Graph to simultaneously analyze the engagement survey results and business negotiation 
results from his department (right side of Figure 7). 

 

Figure 7: Causal Knowledge Graph generated from three data sources. 

As a result, it became clear that 'teamwork' and 'motivation' influence the 'wins' and 'losses' in business 
negotiations, and that 'to improve "teamwork" and "motivation," it is necessary to increase "willingness 
to contribute" and "career opportunity."' Indeed, it seems there is some truth to the idea that 'enhancing 
employee engagement is the key to business success.' 

Furthermore, when Mr. Suzuki added and analyzed the system quality data that manages the issues 
and risks of the project, he found that 'a decrease in "willingness to contribute" is causing "frequent 
troubles"' (left side of Figure 7). 

Here, using the causal decision-making function of Fujitsu's Causal Knowledge Graph (which will be 
discussed later in Chapter 4), Mr. Suzuki analyzed the factors that could simultaneously increase the 
number of 'wins of negotiation' and reduce 'frequent troubles.' He found that the most effective 
initiative was 'improving willingness to contribute.' 

Mr. Suzuki shared these analysis results with the department head and decided to make 'improving 
willingness to contribute' the top priority for his team. He promptly went to consult with Ms. Tanaka in 
the HR department about initiatives to increase 'willingness to contribute. 
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4. Fujitsu's Technologies related Causal Knowledge 
Graph 

In this chapter, we will explain Fujitsu's suite of technologies for constructing and utilizing the Causal 
Knowledge Graph. Broadly, these technologies include: extracting known causal relationships from 
existing documents (Causal Extraction from document), estimating unknown causal relationships from 
numerical data (Statistical Causal Discovery), integrating causal relationships estimated from multiple 
numerical datasets (Integrated Causal Discovery), using known causal relationships as prior knowledge 
to estimate causal relationships (Causal Knowledge Transfer), integrating known and unknown causal 
relationships into a Causal Knowledge Graph (Causal Knowledge Creation), and utilizing the Causal 
Knowledge Graph (Root Cause Analysis, Causal Decision-making, and Causal Knowledge Graph 
Reasoning). It should be noted that the Causal Knowledge Graph-related technologies introduced here 
are currently in the conceptual stage, with only some basic functions implemented at this time. 

4.1. Positioning of each Technology 
Figure 8 shows the related technologies and overall structure of the Causal Knowledge Graph. First, 

known causal relationships are extracted from various documents and stored in a graph database. This 
forms part of the Causal Knowledge Graph and is used as prior knowledge for statistical causal discovery 
(overcoming Limitation 2). Next, for individual numerical data, unknown causal relationships are 
estimated using statistical causal discovery and similarly stored in the graph database. For multiple 
numerical datasets, integrated causal discovery is used to estimate causal relationships by combining 
their respective preconditions and statistical values such as mean and variance (overcoming Limitation 
3), and these are stored in the graph database. Finally, by entity-izing the nodes as 'events' for both the 
causal relationships extracted from documents and those estimated from numerical data, the Causal 
Knowledge Graph is constructed. Currently, events that appear in both documents and numerical data 
are represented as the same event, integrating them into the Causal Knowledge Graph (overcoming 
Limitation 1). The constructed Causal Knowledge Graph is used not only for the utilization technologies 
described later but also as known causal relationships, serving as prior knowledge for statistical causal 
discovery and integrated causal discovery (overcoming Limitation 2). 
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Figure 8: System Structure of Causal Knowledge Graph-Related Technologies 

Next, we discuss the utilization technologies of the Causal Knowledge Graph. There are a wide range 
of applications, including Root Cause Analysis (RCA), which investigates the fundamental causes by 
tracing the chain of causality backward; Causal Decision-making, which considers side effects and 
adverse impacts of the occurrence of certain events; and Causal Knowledge Graph Reasoning, which 
derives new causal relationships from multiple existing causal relationships. Additionally, by similarly 
converting customer data into a Causal Knowledge Graph, it is possible to develop applications that 
reflect the customer's data.  

