

FY2007 Fujitsu Laboratories' R&D Strategy Briefing

Fujitsu Laboratories' R&D Strategy

April 13, 2007 Kazuo Murano President Fujitsu Laboratories, Ltd.

Rise of Global Competition in R&D

Common global market

Open innovation, international standards, standardization activities of major companies

Competition expanding from products to R&D

- Increasing recognition that R&D is the source of competitiveness
- National strategic policies: Japan, US, UK, Germany, France, Finland, Australia, China, Taiwan, India, etc.

R&D expenditure is increasing

- Japan: Highest level ever, 3.5% of GDP ('05)
- OECD*: 10% growth ('00-'04), 2.3% of GDP ('04)
- China^{*}: Doubled as % of GDP, 0.6% → 1.3% ('95-'04)
- Explosive growth in technology licensing market, reaching \$100 billion globally^{*} ('04)

Innovation as key to development of society, economy, corporations

* OECD Science, Technology and Industry: Outlook 2006

To Prevail in Global Competition

FUjitsu

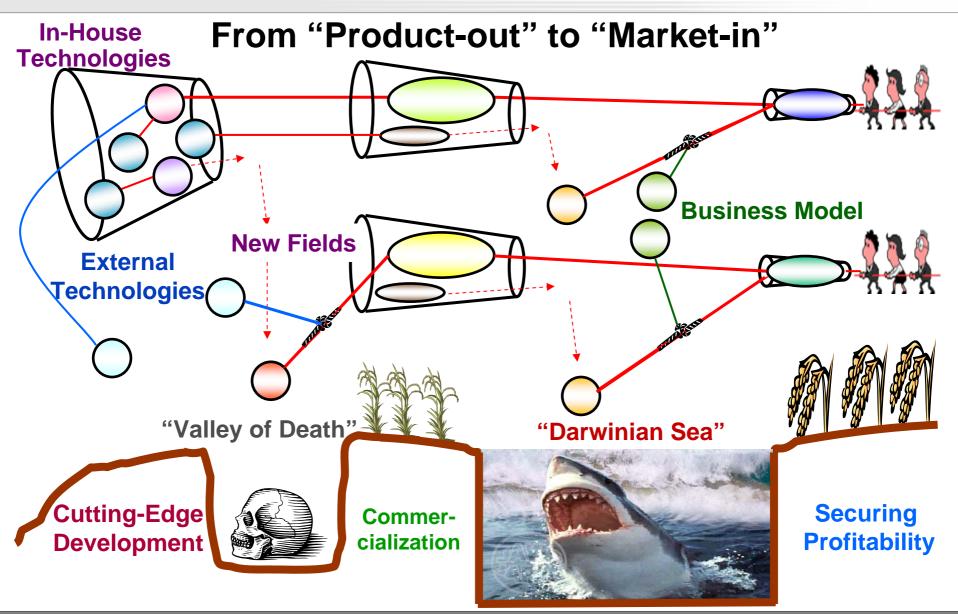
Demand-Pull Innovation

- Create efficiencies, lower costs
- Pursue business incubation

Strengthen Global Network

• Enhance activities of overseas labs

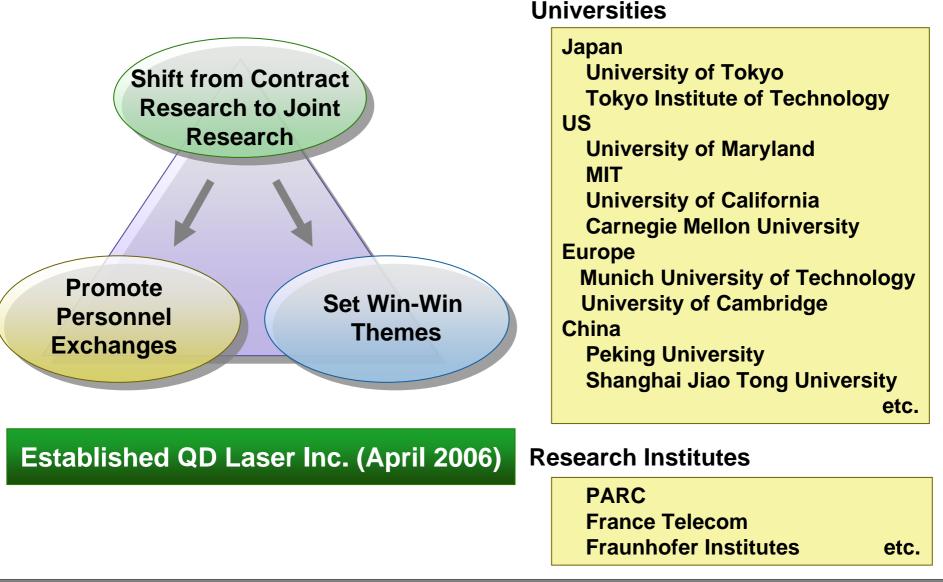
Enhance Collaboration with Partners


• Speed development through division of tasks

Link with IP/Standardization Activities


 Conduct IP search, standardization activities prior to starting R&D

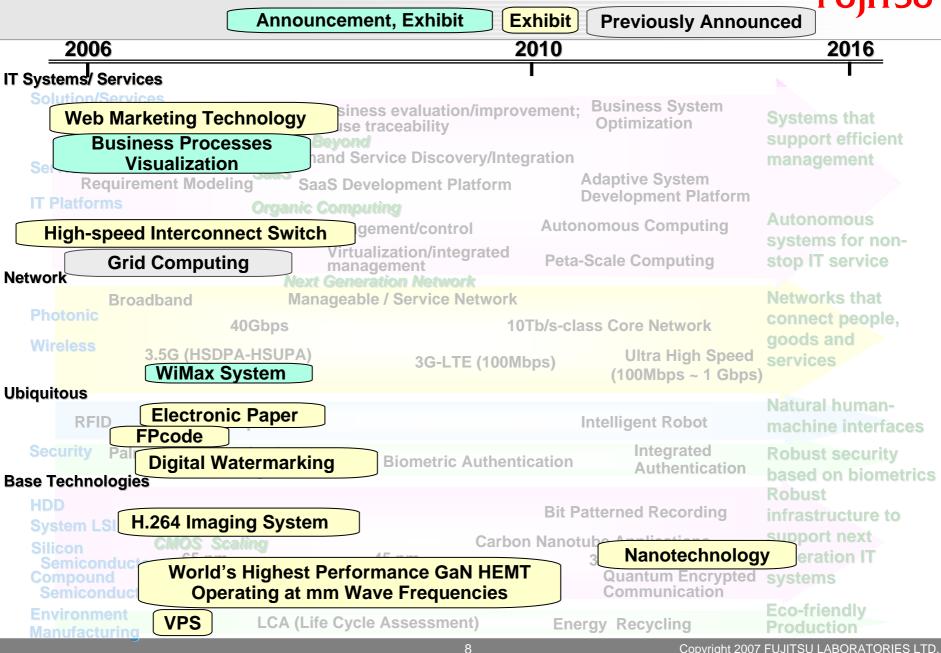
Demand-Pull Innovation


Strengthen Global Network

Fujitsu Group Overseas Affiliates

- US Labs (1993 ~) LSI-CAD, next-generation Internet, interconnect
- China Labs (1998 ~) Telecom systems, web info processing, system LSI
- Europe Lab (2001 ~) Next-generation telecom, biotechnology, grid computing

