

Fujitsu's R&D Initiatives for LTE System Development

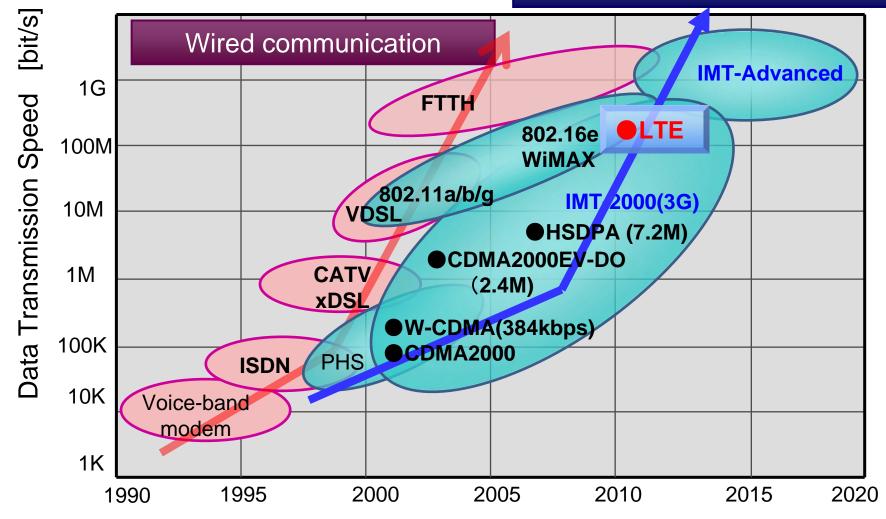
- Technologies that differentiate Fujitsu-

April 17, 2009 Eisuke Fukuda Senior Vice President Network Systems Laboratories FUJITSU LABORATORIES LTD.

Outline

- Market Trend and New ICT World
- Technical Tasks for LTE
- Enablers to accomplish the tasks
 - Wireless Network Engineering
 - Optimization of BTS (Shared Amplifier, Interference Control)
 - Multi-band Antenna for Terminals

Summary


LTE: Long Term Evolution

Next-generation cellular telephone system specifications being promulgated by the 3rd Generation Partnership Project (3GPP)

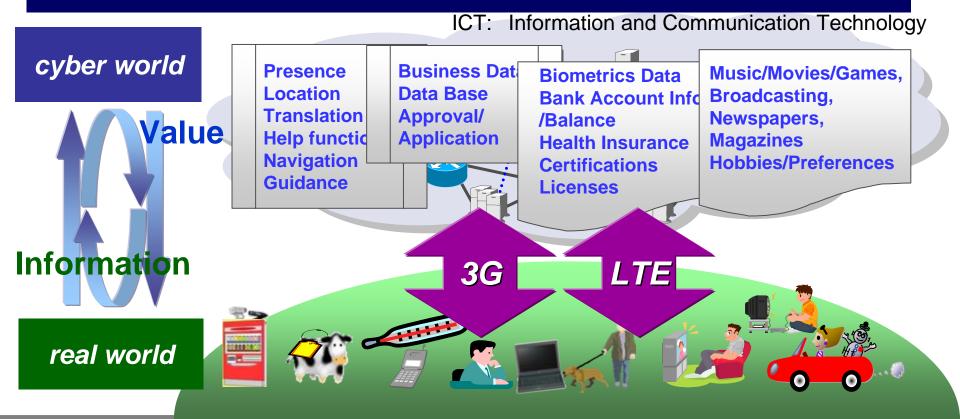
ICT: Information and Communication Technology

Transition of Data Transmission SpeedsFUjiTSU

Wireless communication

Source: Ministry of International Affairs and Communications, Japan

From 3G to LTE / LTE-Advanced


	W-CDMA (3G)	HSDPA/EUL (3.5G)	CDMA200	0 1xEV-DO	LTE	LTE- Advanced
	(38)		Rev.0	Rev.A		(4G)
Wireless Access	DL: CDMA UL: CDMA	DL: CDMA UL: CDMA	DL:CDMA UL: CDMA	DL:CDMA UL: CDMA	DL: OFDMA UL: SC-FDMA	DL: OFDM(?) UL: (?)
Frequency Bandwidth	5 MHz	5 MHz	1.25 MHz	1.25 MHz	20 MHz	>100 MHz
Modulation	HPSK,QPSK	HPSK QPSK 16QAM	BPSK,QPSK 8PSK, 16QAM	BPSK,QPSK 8PSK, 16QAM	QPSK 16QAM 64QAM,etc.	QPSK 16QAM 64QAM,etc.
Data rate (max.)	DL: 384kbps UL: 64kbps	DL: 14.4Mbps UL: 5.7Mbps	DL: 2.4Mbps UL: 154kbps	DL: 3.1Mbps UL: 1.8Mbps	DL: >200Mbps UL: 50Mbps	DL: 1~3Gbps UL: 500Mbps
Service-in	2000	HSDPA: 2006 EUL: 2008	2003	2006	Around 2010	In or after 2015