 

Table 1 provides an overview of each technology. 
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Table 1: Overview of Causal Knowledge Graph-Related Technologies 

 Technology Overview Input/Output 

C
onstruction of C

ausal K
no

w
led

g
e G

rap
h 

Causal Extraction from 
document 

This technology enables the automatic extraction 
of causal relationships from documents and the 
creation of causal knowledge graphs by 
automatically converting processing flows and 
prompts to generate KGs based on document 
structure types. 

Input: Document Data  

Output: Causal 
Knowledge Graph 

Statistical Causal 
Discovery from Data 

There is a high demand for understanding causal 
relationships that apply only to data under specific 
conditions, rather than general causal relationships 
that apply to the entire dataset. Therefore, this 
technology efficiently explores conditions under 
which unknown causal relationships emerge by 
rapidly enumerating all conditions to cover all 
variations of causal relationships. 

Input: Multivariate 
Numerical Data  

Output: Causal Graph 

Integrated Causal 
Discovery 

(overcoming Limitation 3) 

By linking and analyzing data with different 
granularities and items of measurement at the time 
of observation, an integrated causal graph is 
constructed. This technology enables causal 
inference on large datasets. 

Input: Multivariate 
Numerical Data  

Output: Causal Graph 

Causal Knowledge 
Transfer 

(overcoming Limitation 2) 

By automatically identifying causal relationships 
stored in the existing causal knowledge graph that 
can be utilized as prior knowledge for the given 
numerical data, a more valid causal graph is 
constructed. 

Input: Multivariate 
Numerical Data  

Output: Causal Graph 

Causal Knowledge 
Creation 

(overcoming Limitation 1) 

This technology constructs an integrated causal 
knowledge graph by relating entities that appear in 
causal relationships extracted from documents and 
statistical causal relationships estimated from 
numerical data. The constructed causal knowledge 
graph complements newly input document data and 
numerical data to enhance root cause analysis and 
causal decision-making and is also used to infer new 
causal relationships in the KG. 

Input: Causal 
Relationships Extracted 
from documents and 
Causal Relationships 
Estimated from 
Numerical Data  

Output: Causal 
Knowledge Graph 

U
tilization of C

ausal K
now

led
g

e G
rap

hs 

Root Cause Analysis 

Using the causal knowledge graph, logically 
explain the basis of measures. It is possible to 
generate high-precision answers even for complex 
events that would fail in RAG searches. 

Input: Causal Knowledge 
Graph  

Output: Root Cause 
(Event Entity) 

Causal Decision-Making 

This technology recommends the most effective 
measures (events) to achieve goals based on all 
possible causal relationships discovered from data. 
The measures recommended by this technology are 
optimized to achieve the goals at the lowest cost 
while minimizing the impact on other items. 

Input: Causal Knowledge 
Graph, Attributes to be 
Changed, and Their 
Target Values  

Output: Most Effective 
Measures (Event Entity) 

Causal Knowledge 
Graph Reasoning 

(Question answering 
using LLM) 

This technology uses LLMs to provide answers 
reflecting the causal relationships in the causal 
knowledge graph to user questions. Dividing the 
causal knowledge graph into subgraphs and making 
them the search targets of RAG, improves answer 
accuracy. 

Input: Causal Knowledge 
Graph, Question Text  

Output: Answer Text 
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4.2. Construction Technologies of Causal Knowledge Graph 

 Causal Extraction from Documents 
By extracting triples (two words/events/information and their relationship) from documents and 

creating a KG, it is possible to generate high-precision answers to queries related to the documents in 
a short time. For example, in the case of complex queries that require referencing multiple documents, 
the usual Retrieval Augmented Generation (RAG) in LLMs struggles to correctly reference multiple 
documents, leading to a decrease in answer accuracy. However, by using a KG that reflects the content 
of multiple documents, it is possible to prevent the decrease in answer accuracy. Fujitsu refers to this as 
'KG-enhanced RAG.' 