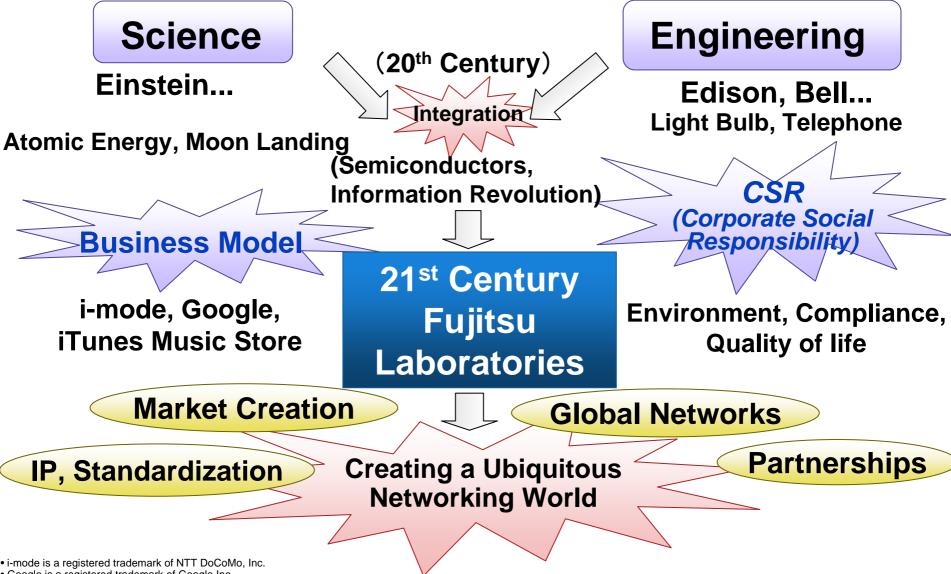
Enhance Collaboration with Partners FUJITSU


R&D Roadmap

2006					2016					
	ems/ Servi									
Web IIIO. Analysis/visualization				Business evaluation/impro cause traceability	n Systems that					
				Beyond nand Service Discovery/Inte	support efficient management					
		ement Mode	_	aaS Development Platform	Adaptive Syst Development					
				nanagement/control Autonomous Computing		outing Autonomous systems for non-				
Networ	Ŀ	Grid Co	omputing	Virtualization/integrated management	Peta-Scale Compu	-				
	Bro	adband		t Generation Network nageable / Service Network		Networks that				
	otonic		40Gbps	10	10Tb/s-class Core Network					
Wire	eless	•	PA-HSUPA) MAX	3G-LTE (100Mbps) (100Mbps ~ 1 Gb						
Ubiquitous										
	RFID	Electronic	Paper		Intelligent Ro	bot Natural human- machine interfaces				
		m vein Auth Waterma		Multi Biometric Authent	ication Integra	ated Robust security based on biometrics				
Base Technologies Robust										
HDD System LSI Digital AV (H.264 etc.)					ording infrastructure to					
Silic	con miconduc	CMOS S	caling	Carbo 45 nm	generation IT					
	npound miconduc	tors GaN	Amplifier		Quantum E Communic					
	rironment nufacturing	VPS	LCA (L	ife Cycle Assessment)	Energy Recycling	g Production				

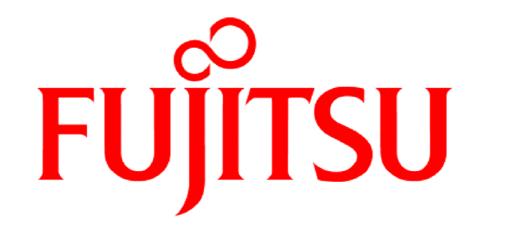
Copyright 2007 FUJITSU LABORATORIES LTD.

