
Next Arm Processor FUJITSU-MONAKA and Its Technologies

Toshio Yoshida Fujitsu Limited

Fujitsu Processor Development

Persistent Evolution for over 60 years : Always targeting No.1 K computer 512-bit SIMD for HPC and AI Performance **HPC** High Bandwidth Memory Scalable Many-core Architecture Virtual Machine Architecture A64FX Software on Chip High-speed Interconnect **FUJITSU-**HPC-ACE **MONAKA** System on Chip © RIKEN Hardware Barrier SPARC Multi-core Multi-thread SPARC 64VIIIfx SPARC L2\$ on Die **UNIX** Non-blocking \$ SPARC 64VI O-O-Execution SuperO-Scalar Single-chip CPU Store Ahead **Branch History** Supercomputer Fugaku Prefetch SPARC 64GP+ SPARC 64GP \$ ECC Register/ALU Parity GS 8900 Mainframe Instruction Retry @ RIKEN \$ Dynamic Degradation Error Checkers/History Technology Generation

2010

2015

~1999

2000

2020

The Next Stage as World's Top Processor

- Creating a new era of computing power is mandatory for the future society with massive data generation and processing
- Ever-increasing power in datacenters is critical, and the power efficiency in CPU (consists of 60%)
 would be the vital factor for a sustainable future
- Fujitsu shall utilize its Supercomputer success and technology for the solution

- Developing the new power efficient CPU "FUJITSU-MONAKA" for datacenters, which will be shipped in 2027
- Targeted for wide range of usage in the datacenter including AI and HPC, and contribute to the realization of carbon-neutral society

Fujitsu Arm Processor "FUJITSU-MONAKA"

Fujitsu microarchitecture

3D many-core architecture

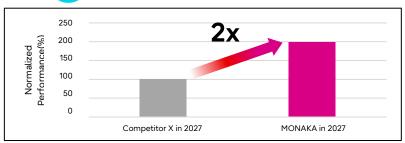
Confidential Computing

High-performance

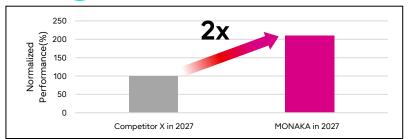
Energy Efficient

High Reliability

Easy to Use


- Cloud native 3D many-core design by Fujitsu-proven microarchitecture
- Leading-edge process technology
- Ultra low voltage operation

- Multiple VM Confidential Computing
- Mainframe class RAS for stable operation
- Open & de-facto standard software stacks
- Fujitsu compiler technology
- Air-Cooling for easy deployment



High memory bandwidths

Application Performance

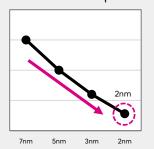
Performance per Watt

Semiconductor Trends -High Performance-

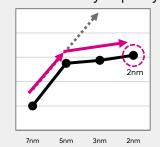
- (Pros.)
 Continuing improvements in semiconductor performance and power consumption, due to advancements in transistor structures
- (Cons.)
 Facing challenges with the slowdown in increasing cache memory capacity and the drastic increase in cost

	Transistor Type		
	Planar	FinFET	GAA (Gate-All-Around)
Technology node	~20nm (K computer : 45nm)	16nm ~ 3nm (Fugaku : 7nm)	2nm~ (MONAKA : 2nm)
Semiconductors Structures	Gate	Gate	Gate

Semiconductor Trends*


Frequency

5nm


2nm

7nm

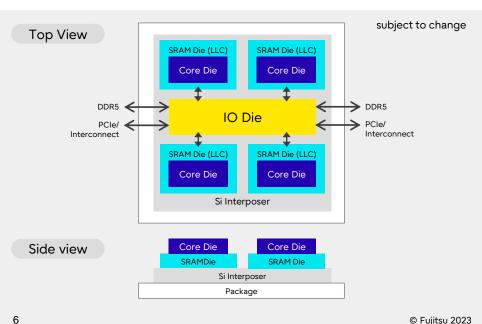
Power Consumption

Cache Memory Capacity

*Fujitsu estimation

Architectural innovation is required to meet demand of performance, power and cost

3D Microarchitecture -High Performance-

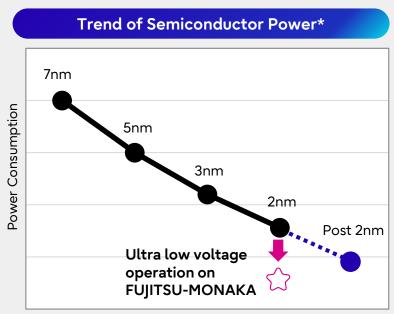


FUITSU-MONAKA adopts the innovative 3D many-core architecture

- 2nm is used only for core die (top die), achieving high performance and low power consumption
- All the last level cache are in 5nm SRAM die (bottom die), tightly coupled with core die through TSV
- 3D many-core architecture realizes more cores, low latency and high throughput
- 2nm area is less than 30% of total die size, contributing to cost-efficiency