While KGs are useful, constructing them manually requires experts to invest a significant amount of 
time and effort, which has been a challenge. Therefore, automatic generation technologies have been 
widely explored. One approach to creating a general-purpose KG involves applying prompt engineering 
techniques (such as in-context learning) to LLMs (like GPT-4) to comprehensively extract nouns from 
documents and their relationships. Although, general-purpose KGs can be applied to tasks like question-
answering, they often generate a large number of triples unrelated to causality or separate causal 
relationships due to paraphrasing of events. As a result, extensive extraction and transformation work 
by experts is still required. Additionally, if one wants to generate a KG tailored to a specific purpose, an 
approach could involve training a language model (like BERT) using a dataset with similar characteristics 
to the desired KG. However, preparing such datasets generally requires a significant amount of effort. 
As described above, traditional methods still require expert work, which has prevented the rapid 
decision-making needed in real business scenarios. 

Therefore, we have developed the Causal Knowledge Graph extraction technology that automatically 
extracts causal relationships from documents without the need for training data. This technology 
leverages LLMs. While LLMs excel at understanding grammatical structures such as word extraction, it 
was necessary to appropriately guide the focus of the LLM to extract causal relationships between 
events from the entire document. As shown in Figure 9, we pre-defined the structure type of the Causal 
Knowledge Graph as KG schema and devised a framework to analyze input documents according to 
this schema, enabling the output of KGs that indicate causal relationships. In this framework, document 
analysis using LLMs is repeatedly performed according to the processing flow, gradually constructing 
the KG. This is achieved through a flow conversion technology that automatically converts the causal 
knowledge graph schema into a processing flow and a prompt conversion technology that 
automatically converts it into specific LLM instruction prompts. 
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Figure 9: Overview of Causality Extraction Techniques from Documents 

 Statistical Causal Discovery from Numerical Data 
Here, we introduce several technologies developed by Fujitsu to enhance the practicality of statistical 

causal analysis. 

There is a high demand for understanding causal relationships that apply not to the entire dataset but 
only to data under specific conditions. In the medical field, knowing the drug reactions specific to 
patients with certain characteristics can accelerate insights and facilitate the repurposing of existing 
drugs. In the retail sector, understanding the differences in promotional effects among individuals can 
help in devising detailed sales strategies. 

However, such causal relationships can only be known by collecting data under specific conditions, 
which creates a dilemma as these conditions cannot be known in advance. Therefore, we have 
developed a technology that rapidly enumerates all conditions to cover all variations of causal 
relationships and efficiently explores the conditions under which unknown causal relationships appear. 
We applied this technology to gene expression data in colorectal cancer and healthy colon tissues and 
successfully identified genes that are considered important for the classification of colorectal cancer 
automatically. Another challenge is that when the number of variables reaches thousands or tens of 
thousands, the enumeration and causal discovery require enormous computational power. By 
implementing this technology on Fugaku, we were able to complete calculations that previously would 
have taken 4,000 years in less than a day. Applying this technology to approximately 20,000 human 
genes, we successfully derived new insights related to drug resistance in lung cancer. 
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In addition, to improve practicality from different perspectives, we are also developing causal 
discovery technologies that capture more complex causal relationships. Traditional technologies 
primarily assumed that the cause and effect have simple linear relationships. However, in complex real-
world systems and phenomena, there can be intricate causal relationships that cannot be expressed by 
linear relationships. Therefore, by utilizing nonlinear regression with neural networks, we have 
developed a technology to estimate more complex causal relationships among multiple variables [6]. 

In addition, to address the challenge of not having sufficient data for statistical causal discovery, 
Fujitsu has proposed a fusion technology that combines statistical causal discovery with agent-based 
modeling (ABM). By using ABM to model individual behaviors and interactions, it becomes possible to 
understand social phenomena and experiment with 'To-Be' scenarios. This technology can identify 
causal relationships between individual objectives, behaviors, environmental factors, and the analysis 
target using individual-level data and macro-level counterfactual data generated by ABM simulations. 
This supports the formulation and evaluation of realistic measures. To date, we have successfully 
proposed indirect measures to improve passenger experience at airports and presented their impacts 
[29], as well as generated explainable store product placement patterns that optimize customer 
experience and sales in retail stores [30]. 

