

Welcome to the world of "Quantum Computing"

© RIKEN Center for Quantum Computing

© 2024 Fujitsu Limited

Release of a 64-qubit System (Oct. 5, 2023) https://p

Collaboration with
Prof. Nakamura

 Developed Japan's second domestic quantum computer at RIKEN RQC-Fujitsu Collaboration Center

 Plan to develop applications with end users mainly in the industry using this system https://pr.fujitsu.com/jp/news/2023/10/5.html

RIKEN

OUANTUM

Fujitsu's Strategy for Quantum Computing

- Cover all the technology layers with the world's leading research institutions
- Put emphasis on software technologies, while working on several types of hardware
- Utilize Fujitsu Hybrid Quantum Computing Platform to develop applications with early input form end users

Research with end-user input:	: 🔠 Materials	Se Drug discovery	Finance, etc
Quantum Application	FUJIFILM, Tokyo Electron, etc.		TU Delft
Quantum Software	QunaSys Algorithm	Keysight Technologies Error Suppression	Osaka Univ. Error Correction
Quantum Platform	Middleware	Compiler	Cloud Technology
Quantum State Control	RIKEN	TU Delft	Exploring other
Quantum Device & Integration	Superconducting Qubit	Diamond Spin Qubit	possibilities, Neutral Atom etc.

8×8 = 64 Qubit

1_{Qubit}

© RIKEN Center for Quantum Computing

Superconducting Qubit Technology: Scalable Qubit Chip Design

40-qubit Quantum Computer Simulator https://pr.fujitsu.com/jp/news/2024/02/19.html

The world largest-class state vector simulator on PRIMEHPC FX700 cluster as a permanent dedicated system

Research on new-type simulators for larger scale

Tensor Network simulator with Barcelona Supercomputing Center **Decision Diagram simulator** with the Univ. of Tokyo

Fujitsu Hybrid Quantum Computing Platform

- Seamless operation between quantum computer and quantum simulator
- Development of computational methods that take advantage of both quantum computers and quantum simulators
 <u>https://pr.fujitsu.com/jp/news/2023/10/5.html</u>

Release of platform software as OSS

 Fujitsu has released Quantum Computing as a Service: QCaaS "OQTOPUS Cloud" as open source with University of Osaka.

https://github.com/oqtopus-team/oqtopus-cloud

- Based on Fujitsu's and Osaka Univ.'s quantum cloud computing platform
- Has fundamental capability of user/task/device management
- APIs for users to submit their task written in openQASM and for quantum device to receive the task and return the result
- Can be deployed easily on AWS by laaC (Infrastructure as a code)

Quantum Simulator Challenge

- Competition for the development of quantum applications utilizing a largescale quantum simulator, conducted from Feb. to Sep 2023.
- Participation of 34 teams from 17 countries
- The winners awarded at "Fujitsu Quantum Day" on Jan. 25th in Delft, Netherlands.

We are holding the 2nd competition in 2024!

https://pr.fujitsu.com/jp/news/2024/01/25.html

https://www.linkedin.com/feed/update/urn:li:activity:7215023 650394005504/

Our First Commercial Quantum Computer

Fujitsu to introduce superconducting quantum computer system at National Institute of Advanced Industrial Science and Technology

First order for commercial quantum computer system as Japanese vendor

Fujitsu Limited

Kawasaki, June 18, 2024

Fujitsu today announced that it has received an order for a gate-based superconducting quantum computer from the National Institute of Advanced Industrial Science and Technology (AIST) on May 15, 2024.

Fujitsu established the RIKEN RQC-Fujitsu Collaboration Center in April 2021 and has been conducting joint research with RIKEN aimed at scaling-up superconducting quantum computers. The new superconducting quantum computer is a system that Fujitsu has put into practical use by utilizing technology cultivated at the RIKEN RQC-Fujitsu Collaboration Center. It is scheduled to be operated by the Global Research and Development Center for Business by Quantum-AI technology (G-QuAT) of AIST in early 2025. This is the first time that a Japanese vendor has received an order for a commercial quantum computer system. Press release: https://pr.fujitsu.com/jp/news/2024/06/18.html

will be delivered in early 2025

Diamond-Spin Modular Technologies for Scalable Quantum Computer

Collaboration research with TU Delft/QuTech Diamond-spin modules can be connected with photonic links and operate at relatively high temperature (> 1k), enabling a smaller refrigeration system.

This approach can offer good scalability.

Modular architecture

Newly Developed Quantum Computing Architecture

https://pr.fujitsu.com/jp/news/2024/08/28.html

- In the early-FTQC era, sufficient performance cannot be demonstrated with current approaches to NISQ and FTQC.
- Introducing a new type of phase rotation gate, instead of conventional T-gate, into a universal quantum gate set

NISQ: Noisy Intermediate-Scale Quantum computer FTQC: Fault-Tolerant Quantum Computer

Y. Akashoshi, et al., arXiv:2408.14929 (2024). R. Toshio, arXiv:2408.14848 (2024)

Practical calculation, a material energy estimate, would be possible using only 60,000 qubits!

About the Future

To release large-scale simulators and actual machines successively in order to solve societal problems

2023.7 Released a high-speed and large-scale 40 qubit quantum simulator

Released a superconducting quantum computer (64 qubits) at the RIKEN RQC- Fujitsu Cooperation Center

Fault-Tolerant Quantum Computer

To release of a larger-scale superconducting quantum computer (256 qubits)

To release a superconducting quantum computer with >1000 qubits

2030

Thank you

© 2024 Fujitsu Limited