FUJITSU-MONAKA Specification

- Armv9-A Architecture
 - SVE2 for Al and HPC
 - Confidential Computing for security
- 144 cores x 2 sockets (288 cores per node)
- Ultra low voltage for energy-efficiency
- 3D chiplet
 - Core die 2nm
 - SRAM die/IO die 5nm
- DDR5 12 channels PCI Express 6.0 (CXL3.0)
- Air cooling



Ultra Low Voltage Technology - Energy Efficient-

subject to change

 FUJITSU-MONAKA's ultra low voltage operation technology enables energy saving comparable to one generation ahead of 2nm

Semiconductor Technology Node

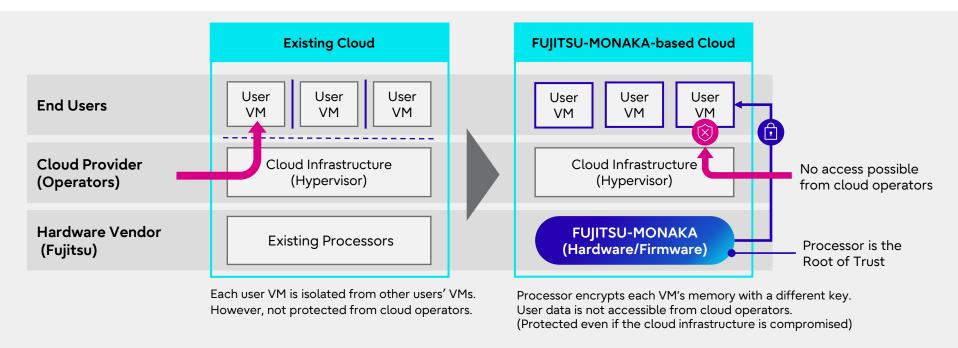
Reducing power consumption by lowering voltage of the CPU

 $P \propto C V^2 f$ C : Capacity

V : Voltage

7

f: Clock Frequency


 Fujitsu develops custom circuits including SRAM by using our proprietary CAD, which enables stable operation at an ultra low voltage

Security Enhancements - High Reliability-

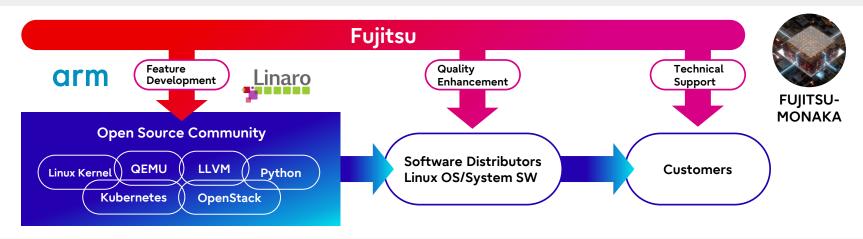
Confidential Computing

- Protect end-user data in memory by encrypting every VM with a different key generated by the processor hardware and firmware
- Expected to be an essential technology in cloud, edge and HPC environments which deals with sensitive data

8

Comparison between A64FX and FUJITSU-MONAKA

A64FX	FUJITSU-MONAKA	
HBM2 (8GB) HBM2 (8GB) HBM2 (8GB)	SRAM Die (LLC) Core Die DDRS PCIef Interconnect SRAM Die (LLC) Core Die SRAM Die (LLC) Core Die	
Armv8-A Architecture - SVE for HPC and AI	Armv9-A Architecture - SVE2 enhanced for HPC and AI - Confidential Computing	
48 cores x 1 socket (48 cores per node)	144 cores x 2 sockets (288 cores per node)	
Low voltage	Ultra low voltage	
2.5D - CPU 7nm - HBM2	3D chiplet - Core die 2nm - SRAM die/IO die 5nm	
HBM2 4 channels	DDR5 12 channels	
PCI Express 3.0 Tofu Interconnect	PCI Express 6.0 (CXL3.0)	
Air cooling and water cooling	Air cooling	


9

Software Ecosystem - Easy to Use -

Supports industry standard software

- Standard Linux OS support and system architecture
 - Continue and expand OSS development activities for FUJITSU-MONAKA
 - · OSS development achievements for Fugaku/A64FX: GCC, glibc, live-patch, papi, etc
 - Comply with standard system architecture (Arm System Ready) and support major distributions
- Arm software ecosystem
 - Working on the standard tools (Python/Java/LLVM) to provide higher performance on FUJITSU-MONAKA.
- ▶ Enabling smooth transition of customer assets and continuously enhancing performance

Conclusion

- Fujitsu develops high performance and energy-efficient processor called FUJITSU-MONAKA using our own microarchitecture and innovative 3D many-core architecture
- We continue and expand software development with communities and partners for easy-to-use
- This processor will meet future computing demand of performance, power, reliability and usability for wide range of usage in the datacenter including AI and HPC
- We will contribute to the realization of carbon-neutral society by our computing technologies and collaboration with users and partners

^{*} This presentation is based on results obtained from a project subsidized by the New Energy and Industrial Technology Development Organization (NEDO).

Thank you