 Integrated Causal Discovery 
In the current state of statistical causal discovery, it is difficult to integrate multiple datasets to 

estimate causal relationships. However, it is necessary to comprehensively determine causal 
relationships from numerous datasets observed under various conditions. For example, each hospital 
collects data on various test items, but it is unrealistic for a single hospital to conduct all the tests. 
Typically, in addition to items measured at any hospital, such as blood pressure, height, and weight, there 
are test items that are only conducted at specific hospitals. Although the measurement environments 
differ among hospitals, if these data could be integrated for causal discovery, it would enable cross-
sectional analysis of the test items across different hospitals. To achieve this, we are developing a 
technology called 'integrated causal discovery,' which allows for causal discovery across multiple 
datasets. 

Many approaches to discovering causal relationships are designed to learn a fixed causal relationship 
model from a single dataset, assuming that there are no hidden confounding factors. However, due to 
the cost of data acquisition, only a subset of variables may be measured for analysis. Therefore, there is 
a need for methods to discover causal relationships from multiple datasets with different variable sets, 
such as health checkup data measured by different hospitals or HR data collected by different 
companies. Fujitsu's integrated causal discovery can estimate the underlying data distribution using 
common variables as keys across datasets and construct a Causal Knowledge Graph that integrates 
datasets from different domains. 

 Causal Knowledge Transfer 
Current statistical causal discovery technologies derive causal relationships based on a given dataset, 

but it is challenging to utilize those causal relationships for causal discovery in other datasets. One 
reason is that different datasets may not necessarily be generated according to the same causal 
structure, making it difficult to determine the extent to which causal relationships can be reused. While 
it is possible to use specific causal relationships as prior knowledge in causal discovery, the validity of 
such prior knowledge is currently judged manually by experts. However, when the number of variables 
exceeds several dozen, there are limitations to expert judgment. Fujitsu's causal knowledge transfer 
technology overcomes the limitations of current causal discovery, which is confined to the given dataset, 
by automatically obtaining the causal relationships with the least contradictions from the Causal 
Knowledge Graph as prior knowledge for the dataset whose causal structure is to be estimated. This 
technology enables the realization of a causal AI that continues to grow through the learning of large 
amounts of datasets. 
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4.3. Utilization Technologies of Causal Knowledge Graph 

 Root Cause Analysis 
As one of the utilization technologies of the Causal Knowledge Graph, we are developing a 

technology to automatically analyze the root cause of network failures. 

Figure 10 shows an example of utilizing the Causal Knowledge Graph extracted in Figure 9 for root 
cause analysis. By exploring and referencing the KG, appropriate causal relationships can be extracted, 
and potential failure causes can be enumerated comprehensively, considering various scenarios. This 
enables the generation of high-precision answers even for complex events that would typically fail in 
standard RAG. Additionally, it is possible to present the impact of each failure cause, verification 
procedures, and the knowledge necessary for narrowing down and recovery. 

 

Figure 10: Overview of Root Cause Analysis Using Causal Knowledge Graph 

 Causal Decision-Making 
Once the causal relationships between items in a given dataset are identified, it becomes possible to 

determine which items should be intervened on to achieve the desired goals, i.e., to formulate strategies. 
For example, in the HR domain, identifying the causal relationships between items from the results of 
an employee engagement survey can help formulate strategies to improve trust in management while 
maintaining employee productivity. However, even if the causal relationships between items are 
identified, it is difficult to manually derive effective strategies to achieve the goals. Fujitsu's causal 
decision-making recommends the most effective strategies to achieve the goals based on all possible 
causal relationships estimated from the data. The strategies recommended by this technology are 
optimized to achieve the goals at the lowest cost while minimizing adverse effects on items other than 
the goals. Applying this technology to the results of an engagement survey, we successfully derived 
new insights into strategies to improve employee productivity and trust in management. 
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Figure 11: Example of Causal Decision-Making 