DL:Down LinkUL:Up LinkW-CDMA:Wideband Code Division Multiple AccessEV-DO:Evolution Data OnlyHSDPA:High Speed Downlink Packet AccessOFDMA:Orthogonal Frequency Division Multiple AccessEUL:Enhanced Up LINKSC-FDMA:Single-Carrier Frequency Division Multiple Access

New "ICT world" driven by LTE

Social infrastructure where IT resources (servers, data services, etc.) and applications are tailored according to individual requirements

Mutual interaction between real world and cyber world

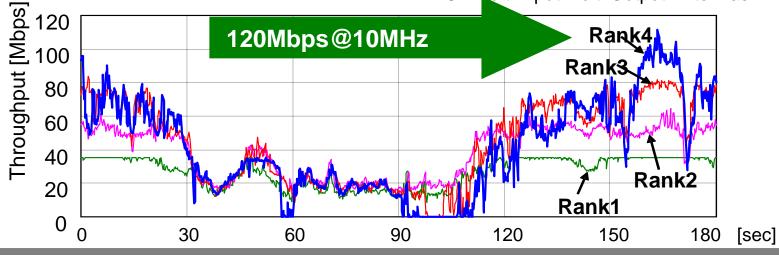
Technical Tasks for LTE

Wireless network engineering Link budget, Cell lay-out	 Interference control Even throughput
Migration from legacy systems W-CDMA, HSDPA, EUL CDMA2000, EV/DO	LLS and SLS Cell layout design
Cost reduction	Highly-efficient shared power amplifier

SDR: Software Defined Radio

LLS : Link Level Simulator

LTE Field Test


Base Station

> 中央 役所前

Joint field test by NTT docomo and Fujitsu

Objectives

- Propagation result
 Down link throughput
 Frequency scheduling
- Results
 - Max. 240Mbps(@20MHz bandwidth) throughput verified
 - Adaptive antenna multiplexing for MIMO (Rank) confirmed MIMO: Multi Input Multi Output Antennas

西18丁目

エクセルシオ

西15丁目

い 地区大 田 札川

LTE Field Test Press Release

FUjitsu

FUITSU THE POSSIBILITIES ARE INFINITE

Home

Home > News > Press Releases > Archives > By Month > 2009 > Fujitsu Conducts Collaborative Fi

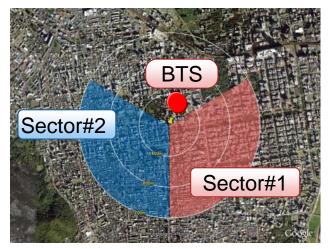
Fujitsu Limited Fujitsu Laboratories Ltd.

Fujitsu Conducts Collaborative Field Testing of LTE

Tokyo and Kawasaki, Japan, March 16, 2009 — Fujitsu Limited and Fujitsu Laboratories Limited today announced that, in collaboration with NTT DOCOMO, INC., they have conducted successful field testing for Long-term Evolution (LTE⁽¹⁾), a core technology standard for highspeed wireless communications, using 4x4 MIMO⁽²⁾.

The testing took place in the Special Ubiquitous Zone, an area of the northern Japanese city of Sapporo in Hokkaido, designated by the Ministry of Internal Affairs and Communications in 2008 as a wireless communications testing area, and used prototypes of the wireless LTE base stations developed jointly by NTT DOCOMO, Fujitsu and Fujitsu Laboratories which, with the use of MIMO technology, resulted in high-speed wireless transmissions in the range of 120 Mbps (using 10 MHz bandwidth) in Sapporo's urban environment.

