Next Arm-based
Processor
FUJITSU-MONAKA
and Its Software
Ecosystem

Next Gen. Arm-based Processor "FUJITSU-MONAKA"

FUJITSU-MONAKA is the processor developed for HPC, AI, and Data Center

Fujitsu microarchitecture

3D many-core architecture

Confidential Computing

High-performance

Energy Efficient

High Reliability & Security

Easy to Use

Application Performance

Performance per Watt

2 © 2024 Fujitsu

3D Microarchitecture

FUJITSU-MONAKA specifications

- Armv9-A Architecture (SVE2*1, CCA*2)
- 144 cores x 2 sockets (288 cores / node)
- Ultra low voltage
- 3D chiplet
 - Core die 2nm
 - SRAM die/IO die 5nm
- DDR5 (12 channels)
- PCI Express 6.0 (CXL3.0)
- Air cooling

© 2024 Fujitsu

^{*1} SVE2(Scalable Vector Extension version two) is a superset of the SIMD instruction set SVF and NFON.

^{*2} CCA(Confidential Compute Architecture) is Arm architecture for confidential computing.

Ultra Low Voltage Technology

FUJITSU-MONAKA realizes carbon neutrality by ultra low voltage technology.

Trend of Semiconductor Power*1

Semiconductor Technology Node

 $P \propto C V^2 f$

C: Capacity

V: Voltage

f: Clock Frequency

 Our proprietary CAD contributes to realize stable operation at an ultra low voltage.

Lowering voltage reduces power consumption.

^{*1} Fujitsu estimation

Security Enhancements

Confidential Computing

- Protecting end-user data in memory by encrypting every VM
- This is expected to be an essential technology in cloud, edge and HPC

FUJITSU-MONAKA Target Domain

Users can use OSS-based software stack without modification.

Hardware: Arm/FUJITSU-MONAKA

Collaboration with OSS Community

Fujitsu enhances software ecosystem with OSS communities

Meta

15% speed up (Arm SIMD support)

MIT

OpenBLAS

30% speed up (Thread control improvement)

- *1 Confidential Computing Consortium
- *2 Software Pipeline

Use Case Exploration with Customer

- Explore use cases with customer to expand Arm ecosystem
- Expand the FUJITSU-MONAKA application areas

Use Case 1 LLM + RAG*1

 FUJITSU-MONAKA improves operational efficiency of the generative AI tasks (e.g. LLM+RAG).

Use Case 2 AI Surrogate Model

 FUJITSU-MONAKA accelerates the physics simulation with AI surrogate model.

PINNs*2 ✓ High speed inference

- Simple process
- High versatility

Simulations

- Slow execution
- **S** Complex process
- Problem-specific

Accelerating CAE design with PINNs

VS

^{*1} Retrieval-Augmented Generation

^{*2} Physics Informed Neural Networks

Conclusion

 Fujitsu develops the processor called FUJITSU-MONAKA with 3 architectural innovative key technologies.

Our Own Microarchitecture

3D many-core

Confidential Computing

FUJITSU-MONAKA supports open-source based software stack for 3 domains.

HPC

Al

Data Center

- FUJITSU-MONAKA contributes carbon neutrality by ultra low voltage technology.
- Fujitsu enhances software ecosystem with OSS communities and co-creates use case with customers.

^{*} This presentation is based on results obtained from a project subsidized by the New Energy and Industrial Technology Development Organization (NEDO).

Thank you