 Causal Knowledge Graph Reasoning (Question answering using LLM) 
A Causal Knowledge Graph constructed from a vast number of documents and numerical data is 

expected to serve as a foundation for scientific discoveries and important decision-making. However, 
as the scale of the Causal Knowledge Graph increases and the relationships between items become 
more complex, interpreting its content, and utilizing it for reasoning becomes increasingly difficult. 

Therefore, we are developing a reasoning technology for large-scale Causal Knowledge Graphs using 
LLMs. This technology divides the Causal Knowledge Graph into subgraphs and stores them in the LLM's 
RAG. By referencing these subgraphs during question answering, it can handle large-scale graphs and 
improve the accuracy of the answers generated by the LLM through a division suitable for reasoning. 
This corresponds to 'a. KG-enhanced LLMs' in the integration technologies of LLMs and KGs shown in 
Figure 3. Fujitsu refers to this format as 'KG-enhanced RAG.  

Figure 12 is an example of reasoning based on a Causal Knowledge Graph generated from health 
checkup results and questionnaire data. In response to the question 'How can obesity be prevented?', 
the answer 'Maintain regular bowel movements' is provided based on the Causal Knowledge Graph, 
which is not included in general knowledge.  
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Figure 12: Example of Question Answering using Causal Knowledge Graph and LLM 
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5. Case Studies of Fujitsu’s Causal Knowledge Graph 
In this chapter, we introduce case studies where the Causal Knowledge Graph has been applied to 

three fields: 'ICT support,' 'human resources,' and 'healthcare and wellness.' In the ICT support field, a 
Causal Knowledge Graph of network failures is constructed from multiple communication device 
specifications and troubleshooting guides to analyze root causes. In the human resources field, 
integrated causal discovery is conducted across business negotiation data and employee engagement 
survey data to analyze the impact of engagement items on business wins. In the healthcare and wellness 
field, causal relationships derived from the health checkup big data promoted by Hirosaki University are 
used as prior knowledge to estimate valid causal relationships for other health checkup data. 

5.1. Case Study 1: Analysis of Network Failure Causes 

 Overview: 
In network deployment and operation, it is necessary to handle various devices connected in complex 

topologies, making it difficult to identify the causes of issues such as transmission errors or delays when 
they occur. On the other hand, the impact of a single failure can be significant, with potential losses 
amounting to billions of yen. Therefore, preventing failures and quickly recovering from them are critical 
challenges for network operators. Although some automation efforts are currently underway, the 
analysis and investigation of the diverse causes of failures—such as configuration errors, version 
incompatibilities, and hardware degradation—require a significant amount of effort from experts. As a 
result, there is a strong demand for technologies that can automate and support the analysis and 
investigation processes. 

Therefore, to realize the cause analysis of network failures, we applied the Causal Knowledge Graph 
to automate the analysis of complex causal relationships of failures. In the future, we plan to expand the 
application to causal analysis in various fields, including cloud systems and factory equipment 
operations. 

Datasets: 
Troubleshooting guides, specifications, manuals, and other documents 

Technologies: 
Causal Extraction from Documents, Root Cause Analysis 

Detail Explanation of Actual Output: 
In Figure 10 explained in the previous section, the operational overview of the case study applied to 

network failure cause analysis is shown. The left side of Figure 10 shows the Causal Knowledge Graph 
automatically extracted from troubleshooting guides and specifications. By exploring and referencing 
this Causal Knowledge Graph to extract appropriate knowledge, it is possible to enumerate potential 
failure causes comprehensively, considering various scenarios. This enables the generation of high-
precision answers even for complex events that would typically fail in standard RAG. Additionally, it is 
possible to present the impact of each failure cause, verification procedures, and the knowledge 
necessary for narrowing down and recovery. 