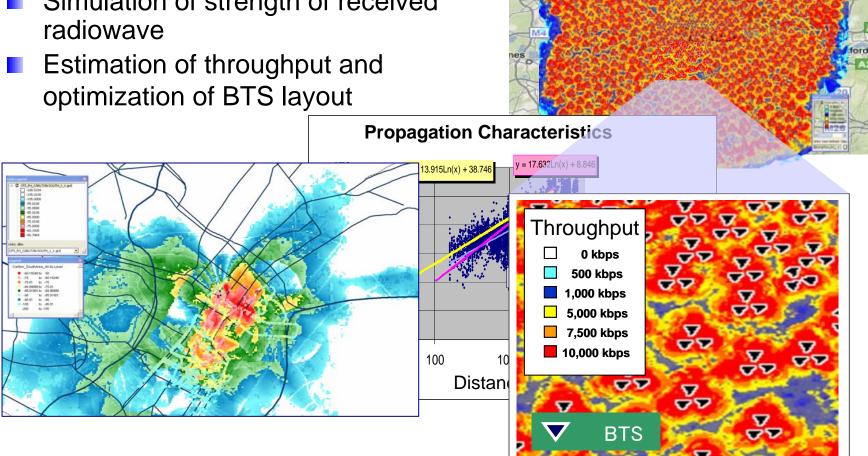
LTE, sometimes referred to as the 3.9G wireless standard, is a standard for wireless communications that enables broadband communications for mobile phones. It is an international


standard created by the standard-setting organization 3GPP⁽³⁾ and is intended to produce dramatic improvements in wireless performance, including faster, higher-capacity data communications, reduced connection lag times, and more efficient bandwidth frequency utilization.

Fujitsu and Fujitsu Laboratories were selected by NTT DOCOMO in 2006 to be the developer and manufacturer of their wireless LTE base stations. Since then, they have worked together with NTT DOCOMO to develop these technologies using 4x4 MIMO, which increases speed and capacity in both transmitting base stations and receiving mobile stations, and the three companies have performed successful tests of a prototype three-sector LTE base station that has a transmission capacity of 300 Mbps per sector on the downlink (20 MHz band).

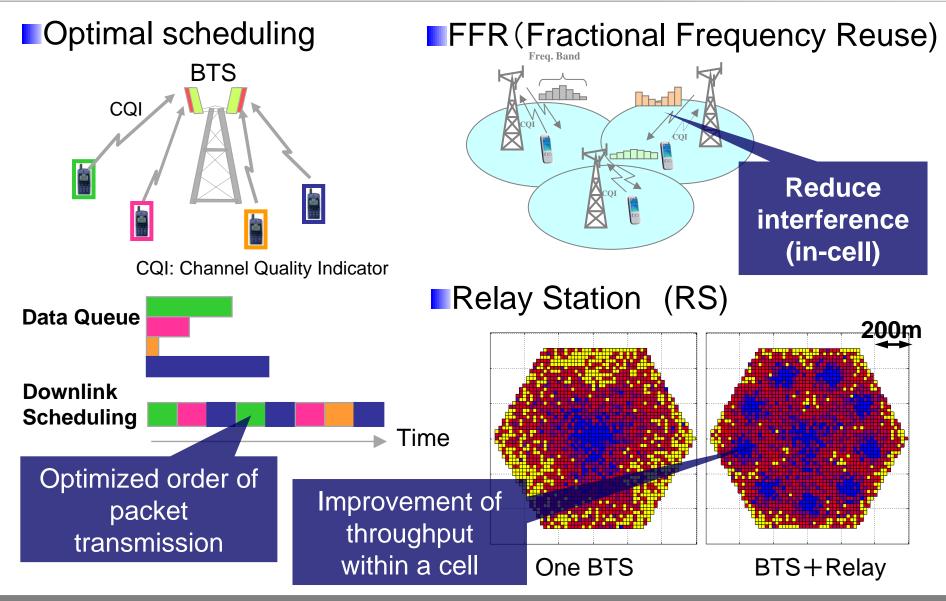
The field testing involved LTE transmissions using NTT DOCOMO test stations in Sapporo's urban environment, assessing the throughput

characteristics of 4x4 pre-coding MIMO^(<u>4</u>) on the downlink and confirming that a maximum of 120 Mbps (using 10 MHz bandwidth) could be attained over a measured course. The **bttp:** Transmitting different signals at the same time, over the same frequency, using four antennae



BTS Prototype

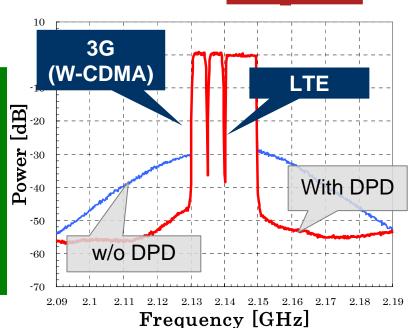
attained avera management average The http://www.fujitsu.com/global/news/pr/archives/month/2009/20090316-01.html


Wireless Network Engineering

- Analysis of propagation characteristics from real map
- Simulation of strength of received radiowave