Main Results in FY 2006


Key Themes for FY 2007

2006		201	10	2016						
IT Systems/ Services										
Solution/Services Web Info. Ana Web2.0 Service Platforms	lysis/V [·] New W Tec	eb Services chnology	Optimization	Systems that support efficient management						
	nt Modeling Saas Saa	S Development Platform	Adaptive System Development Platform							
	Colf	1	er Scale Computing	Autonomous systems for non- stop IT service						
Network	Ontion	I and Wireless Techno		Networks that						
Photonic		ext Generation Netwo	connect people,							
Wir <mark>eless</mark> 3.5	5G (HSDPA-HSUPA) WiMAX	3G-LTE (100Mbps	s) Ultra High Speed (100Mbps ~ 1 Gbps	goods and services						
Ubiquitous				Natural human-						
RFID Ele	ectronic Paper		Intelligent Robot	machine interfaces						
	ein Authentication Watermarking	Multi Biometric Authentica	tion Integrated Authentication	Robust security based on biometrics						
Base Technologies	Base Technologies Differentiated Technology for Robust									
HDD System LSI Digita	I AV (H 264 etc.	Systems/Devices	rned Recording	infrastructure to						
	MOS Scaling		lanotube Applications	support next						
Semiconductors Compound Semiconductors	Coll Amerifian	45 nm	³² Nanotechnol	ogy ms						
Environment Manufacturing		e Cycle Assessment) 9	Energy Recycling	Eco-friendly Production 7 FUJITSU LABORATORIES LTD.						

Our Global R&D Laboratory Model for the 21st Century


Google is a registered trademark of Google Inc.

iTunes is a registered trademark of Apple Computer, Inc. in the United States and other countries.

Cautionary Statement

These presentation materials and other information on our meeting may contain forward-looking statements that are based on management's current views and assumptions and involve known and unknown risks and uncertainties that could cause actual results, performance or events to differ materially from those expressed or implied in such statements. Words such as "anticipates," "believes," "expects," "estimates," "intends," "plans," "projects," and similar expressions which indicate future events and trends identify forward-looking statements. Actual results may differ materially from those projected or implied in the forward-looking statements due to, without limitation, the following factors:

- •general economic and market conditions in the major geographic markets for Fujitsu's services and products, which are the United States, EU, Japan and elsewhere in Asia, particularly as such conditions may effect customer spending;
- •rapid technological change, fluctuations in customer demand and intensifying price competition in the IT, telecommunications, and microelectronics markets in which Fujitsu competes;
- •Fujitsu's ability to dispose of non-core businesses and related assets through strategic alliances and sales on commercially reasonable terms, and the effect of realization of losses which may result from such transactions;
- •uncertainty as to Fujitsu's access to, or protection for, certain intellectual property rights;
- •uncertainty as to the performance of Fujitsu's strategic business partners;
- •declines in the market prices of Japanese and foreign equity securities held by Fujitsu which could cause Fujitsu to recognize significant losses in the value of its holdings and require Fujitsu to make significant additional contributions to its pension funds in order to make up shortfalls in minimum reserve requirements resulting from such declines;
- •poor operating results, inability to access financing on commercially reasonable terms, insolvency or bankruptcy of Fujitsu's customers, any of which factors could adversely affect or preclude these customers' ability to timely pay accounts receivables owed to Fujitsu; and
- •fluctuations in rates of exchange for the yen and other currencies in which Fujitsu makes significant sales or in which Fujitsu's assets and liabilities are denominated, particularly between the yen and the British pound and U.S. dollar, respectively.

THE POSSIBILITIES ARE INFINITE

Appendix

Overview of Fujitsu Laboratories

- Capital: 5 billion yen
- Budget: 40 billion yen

(Fujitsu's FY 2006 consolidated R&D expenditure: 255 billion yen)

• Employees: 1,500 in Japan,

180 at Overseas Labs (US, Europe, China)

- Organization (Japan):
 - 7 Research Labs
 - 7 Centers
 - **1 Project Group**

R&D Portfolio

- Business Unit-commissioned projects: 55% HQ-commissioned projects: 45%
- **Development** Complete evel of Tech Development **Research: 15% Development** Advanced Research Research: 40% Common **Common Base** Base **Technologies Explora-Technologies: 30%** tory Research Exploratory Advanced Research Research: 15% Identity of BU Using Technology

Clearly Known