This technology is available as a web application called 'Fujitsu KG-enhanced RAG for Root Cause 
Analysis' in Fujitsu's PoC environment, 'Kozuchi.' Figure 13 shows an example screen of this web 
application. When the failure details are entered as a query, as shown in the upper part of Figure 13, the 
root cause analysis results are obtained along with the KG that serves as the basis for the judgment, as 
shown in the lower part of Figure 13. 
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Figure 13: Example Screens of a Web Application for Root Cause Analysis Using a Causal 
Knowledge Graph (Top: Query Input Screen, Bottom: Answer Viewing Screen) 
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This allows experts to obtain investigation results immediately instead of reading and analyzing a large 
number of documents. Additionally, it can present more comprehensive and error-free recovery 
procedures, significantly reducing the time required for failure recovery. 

5.2. Case Study 2: Causal Analysis Integrating Business 
Negotiation Data and Engagement Survey 

 Overview: 
How 'improving employee engagement affects business wins' and ' how the results of business 

negotiations affect engagement survey scores' are of interest to the HR department. Additionally, in the 
sales field, there is a demand for initiatives that increase the win rate of business negotiations. 

However, when formulating initiatives to improve the win rate of business negotiations using simple 
correlation analysis, there is a risk of identifying factors that are merely spurious correlations rather than 
actual causes of the win rate. Therefore, to minimize this risk, it is important to apply causal analysis 
techniques that clarify the cause-and-effect relationships between factors and allow for the verification 
of the extent to which each factor influences the outcome. 

It is difficult to construct an integrated causal graph that spans different domains, such as business 
negotiation data and engagement survey data, using traditional methods. Therefore, we decided to use 
Fujitsu's integrated causal discovery technology to output a causal graph that spans both datasets. This 
technology estimates the causal graph by using common items as hints and assuming that both datasets 
are generated from a common causal structure. As a result, we were able to identify the relationships 
between business negotiations and engagement surveys. Furthermore, by applying causal decision-
making to this causal graph, we were able to formulate initiatives to improve the win rate of business 
negotiations. 

Datasets: 
Data recording the details and outcomes of business negotiations, and employee engagement survey 

data 

Technologies: 
Statistical Causal Discovery, Integrated Causal Discovery, Causal Decision-Making 

Detail Explanation of Actual Output: 
Figure 14 is an example of the cross-analysis results of business negotiation data and engagement 

survey data (this is a model case and does not represent actual data). The red nodes represent items 
from the business negotiation data, and the blue nodes represent items from the engagement survey 
data. By observing the causal relationships between these two sets of items, we can understand the 
relationships between them. 

Additionally, Figure 15 is an example of the initiatives output by causal decision-making to increase 
the business win rate (“Negotiation_Success”) by 10%. By constraining the three causes—” 
Dedicated_Staff”, “Customer_Meetings”, and “Psychologica_Safety”—the actions to influence the items 
in the engagement survey are output. 
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Figure 14: Integrated Causal Graph of Engagement and Business Negotiation Data 

 

Figure 15: Example Output from Causal Decision-Making 
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5.3. Case Study 3: Estimation of Causal Relationships in Data 
on Sleep and Lifestyle 

 Overview: 
Good quality sleep is widely known to be an important factor in supporting a healthy lifestyle, 

including reducing the risk of high blood pressure and heart disease, alleviating mental stress, regulating 
hormone balance, and suppressing overeating. So, what specifically should be done to improve sleep 
quality? To answer this question, it is essential to go beyond mere correlations and focus on the causal 
relationships with factors that affect sleep quality through data analysis. By clarifying which aspects of 
lifestyle are the 'causes' that influence sleep quality, more effective improvement measures can be 
identified. 