Technologies to enable even throughputruitsu

Shared Amplifier for Migration

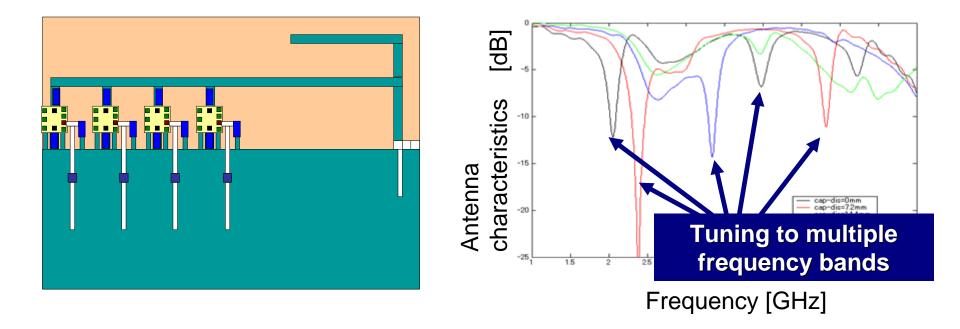

Power-efficient amplifier module using GaN device

Higher efficiency using Digital Pre-Distortion (DPD) to reduce non-linear distortion

Shared amplifier for both 3G and LTE

 Ecological base station (Green Wireless)
 Smooth migration from existing 3G to LTE

GaN: Gallium Nitride DPD: Digital Pre-Distortion


World-class

11

Multi-Band Antennas

Tunability to regional frequency bands Antenna element to cover 600MHz to 6GHz

Realizing a Thin Client Terminal

Enabling an environment in which communication is possible anytime, anywhere, with anything ("available like air"),

- to entrust private functions to networks, and
- to keep "everything readily at hand" (full accessibility) without actually carrying anything.

Full Mobility

Global and seamless communication in any environment (home, office, outdoors, in transit: in-vehicle, on trains/aircraft)

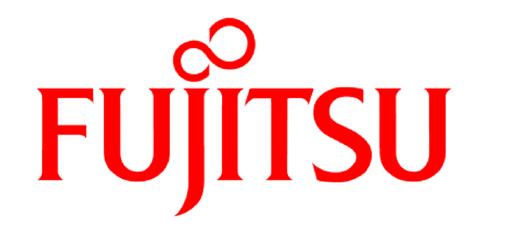
Broadband

Stress-free wireless broadband communication (thin client, video streaming, broadcasting)

Individualization

Customization of processing of personal data, identities, credibility, and preferences

Summary



Comprehensive and exhaustive R&D ranging from SoCs, wireless platforms, terminals, base stations, high-efficiency amplifiers, to core networks

Technological contributor for deployment of LTE systems in and outside of Japan (global deployment)

Catalyst for wide business expansion into new areas (cloud computing, thin client, etc.) leveraged by practical-use LTE

SoC: System on a Chip

THE POSSIBILITIES ARE INFINITE

Cautionary Statement

These presentation materials and other information on our meeting may contain forward-looking statements that are based on management's current views and assumptions and involve known and unknown risks and uncertainties that could cause actual results, performance or events to differ materially from those expressed or implied in such statements. Words such as "anticipates," "believes," "expects," "estimates," "intends," "plans," "projects," and similar expressions which indicate future events and trends identify forward-looking statements. Actual results may differ materially from those projected or implied in the forward-looking statements due to, without limitation, the following factors:

•general economic and market conditions in the major geographic markets for Fujitsu's services and products, which are the United States, EU, Japan and elsewhere in Asia, particularly as such conditions may effect customer spending;

•rapid technological change, fluctuations in customer demand and intensifying price competition in the IT, telecommunications, and microelectronics markets in which Fujitsu competes;

•Fujitsu's ability to dispose of non-core businesses and related assets through strategic alliances and sales on commercially reasonable terms, and the effect of realization of losses which may result from such transactions;

•uncertainty as to Fujitsu's access to, or protection for, certain intellectual property rights;

•uncertainty as to the performance of Fujitsu's strategic business partners;

•declines in the market prices of Japanese and foreign equity securities held by Fujitsu which could cause Fujitsu to recognize significant losses in the value of its holdings and require Fujitsu to make significant additional contributions to its pension funds in order to make up shortfalls in minimum reserve requirements resulting from such declines;

 •poor operating results, inability to access financing on commercially reasonable terms, insolvency or bankruptcy of Fujitsu's customers, any of which factors could adversely affect or preclude these customers' ability to timely pay accounts receivables owed to Fujitsu; and
 •fluctuations in rates of exchange for the yen and other currencies in which Fujitsu makes

significant sales or in which Fujitsu's assets and liabilities are denominated, particularly between the yen and the British pound and U.S. dollar, respectively.