However, identifying causal relationships based on a single dataset often involves various issues, such 
as insufficient sample size, the influence of confounding factors (unknown factors not included in the 
dataset), and biases in the data collection process. These issues can reduce the reliability of the analysis 
results. Fujitsu's causal knowledge transfer technology uses highly reliable known causal networks and 
converts them into information about causal relationships in unknown datasets, thereby improving the 
accuracy of causal discovery in unknown datasets. 

This time, Kyoto University's research group applied their unique Bayesian network technology to the 
large-scale health checkup data led by Hirosaki University, 'Hirosaki University COI-NEXT Iwaki Health 
Promotion Project Health Checkup Big Data' [31], and constructed a highly reliable 'Hirosaki (Iwaki) 
Health Checkup Causal Network.' By using Fujitsu's causal knowledge transfer to apply this causal 
network to the causal discovery of a dataset on sleep and lifestyle, we were able to derive more valid 
causal relationships compared to when the Hirosaki Health Checkup Causal Network was not utilized. 

Datasets: 
Hirosaki Health Checkup Causal Network, Sleep Health and Lifestyle Dataset [32] 

Technologies: 
Statistical Causal Discovery, Causal Knowledge Transfer 

Detail Explanation of Actual Output: 
This time, we will execute two patterns when estimating causal relationships in the open data on sleep 

and lifestyle, 'Sleep Health and Lifestyle Dataset' (hereinafter referred to as SH data): one using causal 
knowledge transfer and one without using it. Figure 16 shows the execution results. Figure 16 (1) is the 
result of estimating causal relationships using only the SH data, and Figure 16 (2) is the result of 
estimating causal relationships in the SH data using the 'Hirosaki Health Checkup Causal Network' 
through causal knowledge transfer. By comparing the respective causal graphs, the following 
observations can be made. 
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Figure 16: Differences in the Estimation of Causal Relationships in Sleep and Lifestyle with and 
without the Utilization of the Hirosaki Health Checkup Causal Network  
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⚫ The nodes enclosed by thick red lines are nodes that do not have parent nodes (nodes that are 
direct causes of the corresponding nodes) in each causal graph. In the causal graph utilizing the 
Hirosaki Health Checkup Causal Network (Figure 16 (2)), 'age,' 'gender,' and 'number of steps' are 
estimated as exogenous factors without parent nodes, which aligns with the intuition that these 
factors are not influenced by other nodes. On the other hand, in the causal graph not utilizing the 
Hirosaki Health Checkup Causal Network (Figure 16 (1)), only 'insomnia' is estimated as an 
exogenous factor, and 'age' and 'gender,' which were exogenous factors in the utilized causal graph, 
have parent nodes. 

⚫ In the causal graph without utilization (Figure 16 (1)), the causal relationships where 'age' is the 
direct cause are indicated in blue. For example, an obviously invalid causal relationship is estimated, 
such as 'sleep duration' being caused by 'age.' 

⚫ In the causal graph with utilization (Figure 16 (2)), the causal relationships where 'insomnia' is the 
direct cause are indicated in purple. It can estimate valid results, such as 'sleep duration' and 'sleep 
quality' being directly influenced by 'insomnia.' 

⚫ The nodes 'systolic blood pressure' and 'diastolic blood pressure' enclosed in green are values 
detected as a result of various health conditions, and it is counterintuitive for these to have a causal 
relationship with each other. In the causal graph without utilization (Figure 16 (1)), a causal 
relationship is detected from 'systolic blood pressure' to 'diastolic blood pressure,' but in the causal 
graph with utilization (Figure 16 (2)), these do not have a direct causal relationship. 

In this way, by using causal knowledge transfer to leverage the information on causal relationships 
from the highly reliable known 'Hirosaki Health Checkup Causal Network,' it becomes possible to 
estimate more valid causal relationships even for datasets like the SH data, which would otherwise yield 
less reliable results in causal discovery. 
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6. Conclusion 
In this white paper, we discussed the challenges faced by LLMs and the potential of Causal Knowledge 

Graphs as a promising solution. While LLMs are revolutionary in natural language processing, truly 
reliable decision support requires logical reasoning based on causal relationships, not just data 
correlations. Causal Knowledge Graphs have the potential to overcome this challenge and evolve AI 
from a mere information-providing tool to a more advanced decision support tool. 

In Chapters 2 and 3, we detailed the technical background of 'causal analysis' and 'Knowledge Graph' 
that constitute the Causal Knowledge Graph, as well as the definition, use cases, and necessity of the 
Causal Knowledge Graph as envisioned by Fujitsu. In Chapter 4, we introduced the suite of technologies 
Fujitsu is working on for constructing and utilizing the Causal Knowledge Graph, with a particular focus 
on foundational technologies such as causal extraction from documents statistical causal discovery, and 
integrated causal discovery. In Chapter 5, we presented case studies of constructing and utilizing the 
Causal Knowledge Graph in three fields: 'ICT support,' 'human resources,' and 'healthcare and wellness. 

Through these technologies, Fujitsu will advance the construction and application of Causal 
Knowledge Graphs in various fields. This will support more accurate and reliable decision-making in a 
wide range of areas, including strategic business decisions, treatment planning in healthcare, and 
development planning in sports. By combining cross-industry causal relationships into a Causal 
Knowledge Graph, Fujitsu aims to solve complex social issues through data-driven logical decision-
making, thereby contributing to the realization of a better future society. 
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B. Fujitsu's Research Achievements 

 Research Achievements in Causal Analysis: 

◼ Mar., 2017： Fujitsu in Plans for RIKEN AIP-FUJITSU Collaboration Center 

◼ Dec., 2020： Fujitsu Develops Technology to Discover Characteristic Causal Relationships of 
Individual Data in Medicine, Marketing, and More 

◼ Feb., 2021： Fujitsu and Hokkaido University Develop "Explainable AI" Technology Providing Users 
with Concrete Steps to Achieve Desired Outcomes 

◼ Feb., 2021： Developing a new AI technology to recommend the optimal order of actions based on 
a counterfactual explanation 

◼ Mar., 2022： Fujitsu and Tokyo Medical and Dental University leverage world’s fastest 
supercomputer and AI technology for scientific discovery to shed light on drug 
resistance in cancer treatment 

◼ Apr., 2022： Fujitsu and Atmonia leverage HPC and AI technology in joint project to contribute to 
carbon neutrality  

◼ Feb., 2023： Fujitsu and Atmonia succeed in development of new technology that accelerates 
search for disruptive catalyst for enabling sustainable ammonia production 

◼ May, 2023： Fujitsu, Kyoto University, and Chordia Therapeutics launch AI trials to discover 
biomarkers for new cancer drugs 

◼ Oct., 2023： Fujitsu and Atmonia discover a novel catalyst candidate for clean ammonia synthesis 
leveraging high-speed quantum chemical calculations 

 Research Achievements in Knowledge Graph 

◼ Apr., 2013： Fujitsu and DERI Revolutionize Access to Open Data by Jointly Developing Technology 
for Linked Open Data  

◼ Jan., 2014： Fujitsu Laboratories Develops Technology for Automatically Linking with Open Data 
throughout the World  

◼ Feb., 2014： Fujitsu Develops First-of-Its-Kind Assessment Tool that Visualizes a Community's 
Characteristics  

◼ Sep., 2017： Fujitsu Fuses Deep Tensor with Knowledge Graph to Explain Reason and Basis Behind 
AI-Generated Findings 

◼ Nov., 2019： Fujitsu Improves Efficiency in Cancer Genomic Medicine in Joint AI Research with the 
Institute of Medical Science at the University of Tokyo 

◼ Oct., 2021： Fujitsu and Aichi Cancer Center Develop AI System to Offer Patients Personalized 
Cancer Treatment 

◼ May, 2024： Fujitsu introduces ‘explainable AI’ for use in genomic medicine and cancer treatment 
planning 

◼ May, 2024： Fujitsu chosen for GENIAC project, starts development of large language models for 
logical reasoning  
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